Реферат по физике реальные газы

Обновлено: 02.07.2024

ВВЕДЕНИЕ………………………………………………………………………..3
1.ОСНОВНЫЕ ПОНЯТИЯ ИДЕАЛЬНОГО ГАЗА…………………………..5
2.МОДЕЛЬ ИДЕАЛЬНОГО ГАЗА……………………………………………. 9
3.УПРАВЛЕНИЕ СОСТОЯНИЕМ ИДЕАЛЬНОГО ГАЗА……………..….16
ЗАКЛЮЧЕНИЕ………………………………………………………………….21
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ………………………………. 23

Содержимое работы - 1 файл

реферат по физике.docx

1.ОСНОВНЫЕ ПОНЯТИЯ ИДЕАЛЬНОГО ГАЗА…………………………..5

2.МОДЕЛЬ ИДЕАЛЬНОГО ГАЗА……………………………………………. 9

3.УПРАВЛЕНИЕ СОСТОЯНИЕМ ИДЕАЛЬНОГО ГАЗА……………..….16

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ………………………………. 23

В данном реферате мы рассмотрим идеальный газ — математическая модель газа , в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги , а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Понятие об идеальном газе является практически удобной абстракцией. Такое понятие дало возможность построить молекулярно-кинетическую теорию, рассмотреть вопросы о вычислении теплоемкостей, явления переноса и др. В определенных границах выводы этой теории хорошо подтверждаются экспериментами.

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики . Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса , в котором учитывается притяжение между молекулами.

Далее будет рассмотрено, уравнение состояния: называется уравнение, связывающее параметры физической системы и однозначно определяющее ее состояние.

В 1834 г. французский физик Б. Клапейрон, работавший дли тельное время в Петербурге, вывел уравнение состояния идеального газа для постоянной массы газа. В 1874 г. Д. И. Менделеев вывел уравнение для произвольного числа молекул. Не только идеальный газ, но и любая реальная система - газ, жидкость, твердое тело - характеризуется своим уравнением состояния. Но только эти уравнения намного сложнее, чем уравнение Менделеева - Клапейрона для идеального (достаточно разреженного) газа.
Знать уравнение состояния необходимо при исследовании тепловых явлений. Оно позволяет полностью или частично ответить сразу на три группы различных вопросов. Рассмотрим давление идеального газа в состоянии равновесия. Давление определяется силой, с которой газ давит на единицу площади стенки сосуда.

Идеальным газом - называют такой газ, в котором потенциальная энергия молекул не существенна. Учитывается лишь кинетическая энергия газа. Частицы идеального газа не притягиваются и не отталкиваются, не соударяются друг с другом и со стенками сосуда. Такого газа в природе не существует. Введем ограничения, которые свойственны любой физической теории.

Идеальный газ - модель реального газа, которая удовлетворяет следующим требованиям:

- расстояние между молекулами гораздо больше их размеров (молекулы можно считать материальными точками);
- силами взаимодействия, кроме моментов соударения, можно пренебречь (потенциальная энергия взаимодействия молекул по сравнению с кинетической энергией хаотического движения пренебрежимо мала);

- столкновение молекул друг с другом и со стенками абсолютно упругое;

- движение каждой молекулы подчиняется классическим законам динамики Ньютона.

Идеальный газ — это теоретическая модель газа, в которой пренебрегают размерами и взаимодействиями частиц газа и учитывают лишь их упругие столкновения.

Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Идеальный газ представляет собой упрощенную математическую модель реального газа: молекулы считаются движущимися хаотически, а соударения между молекулами и удары молекул о стенки сосуда — упругими, то есть не приводящими к потерям энергии в системе. Такая упрощенная модель очень удобна, поскольку позволяет обойти очень неприятную трудность — необходимость учитывать силы взаимодействия между молекулами газа. И это себя оправдывает, поскольку в природных условиях поведение большинства реальных газов практически не отличается от поведения идеального газа — отклонения в поведении практически всех природных газов, например атмосферного азота и кислорода, от поведения идеального газа не превышают 1%. Это позволяет ученым спокойно включать уравнение состояния идеального газа даже в весьма сложные теоретические расчеты. Например, астрономы при моделировании горячих звезд обычно считают вещество звезды идеальным газом и весьма точно прогнозируют давления и температуры внутри них. (Заметьте, что вещество внутри звезды ведет себя как идеальный газ, хотя его плотность несопоставимо выше плотности любого вещества в земных условиях. А дело в том, что вещество звезды состоит из полностью ионизированных ядер водорода и гелия — то есть из частиц значительно меньшего диаметра, чем диаметр атомов земных газов.) В будущем, по мере совершенствования теоретических методов, возможно, будут выведены более точные уравнения для описания состояния реальных газов с учетом их характеристик на молекулярном уровне.

Идеальный газ – это научный конструкт, модель.

  • классический идеальный газ,
  • квантовый идеальный газ.

Описание классического идеального газа

Частицы газа имеют предельно малый диаметр, их объемы практически приближаются к нулю. При этом расстояние между частицами газа сравнительно велико.

Частицы газа соударяются, вследствие чего между ними возникают силы отталкивания.

Суммарная энергия частиц идеального классического газа постоянна.

Давление классического идеального газа равно сумме импульсов, которые производятся частицами газа, сталкивающимися со стенками сосуда в единицу времени. Идеальный газ в физике описывается через уравнение Менделеева – Клапейрона:

p = nkT, в котором

р – давление газа,

n - концентрация частиц газа,

k – постоянная Больцмана,

T-абсолютная температура.
Реальный разреженный газ приблизительно ведет себя как идеальный газ.
Основное уравнение молекулярно-кинетической теории идеального газа устанавливает связь между макроскопической величиной - давлением, которое может быть измерено, например манометром, и микроскопическими величинами, характеризующими молекулу:

где р - давление, m0 - масса молекулы, п - концентрация (число молекул в единице объема), v 2 - средний квадрат скорости молекул.
Если через Е обозначить среднюю кинетическую энергию поступательного движения молекулы

Давление идеального газа пропорционально концентрации молекул и средней кинетической энергии их поступательного движения.

2.МОДЕЛЬ ИДЕАЛЬНОГО ГАЗА МКТ

Модель идеального газа была предложена в 1847 г. Дж. Герапатом. На основе этой модели были теоретически выведены газовые законы (закон Бойля-Мариотта, закон Гей-Люссака, закон Шарля, закон Авогадро), которые ранее были установлены экспериментально. Модель идеального газа была положена в основу молекулярно-кинетической теории газа.

Основными законами идеального газа являются уравнение состояния и закон Авогадро, в которых впервые были связаны макро характеристики газа (давление, температура, масса) с массой молекулы (уравнение Менделеева-Клапейрона, или уравнение состояния идеального газа).

В современной физике ее используют также для описания ансамблей любых слабовзаимодействующих частиц. Модель идеального газа справедлива для реальных классических газов при достаточно высоких температурах и разрежениях, когда среднее расстояние между молекулами много больше размеров самих молекул. В этом случае силами притяжения можно пренебречь. Силы же отталкивания проявляются лишь при столкновении друг с другом в течение ничтожно малых интервалов времени.

В простейшей модели газа молекулы рассматриваются как очень маленькие твердые шарики, обладающие массой. Движение отдельных молекул подчиняется законам механики Ньютона. Конечно, не все процессы в разреженных газах можно объяснить с помощью такой модели, однако давление газа вычислить с ее помощью можно.

Свойства идеального газа на основе молекулярно-кинетических представлений:

-объём частицы газа равен нулю (то есть диаметр молекулы d пренебрежимо мал по сравнению со средним расстоянием между ними);

-импульс передается только при соударениях (то есть силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях);

-суммарная энергия частиц газа постоянна (то есть, нет передачи энергии за счет передачи тепла или излучением).

Достаточно разреженный газ называется идеальным. Но, что значит - "достаточно разреженный"? В газе молекулы совершают свободное (изолированное от других молекул) движение, лишь время от времени сталкиваясь друг с другом или со стенками сосуда. До тех пор пока молекула совершает свободное движение, у нее имеется только кинетическая энергия. Во время столкновения у молекул появляется и потенциальная энергия. Таким образом, полная энергия газа представляет сумму кинетической и потенциальной энергии ее молекул. Чем разреженный газ, тем больше молекул в каждый момент времени пребывает в состоянии свободного движения, имеющих только кинетическую энергию. Следовательно, пpи разрежении газа уменьшается доля потенциальной энергии в сравнении с кинетической.
Газ становится достаточно разреженным, чтобы считать его идеальным, если потенциальной энергией его молекул можно пренебречь в сравнении с кинетической.
Рассмотрим давление идеального газа в состоянии равновесия. Давление определяется силой, с которой газ давит на единицу площади стенки сосуда. В свою очередь, сила есть импульс, передаваемый от тела к телу в секунду. Чтобы найти давление газа, нужно найти, какой импульс передаёт газ единице площади стенки сосуда в секунду. Займемся этим расчётом.
Будем считать, что соударение отдельной молекулы со стенкой сосуда подчиняется законам упругого столкновения: молекула отскакивает от стенки с первоначальным по модулю импульсом и угол ее падения равен углу отражения (рис. 6.4). В этом случае от молекулы стенке передаётся только х - составляющая импульса:

(2.1.)
Движение молекул в направлении других осей координат пpи передаче импульса выбранной стенке не существенно, и можно считать, что молекулы движутся только по оси х. (Движение по другим осям будет учтено в конце расчёта.)

Найдем число столкновений молекул о площадку с единичной площадью стенки в секунду, если скорость молекулы ровна vx. Легко понять, что это число равно числу молекул с данной скоростью, находящихся в цилиндре с основанием в единицу площади и высотой, численно равной vx (рис. 6.5) В самом деле, молекулы вне данного цилиндра просто не попадут в течение секунды на заданную единицу площади стенки (или не долетят до стенки, или ударятся о стенку не в том месте).

Наоборот, все молекулы, попадающие в цилиндр, проходя за секунду путь, равный vx, попадут на данную площадь стенки сосуда. Обозначим число молекул, обладающих заданной скоростью vx и находящихся в единице объема газа, через nvx. Тогда число молекул, попадающих в цилиндр, или число молекул, ударяющихся о стенку со скоростью vx, равно
(2.2.)

Эти молекулы передают стенке импульс, равный
(2.3.)
Полный же импульс, который получает стенка на единице площади, т.е. давление газа, определяется суммированием таких выражений по всем возможным положительным значениям скорости молекулы (по отрицательным значениям скорости vx суммировать не нужно - такие молекулы летят от стенки и на нее не попадают).

(2.4)
Обозначим через n полное число молекул в единице объема газа. Половина из них летит к стенке (имеет скорость vx больше нуля).

Перепишем формулу (2.4) в виде

(2.5)
и учтем, что выражение представляет собой средний квадрат скорости молекулы.
(2.6)

Следовательно, формулу (2.6) можно переписать так:

( 2.7)
Наконец, учтем, что скорости молекул газа распределены по направлениям равномерно (газ изотропен), и, следовательно,
(2.8)
Поэтому окончательно формулу для давления газа представим в виде:

(2.9)
Итак, давление идеального газа в состоянии равновесия равно двум третям произведения средней кинетической энергии поступательного движения молекулы газа на число молекул в единице объема газа.
Средняя кинетическая энергия молекулы пpи равновесии идеального газа обладает одной очень важной особенностью: в смеси различных идеальных газов средняя кинетическая энергия молекулы для различных компонентов смеси одна и та же. Например, воздух представляет собой смесь газов. Средняя энергия молекулы воздуха для всех его компонентов пpи нормальных условиях, когда воздух еще можно рассматривать как идеальный газ, одинакова. Данное свойство идеальных газов может быть доказано на основании общих статистических соображений. Из него вытекает важное следствие: если два различных газа (в разных сосудах) находятся в тепловом равновесии друг с другом, то средние кинетические энергии их молекул одинаковы. Этот вывод может быть использован для определения универсальной газовой температуры.
Рассмотрим газовый термометр с идеальным газом. Он представляет собой сосуд с газом, к которому подключен манометр. Роль температурного признака в газовом термометре выполняет давление, показываемое манометром. Правда, под газовой температурой понимают не давление, а величину, ему пропорциональную, а именно p/n (n - концентрация молекул в газовом термометре есть величина постоянная). Величина p/n имеет размерность энергии и обозначается q. Чем замечательна газовая температура? Во-первых, тем, что она является универсальной температурой в том смысле, что не зависит от вида газа, заполняющего газовый термометр. Во-вторых, эта температура имеет простую физическую интерпретацию - она пропорциональна средней кинетической энергии молекулы идеального газа. В-третьих, эта температура имеет естественный нуль. Газовая температура равна нулю, когда молекулы идеального газа имеют минимальную энергию, т.е. становятся неподвижными. Правда, это состояние идеального газа практически недостижимо. Оно недостижимо уже потому, что пpи достаточно низких температурах ни один реальный газ нельзя рассматривать как идеальный. Но важно то, что универсальная газовая температура хотя бы теоретически допускает некий абсолютный нуль. И, наконец, в-четвертых, оказывается, что универсальная газовая температурная шкала совпадает с так называемой абсолютной температурной шкалой, которая может быть введена теоретически из самых общих теpмо - динамических соображений. По последней причине (хотя это пока и не доказано) в дальнейшем газовую температуру будем называть абсолютной температурой (или термодинамической, или температурой по шкале Кельвина).
Итак, для идеального газа, какой бы он ни был, имеет место соотношение:

(2.10)
Температура измеряется в джоулях. На практике абсолютная температура измеряется в кельвинах (К). Количество джоулей, соответствующее одному кельвину, - переходный множитель от градуса к джоулю - обозначается буквой k и называется постоянной Больцмана. k = 1,38 10^-23 Дж/К .

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

P-V-T СООТНОШЕНИЯ

Механическое состояние вещества в отличие от термодинамического можно описать при наличии известных величин давления, температуры и объема. Эти три параметра связаны между собой уравнением состояния , поэтому только два из них являются независимыми. Уравнение состояния соответствующего вида может применяться для оценки многих важных свойств чистых веществ и их смесей. Например, для прогнозирования плотности жидкой и паровой фаз, давления пара, критических свойств смесей, равновесия “жидкость-пар”, отклонений энтальпии и энтропии от идеального состояния.

В настоящее время не существует такого уравнения состояния, которое было бы применимо для оценки этих свойств любого органического вещества. На данный момент известно более 150 эмпирических уравнений состояния. Они получены на основе обработки экспериментальных P-V-T-данных, сведений по эффекту Джоуля-Томпсона или данных о теплоемкости реальных газов при различных температурах и давлениях. По степени сложности вся совокупность уравнений состояний может быть разделена на некоторые группы. В данном пособии рассматриваются в сопоставлении уравнения состояния каждой группы, широко применяемые при массовых расчетах. Приводятся также сведения, представляющие исторический интерес.

Начало исследований, посвященных изучению количественных соотношений между давлением, объемом и температурой, положено экспериментами Бойля (1662 г.), в результате которых он пришел к выводу, что при данной температуре объем газа обратно пропорционален его давлению.

Количественное выражение температурного воздействия было установлено Шарлем и Гей-Люссаком (1802 г.), которые обнаружили линейный характер этого отношения.

В 1801 г. Дальтон сформулировал закон парциальных давлений, согласно которому в смеси каждый газ ведет себя так, как если бы он один занимал весь объем. При этом общее давление смеси равно сумме парциальных давлений компонентов.

Парциальным давлением компонента называется то давление, которое оказывал бы газ, входящий в смесь, если бы из нее были удалены остальные газы при условии сохранения первоначальных объема и температуры.

В 1822 г. Каньяр де ля Тур открыл критическое состояние вещества.

В 1834 г. Клапейрон объединил законы Шарля и Бойля и впервые сформулировал закон идеальных газов.

Еще на первоначальном этапе исследований было обнаружено, что закон идеальных газов зачастую дает лишь приблизительное описание реального газа. Эти отклонения объяснялись тем, что молекулы имеют конечный объем и между ними существуют силы межмолекулярного взаимодействия.

В 1873 г. Ван-дер-Ваальс предложил уравнение, в котором количественно учтены оба этих фактора, определены условия сосуществования жидкой и паровой фаз и критическое состояние системы. Уравнение Ван-дер-Ваальса положено в основу многих современных уравнений состояния.

1880 г. - Амага сформулировал закон, который гласит, что объем смеси компонентов представляет собой сумму объемов этих компонентов, каждый из которых находится при температуре и давлении смеси.

1901 г. - Льюис ввел понятие фугитивности.

1927 г. - Урселл вывел, используя методы статистической механики, вириальное уравнение состояния.

В 50-х гг. XX столетия началось активное внедрение принципа соответственных состояний в практику прогнозирования многих свойств органических соединений. Развитие теории по вопросам описания свойств газов и жидкостей продолжается.

Идеальный газ

Понятие “идеальный газ” характеризует чисто гипотетическое состояние вещества. P-V-T соотношение для одного моля идеального газа описывается уравнением Менделеева-Клапейрона:

Изотермы идеального газа в системе координат P-V представляют собой гиперболы, что иллюстрируется примером 4.1.

Для идеального газа показать зависимость P-V-T при температуре 500, 657 и 1170 К и объеме 100-3000 см 3 / моль.

При 500 К и 100 см 3 / моль имеем: = 82,06·500/100 = 410 атм.

При выражении давления в физических атмосферах, температуры в К, объема в см 3 /моль R = 82,06 (см 3 ·атм)/(моль·К).

Фрагмент результатов расчета приведен в табл. 4.1 и на рис. 4.1.

Давление идеального газа при T, К

P, атм при температуре Т, К

Рис. 4.1. P-V соотношения идеального газа

Реальное состояние вещества

Степень отклонения свойств веществ, находящихся в реальном состоянии, от свойств идеального газа зависит от температуры и давления системы, а также от природы вещества. При высоких давлениях плотность паровой фазы может значительно превышать плотность жидкой фазы. Так, при 1500 МПа и 338 К плотность газообразного водорода составляет 130 кг/м 3 , тогда как плотность жидкого водорода равна 70 кг/м 3 , а твердого - 80 кг/м 3 . При плотности 1500 кг/м 3 и температуре, превышающей критическую, фактический молярный объем азота в 16 раз больше молярного объема, рассчитанного по уравнению для идеальных газов.

Реальные газы отличаются от идеальных также характером изменения их теплофизических свойств. Теплоемкость идеального газа не зависит от давления, но на реальные газы это правило не распространяется. Вблизи критической точки многие свойства реальных газов изменяются аномально.

Силы, действующие между молекулами, а следовательно, и характер P-V-T функции, определяются тем, какими атомами представлена молекула, их взаимным расположением, а также размерами и формой самой молекулы. На молекулы действуют одновременно силы притяжения и отталкивания. Действие сил притяжения проявляется сильнее с увеличением расстояния между ними, отталкивания - с его уменьшением. Силы притяжения ведут к проявлению давления большей величины, чем давление, создаваемое кинетической энергией молекул, в то время как силы отталкивания уменьшают эффективный объем, доступный для молекулярного движения.

По электрическим свойствам молекулы можно подразделить:

на электронейтральные, симметричные и, как правило, неполярные;

асимметричные и, следовательно, обладающие дипольными, квадрупольными и пр. моментами, а значит, являющиеся полярными;

обладающие остаточным зарядом, который может вызвать молекулярную ассоциацию и образование водородных связей.

Силы межмолекулярного взаимодействия проявляются между всеми молекулами, но наиболее сильными они оказываются при участии полярных молекул и, тем более, в случае молекул, склонных к ассоциации.

В настоящее время разработаны достаточно надежные подходы к прогнозированию свойств неполярных веществ. Для полярных веществ, особенно склонных к ассоциации, предложены приемы прогнозирования, обладающие меньшей универсальностью. Многие из них рассмотрены в данном пособии.

Изотермы реального газа в системе координат P-V существенно отличаются от гиперболы, особенно в области критической точки.

Критическое состояние вещества

Первые наблюдения над изменениями характеристик веществ, происходящими в критическом (жидкость-пар) состоянии, были проведены при нагревании жидкостей в запаянных стеклянных трубках. Метод экспериментального определения критических температур по исчезновению мениска в ампуле в настоящее время реализован А.Г. Назмутдиновым на кафедре ТО и НХС СамГТУ.

В общем случае критическое состояние может характеризовать не только равновесие “жидкость-пар”, а и состояние, например, двухфазной системы, в котором сосуществующие в равновесии несмешивающиеся жидкости становятся тождественными по всем своим свойствам. Для решения задач, рассматриваемых в данном пособии, важно парожидкостное равновесие.

Параметры системы, представленной индивидуальным веществом и находящейся в критическом состоянии (давление , температура , объем ), называются критическими свойствами этого вещества. При температурах выше сосуществование рассматриваемых фаз в равновесии невозможно, система превращается в гомогенную. В этом смысле критическое состояние является предельным случаем двухфазного равновесия.

В критическом состоянии поверхностное (межфазное) натяжение на границе раздела сосуществующих фаз равно нулю, поэтому вблизи критического состояния легко образуются системы, состоящие из множества капель или пузырьков (эмульсии, аэрозоли, пены). Вблизи критического состояния резко возрастает величина флуктуаций плотности (в случае чистых веществ) и концентраций компонентов (в многокомпонентных системах), что приводит к значительному изменению ряда физических свойств вещества. Наличие флуктуаций плотности приводит к оптической неоднородности системы, к рассеянию света. Это явление носит название критической опалесценции. Рассеяние света служит источником сведений о величине и характере флуктуаций в критической области.

При приближении к критическому состоянию свойства сосуществующих фаз (плотность, теплоемкость и др.) изменяются резко, но без скачка. Поэтому критическое состояние наблюдается лишь при равновесии изотропных (isos - греч., равный; tropos- греч., свойство), т.е. равных во всех направлениях фаз (жидких или газовых) или кристаллических фаз с одинаковым типом решетки. Независимо от природы сосуществующих фаз (типа двухфазного равновесия) и числа компонентов в критическом состоянии система имеет вариантность на 2 меньше, чем в обычном гомогенном состоянии, т.е. число степеней свободы равно нулю.

В чистых веществах (однокомпонентных системах) критическое состояние всегда имеет место для равновесия “жидкость-пар”, если вещество при критических параметрах стабильно. На диаграмме состояния критическому состоянию отвечает конечная точка кривой равновесия, называемая критической точкой. Изотермы на диаграммах P-V (рис. 4.2, 4.3) при температурах ниже представляют собой ломаные линии. При критической температуре изотерма является плавной кривой, имеющей точку перегиба с горизонтальной касательной. Выше ни при каких давлениях невозможно сосуществование жидкости в равновесии с паром.

Критическая температура чистого (индивидуального) вещества может быть определена как максимальная температура, при которой жидкая и паровая фазы еще могут сосуществовать в равновесии. Давление паров при этой температуре называется критическим давлением, а объем, отнесенный к одному молю или другой единице массы вещества, - критическим молярным или удельным объемом соответственно.

Упрощенное представление о критической точке может быть получено на основе рассмотрения кинетической обстановки в жидкой фазе. Потенциальная энергия взаимного притяжения молекул, обусловливающая существование жидкой фазы, уравновешивается в какой-то степени кинетической энергией молекул. Последняя стремится хаотически рассеять все частицы жидкости. Таким образом, давление паров есть результат того, что некоторые из молекул жидкости имеют достаточно высокую кинетическую энергию, чтобы вырваться из поля действия сил сцепления жидкости. С увеличением температуры жидкости кинетическая энергия молекул возрастает, силы же сцепления меняются незначительно. Температура, при которой средняя молекулярная кинетическая энергия становится равной потенциальной энергии притяжения, называется критической, так как при более высоком значении температуры существование жидкой фазы становится невозможным.

Математическим критерием критического состояния являются равенства

из которых следует, что критическая температура () - это точка перегиба изотермы на плоскости P-V при критических давлении и объеме. Согласно этим уравнениям, в критическом состоянии давление в системе не изменяется при изотермическом изменении объема. Слабая зависимость давления от объема может сохраняться в значительном интервале температур вдали от критической точки. Иногда критическое состояние наблюдается в равновесии двух кристаллических модификаций, параметры которых сближаются с ростом давления и температуры и становятся идентичными в критической точке.

В двойных системах, как и в чистых веществах, равновесное сосуществование жидкой и паровой фаз всегда заканчивается критическим состоянием. Для некоторых систем с ограниченной взаимной растворимостью компонентов существуют, кроме того, критические состояния как предельные случаи равновесного сосуществования двух жидких или двух кристаллических фаз (твердых растворов). В некоторых случаях возможное в принципе критическое состояние может не реализоваться, если на рассматриваемое двухфазное равновесие накладывается равновесие других фаз. Например, при понижении температуры или повышении давления начинается кристаллизация одной или обеих жидких фаз.

Равновесие “жидкость-газ” для смесей на плоской диаграмме состояния в координатах “давление-состав” изображается изотермами, которые состоят из кривых конденсации и кривых кипения. Эти кривые замыкаются в критических точках, геометрическое место которых является проекцией пространственной критической кривой в данной системе координат. Критическая кривая заканчивается в критических точках чистых компонентов. По мере повышения температуры область двухфазного состояния системы уменьшается, стягиваясь при в точку, совпадающую с критической точкой более летучего компонента.

Равновесие “жидкость-жидкость” может заканчиваться верхней критической точкой смешения (растворимости) или нижней критической точкой смешения (растворимости), в зависимости от того, увеличивается или уменьшается взаимная растворимость компонентов с повышением температуры. В общем случае система может иметь обе критические точки; пограничная кривая, отделяющая область гомогенного состояния системы при любых составах от области ее расслаивания на две жидкие фазы, имеет вид замкнутого овала.

В двойных системах с ограниченной взаимной растворимостью газов наблюдается критическое состояние для равновесия “газ-газ”. Экспериментально обнаружены только нижние критические точки смешения газов, хотя в принципе возможно существование и верхних критических точек. Критическое состояние газов бывает двух типов. Первый обнаружен в смесях, одним из компонентов которых является гелий. Расслаивание газовой смеси начинается в критической точке менее летучего компонента. По мере повышения температуры интервал составов, соответствующих двухфазному состоянию газовой смеси, сужается, а давление повышается. Вся критическая кривая расположена при более высоких давлениях и температурах, чем кривые равновесия “жидкость-пар”. В случае критического состояния второго типа расслаивание газовой смеси начинается при температуре, для которой еще наблюдается равновесие “жидкость-пар”, т.е. при температуре ниже критической точки менее летучего компонента. Изотерма равновесия “жидкость-газ” соприкасается с изотермой равновесия “газ-газ” в точке, которая является двойной критической точкой.

Критические кривые могут иметь особые точки, в которых термодинамическое поведение системы отличается от поведения в остальных точках критической кривой. Особыми точками являются, например, критические точки равновесия “жидкость-пар” в случае бесконечно разбавленных растворов. Их особенность состоит в том, что в пределах xi – >0 значения некоторых свойств системы зависят от пути подхода к этому пределу. Например, парциальный молярный объем растворителя равен молярному объему чистого растворителя только в том случае, если переход xi – >0 происходит при давлениях и температурах, которые являются критическими параметрами для чистого растворителя. Вдали от критической точки парциальный молярный объем растворителя в бесконечно разбавленном растворе при любых температурах и давлениях не равен молярному объему чистого растворителя. Критическая точка азеотропной смеси и точки минимума и максимума на критической кривой также считаются особыми.

В многокомпонентных системах возможны двухфазные равновесия различных типов, оканчивающиеся критическим состоянием. В тройных системах критические точки образуют критическую поверхность с несколькими особыми точками. Наиболее важно появление критических точек высшего порядка, в которых сливаются критические кривые равновесий “жидкость-пар” (в присутствии второй жидкой фазы) и “жидкость-жидкость” (в присутствии газовой фазы).

Основные положения классической теории критического состояния были сформулированы Дж. Гиббсом и Л.Д. Ландау. Современная теория позволяет предсказать поведение вещества в критическом состоянии по известным свойствам двухфазного состояния. Изучение критического состояния имеет важное практическое значение. Многие технологические процессы протекают в области, близкой к критическому состоянию, или в закритической области параметров. Очевидно, что для проектирования и эксплуатации подобных производств необходимо четко представлять особенности критического состояния.

Установление понятия о критическом состоянии сыграло большую роль в технике сжижения газов. Стали тривиальными примеры, относящиеся к истории получения в жидком состоянии таких газов, как водород (tc = –239,9 0 С), гелий (–267,9 0 С), неон (–228,7 0 С) и др.

Аналитические уравнения состояния

Аналитические уравнения состояния представляют собой алгебраические соотношения между давлением, температурой и молярным объемом. Любое из многочисленных уравнений состояния должно удовлетворять критерию термодинамической устойчивости в критической точке (уравнения 4.2 и 4.3). Кроме того, любое уравнение состояния должно сводиться к закону идеального газа при давлении, стремящемся к нулю.

Уравнение Ван-дер-Ваальса

Не будет преувеличением утверждение, что уравнение Ван-дер-Ваальса является наиболее известным из всех существующих на данный момент. Оно впервые сформулировано автором в 1873 г. в диссертации “О непрерывности газообразных и жидких состояний” [4].

Математические выражения, относящиеся к уравнению Ван-дер-Ваальса и широко встречающиеся в литературе, приведены ниже.

Уравнение Менделеева-Клапейрона описывает параметры состояния разреженных газов (находящихся при не слишком больших давлениях и при достаточно высоких температурах). При обычных условиях (т.е. при комнатной температуре и атмосферном давлении) это уравнение применимо ко многим газам (например, таким как азот и кислород). Наиболее близки по своим свойствам к идеальному газу гелий и водород. При низких температурах и высоких давлениях поведение газа начинает существенно отличаться от поведения идеального газа. С повышением плотности газа процессы столкновений играют все большую роль, поэтому размерами молекул и их взаимодействием пренебрегать уже нельзя.

Взаимодействие между молекулами реального газа носит сложный характер, поэтому получить уравнение состояния, которое бы количественно правильно описывало поведение реального газа во всей области возможных изменений его температуры и плотности, не представляется возможным. Можно, однако, записать приближенное уравнение, которое учитывает основные качественные особенности взаимодействия молекул.

Уравнение Ван-дер-Ваальса

Уравнение Ван-дер-Ваальса – уравнение состояния реального газа, которое удовлетворительно описывает термодинамические свойства реального газа в довольно широком интервале температур и давления:

\[\left(p+\frac<<\nu></p>
<p>^2a>\right)\left(V-\nu b\right)=\nu RT\]

где a и b постоянные Ван-дер-Ваальса, — количество молей газа.

Поправка учитывает быстро возрастающие на малых расстояниях силы отталкивания: молекулы как бы занимают определенный объем, меньше которого газ не может быть сжат. Таким образом, поправка к объему характеризует ту часть объема, которая недоступна для движения молекул и равна нескольким суммарным объемам всех молекул, содержащихся в газе.

Значенияпостоянных Ван-дер-Ваальса a и b зависят от природы газа, но не зависят от температуры, Константа (параметр) a характеризует взаимодействие между молекулами на больших расстояниях – дальнодействие сил, параметр b характеризует взаимодействии на малых расстояниях – близкодействие сил взаимодействия.

Примеры решения задач

Задание Какую температуру имеет азот массой 2 г, занимающий объем 820\ <cm>^3
при давлении 0,2 МПа? Рассмотреть две модели 1) идеального газа; 2) реального газа.
Решение 1) Рассмотрим первый случай – модель идеального газа.

Состояние идеального газа массы описывается уравнением Менделеева-Клапейрона:

\[pV=\frac<m></p>
<p><\mu>RT\]

откуда температура газа:

\[T=\frac<\mu pV></p>
<p>\]

\mu \left(N_2\right)=2\cdot 14\cdot </p>
<p>Молярная масса азота ^=28\cdot ^\ /
.

R=8,31\ <J></p>
<p>Универсальная газовая постоянная /<\left(mol\cdot K\right)>
.

Переведем единицы в систему СИ: масса газа ^\ kg;" width="183" height="20" />
объем газа ^3=8,2\cdot ^\ m^3\ ;" width="258" height="20" />
давление газа МПа=^5" width="49" height="17" />
Па.

\[T=\frac<28\cdot </p>
<p>^\cdot 2\cdot ^5\cdot 8,2\cdot ^><2\cdot ^\cdot 8,31>=276\ K\]

2) Рассмотрим второй случай – модель реального газа.

Состояние реального газа описывается уравнением Ван-дер-Ваальса:

\[\left(p+\frac<<\nu></p>
<p>^2a>\right)\left(V-\nu b\right)=\nu RT\ \]

\[\nu =\frac<m></p>
<p><\mu>\ \]

С учетом последнего уравнение запишется в виде:

\[\left(p+\frac<m^2a></p>
<p><<\mu>^V^2>\right)\left(V-\frac<\mu>b\right)=\frac<\mu>RT\]

Из последнего уравнения найдем температуру азота:

\[T=\frac<\mu></p>
<p>\left(p+\frac<<\mu>^V^2>\right)\left(V-\frac<\mu>b\right)\]

Постоянные Ван-дер-Ваальса для азота:

\[a=0,135\ <\left(N\cdot m^4\right)></p>
<p>/^2\ ;> b=3,86\cdot ^\ m^3\]

\[T=\frac<28\cdot </p>
<p>^>^\cdot 8,31>\times \left(2\cdot ^5+<\left(\frac^><28\cdot ^\cdot 8,2\cdot ^>\right)>^2\cdot 0,135\right)\left(8,2\cdot ^-\]

\[-\frac<2\cdot </p>
<p>^>^>\cdot 3,86\cdot ^\right)=276\ K\]

Обе модели приводят к одинаковому результату, поэтому можно сделать вывод о том, что при данных условиях азот ведет себя как идеальный газ.

Задание В закрытом сосуде объемом находится 0,6 кмоль углекислого газа при давлении 3 МПа. Пользуясь уравнением Ван-дер-Ваальса, найти, во сколько раз надо увеличить температуру газа, чтобы его давление увеличилось вдвое?
Решение Запишем уравнение Ван-дер-Ваальса для двух состояний углекислого газа:

\[\left(p_1+\frac<<\nu></p>
<p>^2a>\right)\left(V-\nu b\right)=\nu RT_1\ ;\]

\[\left(p_2+\frac<<\nu></p>
<p>^2a>\right)\left(V-\nu b\right)=\nu RT_2\ \]

Разделив второе уравнение на первое, найдем отношение температур:

\[\frac<T_2></p>
<p>=\frac^2a>>^2a>>\]

По условию задачи , поэтому:

\[\frac<T_2></p>
<p>=\frac^2a>>^2a>>=1+\frac^2a>>\]

Постоянные Ван-дер-Ваальса для углекислого газа:

\[a=0,361\ <\left(N\cdot m^4\right)></p>
<p>/^2\ ;> b=4,28\cdot ^\ m^3\]

3\cdot <10></p>
<p>Переведем единицы в систему СИ: количество вещества газа  =0,6 кмоль=600 моль; давление газа  =3МПа=^6
Па.

\[\frac<T_2></p>
<p>=1+\frac^6>^6+\frac^2\cdot 0,361>^2>>=1,86\ \]

Задание В сосуде объемом 10 л находится 0,25 кг азота при температуре <27>^\circ C
. Какую часть давления газа составляет давление, обусловленное силами взаимодействия молекул? Какую часть объема сосуда составляет собственный объем молекул?
Решение Поправка к давлению в уравнении Ван-дер-Ваальса, обусловленная силами межмолекулярного взаимодействия:

Давление газа при отсутствии взаимодействия между молекулами найдем из уравнения Менделеева-Клапейрона:

\[pV=\frac<m></p>
<p><\mu>RT;\]

\[p=\frac<m></p>
<p><V\mu>RT\ \]

Найдем отношение давлений:

\mu \left(N_2\right)=2\cdot 14\cdot </p>
<p>Молярная масса азота ^=28\cdot ^\ /
.

R=8,31\ <J></p>
<p>Универсальная газовая постоянная /<\left(mol\cdot K\right)>
.

a=0,135\ <\left(N\cdot m^4\right)></p>
<p>Постоянная Ван-дер-Ваальса для азота /^2\ .>

V=10\ l=<10></p>
<p>Переведем единицы в систему СИ: объем газа ^\ m^3;
температура газа .

\[\frac<p

Поправка означает учет вверенный объем молекул газа:

b=3,86\cdot <10></p>
<p>Постоянная Ван-дер-Ваальса для азота ^\ m^3
.

2. Первое начало термодинамики. Адиабатический процесс.

3. Второе начало термодинамики.

4. Принцип действия тепловых машин.

5. КПД тепловых двигателей и второе начало термодинамики.

6. Уравнение Ван-дер-Ваальса.

Закон идеального газа.


Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению (рис.1):

V~1/P , при T=const.


Например, если давление, действующее на газ, увеличится вдвое, то объем уменьшится до половины первоначального. Это соотношение известно как закон Бойля (1627-1691)-Мариотта(1620-1684), его можно записать и так:

Это означает, что при изменении одной из величин, другая также изменится, причем так, что их произведение останется постоянным.

Зависимость объема от температуры (рис.2) была открыта Ж. Гей-Люссаком. Он обнаружил, что при постоянном давлении объем данного количества газа прямо пропорционален температуре:


График этой зависимости проходит через начало координат и, соответственно, при 0К его объём станет равный нулю, что очевидно не имеет физического смысла. Это привело к предположению, что -273 0 С минимальная температура, которую можно достичь.

Третий газовый закон, известный как закон Шарля, названный в честь Жака Шарля (1746-1823). Этот закон гласит: при постоянном объеме давление газа прямо пропорционально абсолютной температуре (рис.3):

Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре. Это происходит из-за резкого повышения температуры при постоянном объеме.

Эти три закона являются экспериментальными, хорошо выполняющимися в реальных газах только до тех пор, пока давление и плотность не очень велики, а температура не слишком близка к температуре конденсации газа, поэтому слово "закон" не очень подходит к этим свойствам газов, но оно стало общепринятым.

Газовые законы Бойля-Мариотта, Шарля и Гей-Люссака можно объеденить в одно более общее соотношение между объёмом, давлением и температурой, которое справедливо для определенного количества газа:

Это показывает, что при изменении одной из величин P, V или Т, изменятся и две другие величины. Это выражение переходит в эти три закона, при принятии одной величины постоянной.

Теперь следует учесть ещё одну величину, которую до сих пор мы считали постоянной - количество этого газа. Экспериментально подтверждено, что: при постоянных температуре и давлении замкнутый объём газа увеличивается прямо пропорционально массе этого газа:

Эта зависимость связывает все основные величины газа. Если ввести в эту пропорциональность коэффициент пропорциональности, то мы получим равенство. Однако опыты показывают, что в разных газах этот коэффициент разный, поэтому вместо массы m вводят количество вещества n (число молей).

В результате получаем:

, где n - число молей, а R - коэффициент пропорциональности. Величина R называется универсальной газовой постоянной. На сегодняшний день самое точное значение этой величины равно:

R=8,31441 ± 0,00026 Дж/Моль

Равенство (1) называют уравнением состояния идеального газа или законом идеального газа.

Число Авогадро; закон идеального газа на молекулярном уровне:

То, что постоянная R имеет одно и то же значение для всех газов, представляет собой великолепное отражение простоты природы. Это впервые, хотя и в несколько другой форме, осознал итальянец Амедео Авогадро (1776-1856). Он опытным путём установил, что равные объёмы объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Во-первых: из уравнения (1) видно, что если различные газы содержат равное число молей, имеют одинаковые давления и температуры, то при условии постоянного R они занимают равные объёмы. Во-вторых: число молекул в одном моле для всех газов одинаково, что непосредственно следует из определения моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов.

Число молекул в одном моле называется числом Авогадро NA. В настоящее время установлено, что число Авогадро равно:

NA=(6,022045±0,000031)·10 -23 моль -1

Поскольку общее число молекул N газа равно числу молекул в одном моле, умноженному на число молей (N=nNA), закон идеального газа можно переписать следующим образом:

, где k называется постоянной Больцмана и имеет значение равное:

k= R/NA=(1,380662±0,000044) ·10 -23 Дж/К

Первое начало термодинамики. Адиабатический процесс.

В результате опытов Джоуля (как и многих других) был сформулирован закон, согласно которому изменение внутренней энергии (DU) замкнутой системы можно записать в следующем виде:

, где Q-количество теплоты, сообщенное системе, а W-работа совершаемая системой.

Выражение (3) известно как первое начало термодинамики. Поскольку теплота Q и работа W выражают способы передачи энергии в систему или из неё, внутренняя энергия изменяется в соответствии с ними. Таким образом первое начало термодинамики является попросту формулировкой закона сохранения энергии.

Уравнение (3) применимо как к замкнутым системам, так и к не замкнутым, если учесть изменение энергии вследствие изменения количества вещества в данной системе.

При переходе системы из одного состояния в другое (1 в 2) количество теплоты Q, сообщённое системе, и работа W, совершённая системой, зависят от конкретного процесса (или пути), в котором участвовала система. И для разных процессов эти величины различны, даже если начальные и конечные состояния системы одинаковы. Однако эксперименты показали, что при одинаковых начальном и конечном состояниях разность Q-W одинакова для всех процессов, переводящих систему из одного состояния в другое.

Адиабатическим называется процесс, при котором от системы не отбирается и не сообщается энергии. Такой процесс может происходить, если система изолирована или протекает столь быстро, что теплообмен практически не происходит. Примером процесса, очень близкого к адиабатическому, является расширение газов в двигателях внутреннего сгорания.

При медленном адиабатическом расширении из уравнения (3) следует (так как Q=0 (по определению адиабатического процесса)):

т.е. внутренняя энергия системы убывает, и поэтому температура понижается.

Соответственно при адиабатическом сжатии внутренняя энергия повышается и, следовательно, температура повышается. Например в двигателе Дизеля объем быстро уменьшается, и поэтому температура увеличивается, а впрыскиваемая смесь из-за высокой температуры воспламеняется.

Второе начало термодинамики.

Мы можем представить себе множество процессов подтверждающих первое начало термодинамики. Также можно представить много процессов, которые согласуются с законом сохранения энергии, но при этом почему-то не встречающихся в природе. Например: рассмотрим, что происходит с камнем, после броска. По мере его падения его начальная потенциальная энергия переходит в кинетическую. Когда же камень соприкасается с землёй, его кинетическая энергия переходит во внутреннюю энергию камня и земли. Однако никто из нас никогда не наблюдал, что бы внутренняя энергия вдруг перешла в кинетическую и камень самопроизвольно взлетел. Этот процесс не приводит к нарушению первого начала термодинамики. Для того что бы объяснить отсутствие обратимости аналогичных процессов, во второй половине XIX века ученые пришли к формулировке второго начала термодинамики.

Одна из его формулировок, принадлежащая Р. Ю. Э. Клаузису (1822-1888), гласит, что теплота в естественных условиях переходит от горячего тела к холодному, в то время как от холодного к горячему теплота сама по себе не переходит. Эта формулировка относится к определенному процессу и не вполне ясно, каким образом её отнести к иным процессам. Более общая формулировка второго начала термодинамики, в которой явным образом учтены и возможности других процессов, была сформирована в ходе изучения тепловых двигателей.

Принцип действия тепловых машин.

Достаточно несложно получить тепловую энергию за счет работы, например достаточно потереть два предмета друг о друга и выделится тепловая энергия. Однако получить механическую работу за счет тепловой энергии гораздо труднее, и практически полезное устройство для этого было изобретено лишь около 1700 г.

Тепловой двигатель - это любое устройство, преобразующее тепловую энергию в механическую работу.


Основная идея лежащая в основе любого теплового двигателя, состоит в следующем: механическая энергия может быть получена за счет тепловой, только если дать возможность тепловой энергии переходить из области с высокой температурой в область с низкой температурой, причем в процессе этого перехода часть тепловой энергии может перейти в механическую работу.

В настоящее время используется множество тепловых машин. Рассмотрим два тепловых двигателя - это паровой и внутреннего сгорания.



В основном используется два паровых двигателя: возвратного типа и паровая турбина.

В двигателях возвратного типа (рис.4) нагретый пар проходит через впускной клапан и затем расширяется в пространстве под поршнем, вынуждая его тем самым двигаться. Затем, когда поршень возвращается в исходное положение, он вытесняет пар через выпускной клапан.

В паровых турбинах по существу происходит тоже самое. Различие состоит в том, что возвратно-поступательный поршень заменен турбиной (рис.5), напоминающей гребное колесо.



Наиболее распространенным двигателем сейчас является четырёхтактный двигатель внутреннего сгорания (рис.6).

На рисунке 6 буквами обозначены следующие процессы:

а. Смесь воздуха с бензином всасывается в цилиндр, при движении поршня вниз.

б. Поршень движется вверх и сжимает смесь.

в. Искра от свечи воспламеняет смесь. При этом температура смеси резко возрастает.

г. Газы, находящиеся при высоких температуре и давлении, расширяются, перемещая при этом поршень вниз (рабочий ход двигателя).

д. Отработавшие газы выбрасываются через выпускной клапан; затем весь цикл повторяется.

Вещество, которое нагревают и охлаждают (в паровых машинах - пар), называют рабочим телом.

Для практической работы любого теплового двигателя необходима разность температур. Почему? Что бы ответить на этот вопрос представим себе паровую машину (как на рис.4), но без конденсатора и насоса. В таком случае пар имел бы одинаковую температуру во всей системе. Это означало бы, что давление пара при его выпуске было бы таким же, как и при впуске. Тогда работа, которую совершил пар над поршнем при своем расширении, в точности была бы равна работе, которую совершил поршень над паром при его выпуске, то есть не было бы совершено никакой результирующей работы. В реальном двигателе выпускаемый газ охлаждается до более низкой температуры и конденсируется, так что давление при выпуске меньше, чем при впуске. В таком случае работа, которую должен совершить поршень для выталкивания газа из цилиндра, будет меньше, чем работа совершаемая газом работа над цилиндром. Таким образом может быт получена результирующая работа. Аналогично и с паровой турбиной: если бы не было разности давлений по обе стороны лопаток, то турбина не стала бы вращаться.

В паровых двигателях разность температур достигается за счет сжигания топлива, при этом нагревается пар. В двигателе внутреннего сгорания за счет сгорания рабочей смеси внутри цилиндра двигателя.

Принцип действия холодильника или теплового насоса состоит в обращении рабочих стадий теплового двигателя.


Работа обычно совершается мотором компрессора (рис.7).


В обычном холодильнике цикл состоит из нескольких стадий:

а. Пар сжимается компрессором, нагреваясь при этом.

б. Нагретый пар поступает в конденсатор образуется горячая жидкость.

в. Через расширительный клапан горячая жидкость поступает в теплообменник, где испаряясь охлаждается.

г. Затем пар снова поступает в компрессор и цикл повторяется.

Двигатель Карно и его КПД.

В начале ХIХ века процесс преобразования теплоты в механическую работу подробно изучал французский ученый Н.Л. Сади Карно (1796-1832). Он намеревался определить способы повышения КПД тепловых машин, однако исследования привели к изучению основ термодинамики.

Как вспомогательное средство для своих исследований он на бумаге изобрел идеализированный тип двигателя, который теперь принято называть двигателем Карно.

В этом двигателе происходят обратимые процессы, т.е. протекающие чрезвычайно медленно, так что его можно рассматривать, как последовательный переход от одного равновесного состояния к другому, причем этот процесс можно провести в обратном направлении без изменения совершенной работы и переданного количества теплоты. Например газ находящийся в цилиндре с плотно прижатым к стенке поршнем, который не имеет трения, можно сжать изотермически, если сжатие производить очень медленно. Однако если в процессе участвуют какие-либо еще факторы, например трение, то работа совершенная в обратном направлении не будет равна совершенной при сжатии. Вполне естественно, что обратимые процессы невозможны, поскольку на их совершение потребуется бесконечно много времени. Но тем не менее такие процессы можно моделировать со сколь угодной точностью. Все реальные процессы необратимы, так как могут присутствовать: трение, в газах - возмущения и многие другие факторы.

Двигатель Карно основан на обратимом цикле, т.е. на последовательности обратимых процессов.


В двигателе Карно используется одноименный цикл (рис.8). В точке а начальное состояние системы. Сначала газ расширяется изотермически и обратимо по пути ab при заданной температуре TH, например газ приходит в контакт с термостатом, имеющим очень большую теплоемкость. Затем газ расширяется адиабатически и обратимо по пути bc, при этом передача теплоты практически не происходит и температура газа падает до более низкого значения TL.

На третьей стадии цикла происходит изотермическое и обратимое сжатие газа по пути cd, здесь газ контактирует с холодным термостатом при температуре ТL. И наконец газ адиабатически и обратимо сжимается по пути da возвращаясь, таким образом, в исходное состояние.

Несложно показать, что результирующая работа численно равна площади ограниченной кривыми.


КПД двигателя Карно определяется также как и любого другого двигателя:

Однако можно показать, что его КПД зависит лишь от ТН и ТL.

В первом изотермическом процессе ab совершаемая газом работа равна:

, где n - число молей идеального газа, используемого в качестве рабочего тела. Поскольку внутренняя энергия идеального газа не меняется, когда температура постоянна, сообщаемая газу теплота полностью переходит в работу ( в соответствии с первым началом термодинамики):

Аналогично запишется теплота отдаваемая газом в процессе cd:

Поскольку bc и da адиабатические процессы, получаем:

В соответствии с уравнением состояния идеального газа получаем:


С помощью несложных математических преобразований этих выражений получаем математическое выражение отображающее суть цикла Карно:

Таким образом КПД двигателя Карно можно записать в виде:

Карно сформулировал следующую теорему (являющуюся ещё одной формулировкой второго начала термодинамики):

Все обратимые двигатели, работающие между двумя термостатами, имеют один и тот же КПД; ни один необратимый двигатель, работающий междц теми же термостатами, не может иметь более высокого КПД.

Эта теорема определяет максиммально возможный КПД для любого необратимого (реального) двигателя.


Рассмотрим идеальный цикл используемый в двигателях внутреннего сгорания, так называемый цикл Отто (рис. 9).

В этом цикле сжатие и расширение смеси происходит адиабатически, а нагревание и охлаждение осуществляется при постоянном объеме. На рисунке 9 дана диаграмма идеального цикла быстрого сгорания: 1-2 – адиабата сжатия, 2-3 -нагревание смеси при V=const (сгорание смеси), 3-4 адиабата расширения, 4-1 – охлаждение смеси при V=const (выхлоп).

КПД идеального двигателя построенного на основе цикла Отто рассчитывается аналогично. Однако, в реальных двигателях КПД всегда несколько ниже, чем КПД идеального двигателя. Этому способствуют 5 основных причин:

1. В действительном цикле рабочее тело из меняет свой химический состав в течение процесса сгорания.

2. Процессы сжатия и расширения не идут адиабатически, а протекают, сопровождаясь теплообменом со стенками цилиндра. Явление теплообмена со стенками цилиндра имеет место также и в процессе сгорания.

3. Процесс сгорания не происходит при постоянном объеме, а начинается в точке 2’ (рис. 10) и кончается после точки 3. В процессе сгорания тепло получается не извне, а за счет изменения химического состава рабочего тела. Химическая реакция сгорания не успевает закончиться полностью на линии сгорания (2-3), а продолжается в течение процесса расширения вплоть до момента выхлопа.


4. Процесс охлаждения рабочего тела в действительности заменяется выхлопом и выталкиванием отработанных газов и последующим засасыванием рабочей смеси (линия 4’-4-5-1).

Читайте также: