Реферат по физике на тему музыкальные инструменты

Обновлено: 02.07.2024

  • Участник:Колесников Максим Игоревич
  • Руководитель:Щербинина Галина Геннадиевна

Введение

Все связи между явлениями устанавливаются исключительно путем разного рода простых и сложных резонансов — согласованных вибраций физических систем.

Н. Тесла

Что может объединять оркестр, играющий на струнных и духовых музыкальных инструментах, мычащее пение себе под нос во время прогулки, дребезжащие от проезжающего трамвая окна в доме, вой ветра за окном? Лишь одно явление, которое легло в основу всего названного – акустический резонанс. Это явление является видом резонанса и сопровождает нас в жизни на каждом шагу.

На это великое явление впервые обратил внимание Галилео Галилей. Оно было описано им в 1602 году в работах, посвященных исследованию маятников и музыкальных струн.

Итак, объектом исследования является акустический резонанс.

Цель работы: теоретическое определение и опытное подтверждение явления резонанса.

Поставленная цель для своего разрешения определила следующие задачи:

  • Образовательно-теоретическая: расширить, обобщить полученные на уроке физики знания и представления о физических законах и явлениях.
  • Практическая: экспериментальным путем доказать действие резонанса.
  • Общественно-полезная: продемонстрировать эксперименты и доказать наличие явления резонанса.

Методы исследования, использованные при работе над темой:

  • накопительно-статистический (формирование знаний, накопление необходимой информации),
  • аналитический (анализ накопленной информации),
  • сравнительно-экспериментальный (доказательство наличия резонанса, на практике путем разработки эксперимента и демонстрации опыта).

Гипотеза: Человек, хочет он того или нет, никогда не существует сам по себе, никогда не пребывает в изоляции. Человек непрерывно взаимодействует с широчайшим спектром всевозможных существ и явлений, которые воздействуют на него. И одним из самых распространенных явлений, которые необходимо учитывать человеку в его деятельности – явление резонанса.

Практическая значимость работы

Тема учебного занятия

Параграф, в котором изложен данный материал.

Распространение колебаний в среде. Волны. Длина волны. Скорость распространения волн.

Физический диктант. Источники звука. Звуковые колебания. Высота и тембр звука. Громкость звука.

Распространение звука. Скорость звука. Отражение звука. Эхо. Звуковой резонанс.

Этот материал я изучал самостоятельно ( обучаюсь в 8 классе), однако форма изложения материала в учебнике проста и доступна, поэтому каких -либо значительных проблем не возникло.

В моей работе представлены опыты для демонстрации на уроках физики в средней общеобразовательной школе. Их можно демонстрировать как на уроке при изучении явлений (надеюсь, что это поможет сформировать некоторые понятия при изучении физики), так и в качестве домашних заданий учащимся.

Глава 1. Теоретическая часть

1.1. Виды колебаний. Общее понятие резонанса

Для лучшего понимания явления резонанса необходимо дать определение такому понятию как колебания. Это движения, которые точно или приблизительно повторяются через определённые промежутки времени (например, движение поршня в двигателе, поплавок на волне, ветка дерева на ветру).

“Собственные колебания — это колебания, происходящие в отсутствие внешних воздействий на систему. Они происходят под действием внутренних сил после выведения системы из положения равновесия со строго определеннойчастотой, называемой частотой собственных колебаний системы. Примерами могут служить груз на пружине, стрелка компаса, звучание колокола, гонга, струны рояля и т.п.

Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил. Колебания мембраны телефона, иглы швейной машины, поршня в цилиндре автомобильного двигателя, периодическое раскачивание качелей, рессор автомобиля, движущегося по неровной дороге, океанические приливы под действием Луны и др.[1]”

Для начала нужно сказать, что все тела, в каком бы они состоянии не казались, имеют свою изначальную частоту и амплитуду колебаний. Таким образом, любой объект можно рассматривать в виде системы колебательных движений, а воздействующие звуковыеколебания в виде силы воздействия на частоту этой самой колебательной системы. Поэтому полный резонанс, а точнее сказать наибольшее отклонение от состояния равновесия колебательной системы будет возникать тогда и только тогда, когда частота колебаний вынуждающей силы будет совпадать с собственной частотой колебательной системы.

“Итак, резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы.[3]”

Суть явления резонанса: многократное усиление эффекта от воздействия на объект при совпадении частоты внешнего воздействия с собственной частотой объекта.

1.2. Акустический резонанс

“Под акустическим резонансом понимают явление совпадения частоты колебаний звуковых волн, падающих на акустическую систему, с собственной частотой этой системы.

Вообще, звуковые волны, встречаясь с любым телом, вызывают вынужденные колебания. Если же частота собственных свободных колебаний тела совпадает с частотой звуковой волны, то условия для передачи энергии от звуковой волны телу являются наилучшими – тело является акустическим резонатором.[1]”

Амплитуда вынужденных колебаний при этом достигает максимального значения – наблюдается акустический резонанс.

Истории известны случаи, когда стекло разбивалось лишь от силы и частоты человеческого голоса. Это проделывал не только Шаляпин. Великий тенор Энрико Карузо мог заставить стеклянный бокал разлететься вдребезги, спев в полный голос ноту надлежащей высоты. В этом случае звук вызывает вынужденные колебания стенок бокала. При резонансе колебания стенок могут достичь такой амплитуды, что стекло разбивается.

Корпусы скрипок и гитар, трубы духовых инструментов и органа являются резонаторами, а полость рта – резонатором для голосовых связок. Почему же резонатор камертона представляет собой обычный ящик, тогда как корпуса балалайки, виолончели, скрипки и рояли имеют сложные формы? Дело в том, что резонатор камертона должен усиливать только один – основной тон, а корпуса музыкальных инструментов – множество тонов и гармоник. Вид резонатора определяет, какие из обертонов будут усилены, а какие ослаблены или вовсе подавлены.

“От качества дерева, из которого изготовлена гитара, зависит не только сила, но и чистота, и тембр извлекаемого звука. Влияет на это и покраска, и лак на дереве. Именно поэтому изготовить качественную гитару или скрипку совсем не просто, и качественные инструменты стоят больших денег. Так, явление звукового резонанса из физики перекочевало в иные сферы и плотно там обосновалось.[2]”

Акустический резонанс может оказывать на организм человека как благоприятное, так и пагубное воздействие.

В дельта-состоянии (δ) мозг излучает волны с частотой колебаний от 0 до 4 Гц. Это может быть либо глубокий сон без сновидений, либо состояние глубокого расслабления, бессознательное состояние (такое, как кома), летаргический сон. Даже во сне мозг продолжает обработку информации, накопленной человеком, и не успевшую стать осознанной.

В тэта-состоянии (θ) частота колебаний мозга составляет от 4 до 7 Гц. Это глубокое расслабление или медитация; это может быть неглубокий сон. Во время этого ритма возникают особенно яркие видения или интуитивные догадки. Тэта-волны формируют состояния, переходные от спокойного бодрствования к фазам сонливости, предваряющим глубокий сон. Но частоты 5-6 Гц опасны для работы печени и вызывают чувство усталости.

Альфа-состояние (α) — это частота волновых колебаний головного мозга от 7 до 14 Гц. Диапазон частот от 7 до 8 Гц чрезвычайно опасен для здоровья, так как этот тип вибраций способен спровоцировать эпилептические приступы, смертельно поразить внутренние органы и даже реально деформировать их. Длительное воздействие на мозг звука частотой 7 Гц пагубно влияет на сердце, вплоть до его остановки. С 10 до 14 Гц – это колебания, способствующие одновременно и глубокому сосредоточению, и расслаблению; это – покой и душевное равновесие в активном состоянии, мозг способен более продуктивно обрабатывать получаемую информацию. Такое состояние наиболее благоприятно для творческих процессов, принятия более логичных и взвешенных решений.

Ученые считают, что, возможно, именно из-за возбуждения резонансных колебаний (особенно когда частота волны совпадает с альфа-ритмом головного мозга) в биологических системах жизнеобеспечения и возникает такое крайне негативное воздействие инфразвуковых вибраций. Это влияние даже используется полицией в ряде стран мира для разгона толпы и предотвращения беспорядков. Включаются мощные генераторы, частоты которых отличаются на 5-9 Гц. Биения, возникающие вследствие различия частот этих генераторов, имеют инфразвуковую частоту и вызывают у большинства людей неприятные зрительные эффекты, необъяснимые страх и тревогу, желание скорее покинуть опасное место.

Иными словами, если частота инфразвуковой волны того же порядка, что и волна вибрации органа, то при очень большой интенсивности они приводят органы к вибрационному резонансу или диссонансу в частотном диапазоне работы органа и способны привести к их дисфункциям. Вибрационный резонанс вызывается мощными внешними генераторами, например, усилителями громкости звука на современной эстраде и рок-концертах.[3]”

По данным, собранным Борисом Островским, в Атлантике ежегодно происходит до 50 тысяч подводных землетрясений разной силы, а эпицентры их почти всегда сосредоточены вдоль геологического разлома, пересекающего Бермудский треугольник.

Глава 2. Практическая часть

Опыт 1

Нам понадобятся звуковые колонки, соль либо песок и пластиковый поднос. Установив пластиковый поднос на колонки, засыпаем на поднос соль и воспроизводим через колонки звуковые волны, падающие на акустическую систему – поднос с солью.

Рисунок 4

Рис. 4. Эксперимент, подтверждающий явление акустического резонанса

Как видим, не на всех частотах соль имеет высокую амплитуду колебаний. То есть для полного резонанса, в данном случае акустического, должна быть определенная частота колебаний (опыт 1,видео).

О звуковом резонансе можно узнать из учебника А.В. Пёрышкина, §40, стр. 133-135.

Опыт 2

Музыкальный инструмент варган. Относится к самозвучащим язычковым музыкальным инструментам. При игре варган прижимают к зубам или к губам, ротовая полость служит резонатором. Изменение артикуляции рта и дыхания даёт возможность менять амплитуду колебаний, а в результате – тембр инструмента. Продемонстрируем этот уникальный инструмент ( опыт 2, видео).

Данное физическое явление по физике рассматривается в учебнике А.В. Пёрышкина ( §40, стр. 134-135).

Рис. 5. Варган

Рис. 5 Варган (алтайский комус)

Если возбудить язычок варгана без резонатора, то звук будет совсем слабый. Когда же мы играем на варгане (зажав его между зубами или хотя бы губами – резонатором является ротовая полость), рождаются мощные вибрации – колебания.

“При игре на нем во рту возникает стоячая звуковая волна. И можно подобрать такое звучание инструмента, которое будет вступать в резонанс с основными ритмами вибраций человека. Это достигается как особенностями изготовления инструмента, так и особенностями игры на нём. В биологии известны так называемые альфа-, бета-, гамма-ритмы, свойственные головному мозгу человека. Звуковая волна, входя в резонанс с этими ритмами, вызывает измененные состояния сознания.[8]”

С древних времен обертоны использовались в молитвенных песнопениях и целительских практиках, известных нам, в основном, по тибетской и тувинской традициям.

Опыт 3

Звук, издаваемый самой гитарной струной не слишком громкий. Для того чтобы усилить этот звук, струны располагают поверх корпуса, который делают специальной формы и размера. В середине корпуса обязательно имеется отверстие круглой формы для выхода звука. Звук струны, попадая внутрь корпуса, резонирует и усиливается, отчего гитара звучит намного громче ( опыт 3, видео).

Данное физическое явление по физике рассматривается в учебнике А.В. Пёрышкина ( §35, стр. 125 и §40, стр. 134).

Настройка гитары – это также пример явления звукового резонанса. Если настроить первую струну по камертону, а потом зажать вторую струну на определенном ладу (определенная нота) и дернуть ее, то можно увидеть, как первая струна слегка поддергивается (при условии, что гитара настроена правильно).

Заключение

В ходе подготовки к конкурсу я:

  • изучил теоретический материал по выбранной мною теме;
  • подготовил опыты, выявляющие и демонстрирующие явление акустического и иных видов резонанса;
  • выяснил механизм явления акустического резонанса.

Выводы

Итак, резонанс – это очень эффективный инструмент для решения многих практических задач, но одновременно он может быть причиной серьёзных разрушений, вреда здоровью и других негативных последствий.

Явление резонанса мы используем в различных устройствах, использующих радиоволны, таких как телевизоры, радиоприемники, мобильные телефоны и так далее. Оно используется в музыкальных инструментах. Но вместе с тем, несмотря на все преимущества, которые можно получить при помощи резонанса, не следует забывать и об опасности, которую он способен принести. Землетрясения или сейсмические волны, а также работа сильно вибрирующих технических устройств могут вызвать, например, разрушения части зданий или даже зданий целиком.

Акустический резонанс мне был наиболее интересен в процессе игры на музыкальных инструментах.

Надеюсь, что собранный мною материал и опыты будут интересны моим друзьям и одноклассникам и помогут лучше разобраться в законах физики, применимых к нашей повседневной жизни.

Я же буду намерен продолжать свои изыскания по поводу резонансных явлений, особенно – связанных с музыкой.

Правую педаль можно нажать не до конца, а чуть-чуть, чтобы глушители оставались очень близко к струнам и в какой-то мере влияли на их звучание. Но этот прием требует от исполнителя большого мастерства. А кроме того, такое тонкое движение правой ногой настолько зависит от механики тугой или, наоборот, слишком легко поддающейся педали, что на гастролях музыканту приходится несколько часов осваивать незнакомый инструмент.

Когда пианист нажимает педаль, вся молоточковая механика сдвигается чуть в сторону, поэтому удар приходиться уже не на все три струны, предназначенные для данного звука, а только на две (или на одну, если для каких-то звуков предусмотрены всего две струны). Звучание, естественно, становится более тихим и мягким. (У пианино молоточки не сдвигаются в сторону, а приближаются к струнам.)

Как быть, если нужно подолгу разучивать упражнения, а звукоизоляция в доме не настолько хороша, чтобы не досаждать соседям? Для этого в некоторых инструментах предусмотрев модератор. Если его включить, между молоточками и струнами проляжет лента тонкого фетра или какого-нибудь другого материала, и звучание инструмента станет тихим и глухим. Управление модератором выводится на третью педаль, которая фиксируется в нажатом положении, или на специальный рычаг, расположенный сбоку от клавиатуры.

В некоторых современных роялях третья педаль имеет другое назначение — она освобождает от глушителей не все струны сразу, как правая педаль, а только те, клавиши которых были нажаты до нажатия педали. Это позволяет музыканту выборочно оперировать разными глушителями, свободное пользоваться ими и при этом избегать педального гула.

Остается сказать об одном очень важном требовании к инструменту. Мы привыкли, что любой работающий механизм издает какой-то шум. А в фортепиано, тоже представляющем собой механизм, это недопустимо. Ни каких скрипов, стуков, щелчков не должно быть. Должна быть только музыка.

1.2. Что такое звук?

О том, как рождаются звуки, и что они собой представляют, люди начали догадываться очень давно. Замечали, к примеру, что звук создают вибрирующие в воздухе тела. Ещё древнегреческий философ и учёный-энциклопедист Аристотель, исходя из наблюдений, верно, объяснил природу звука, полагая, что звучащее тело создаёт попеременное сжатие и разрежение звука. Так, колеблющаяся струна то уплотняет, то разрежает воздух, а благодаря упругости воздуха эти чередующиеся воздействия передаются дальше в пространство – от слоя к слою, возникают упругие волны. Волны - возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. А упругие волны – это механические возмущения, распространяющиеся в упругой (твердой, жидкой или газообразной) среде. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущения звука. На слух человек воспринимает упругие волны, имеющие частоту в пределах примерно от 16 Гц до 20 кГц (1 Гц - 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. Упругие волны с частотой меньше 16 Гц называют инфразвуком, а волны, частота которых превышает 20 кГц – ультразвуком.

1.3 Музыкальный звук

Какими бы разными не были музыкальные инструменты по форме, устройству, размерам, все они создавались для одной цели: извлечения приятных для слуха музыкальных звуков. Что же такое музыкальный звук? С точки зрения физики – это волна, то есть процесс распространения колебаний от точки к точки, от частицы к частице. Упругое тело, выведенное из положения равновесия, совершает гармонические колебания, эти колебания передаются воздуху, воздушная волна воздействует на нашу барабанную перепонку, и мы слышим звук.

Гармоническое колебание можно рассматривать как движение проекции точки, равномерно движущийся по кругу, на диаметр этого круга. Пусть радиус вспомогательной окружности равен а, он соответствует наибольшему отклонению от положения равновесия: а – амплитуда. Мгновенное положение определяется абсциссой х = а cos ф, где а – амплитуда, ф – фазовый угол.

Мгновенное отклонение от положения равновесия, называют смещением. Угол, образуемый радиусом-вектором, проведенным к движущейся по окружности, с осью абсцисс, называют фазой ф (или фазовым углом), время Т одного полного оборота точки по окружности, называют периодом колебания, а обратную ему величину – частотой ( измеряется в герцах, Гц). Человек слышит звук в диапазоне частот от 16 до 20000 Гц.

Звуки бывают очень разные. Те, что создают постоянный фон, не организованные в стройную систему, не связанные между собой, и те, что обладают особыми свойствами: чистые, звонкие, определённой высоты, обладающие смысловой выразительностью, - звуки музыкальные. Издают их музыкальные инструменты, звуковая волна в которых возникает от колебаний струны или столба воздуха внутри металлической или деревянной трубки.

1.4. Характеристики звука

Музыкальные звуки различаются по высоте, длительности, продолжительности звучания, тембру (специфической окраской, которая зависит от материала, величины и формы инструмента), от способа звукоизвлечения и по динамике, то есть силе звучания.

1.4.1. Громкость звука (интенсивность)

Если исполнить музыкальное произведение от начала до конца на одном уровне громкости, оно много потеряет в своей выразительности. Если бы инструменты не могли изменять громкость звука, музыка вряд ли могла бы выражать тончайшие оттенки чувств.

Громкость звука (интенсивность восприятия) определяется амплитудой колебаний, но чтобы интенсивность восприятия (то, что мы слышим) увеличивалась линейно, интенсивность раздражения (пропорциональная квадрату амплитуды колебаний) должна увеличиваться экспоненциально (закон Вебера — Фехнера). Другими словами, удвоение громкости ощущается лишь при достижении второй степени первоначального раздражения.

Для измерения громкости в физике пользуются единицами, называемыми фонами (децибелами):

Понятие музыкального звука в физике. Определение характеристик музыкального звука, продольные и поперечные волны. Распространение музыкального звука, сущность тембра. Изучение музыкального искусства и его взаимосвязь с физикой, интенсивность звука.

Рубрика Музыка
Вид реферат
Язык русский
Дата добавления 07.04.2017
Размер файла 35,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Введение
  • 1. Понятие звука в физике
    • 1.1 Звук
    • 1.2 Музыкальный звук
    • 2.1Громкость звука (интенсивность)
    • 2.2 Тембр (спектральный состав)
    • 2.3 Длительность звука
    • 2.4. Высота звука (частота)
    • 3.1 Продольные и поперечные волны
    • 3.2 Интересные факты о распространении музыкального звука

    Введение

    Тема взаимосвязи физики и музыкального искусства, на мой взгляд, очень актуальна, так как в повседневной жизни современного человека музыка является очень важным составляющим - сегодня у каждого человека есть различные приборы для прослушивания музыки, многие люди слушают музыку каждый день и не представляют себе жизни без музыки.

    Выполняя данную работу, я стремилась узнать о том, что представляет собой звук, как распространяется звук в среде и как он доходит до уха человека. Наиболее интересно для меня было изучение музыкального звука, принцип работы музыкальных инструментов, так как звуки музыки и музыкальное искусство имеют большое значение в жизни человека, она благотворно влияет на его настроение и поведение, позволяет творчески выражаться. На вопросы о музыкальном звуке и устройстве музыкальных инструментов отвечает наука физика, поэтому, чтобы наиболее полно изучить музыкальное искусство, целесообразно его рассматривать во взаимосвязи с физикой.

    1. Понятие звука в физике

    1.1 Звук

    1.2 Музыкальный звук

    Какими бы разными не были музыкальные инструменты по форме, устройству, размерам, все они создавались для одной цели: извлечения приятных для слуха музыкальных звуков. Звук, с точки зрения физики, представляет собой волну - процесс распространения колебаний от точки к точке, от частицы к частице. Упругое тело, выведенное из положения равновесия, совершает гармонические колебания, эти колебания передаются воздуху, воздушная волна воздействует на нашу барабанную перепонку, и мы слышим звук.

    Гармоническое колебание можно рассматривать как движение проекции точки, равномерно движущейся по кругу, на диаметр этого круга. Пусть радиус вспомогательной окружности равен а, он соответствует наибольшему отклонению от положения равновесия: а - амплитуда. Мгновенное положение определяется абсциссой х = а cos ф, где а - амплитуда, ф - фазовый угол. [2]

    Мгновенное отклонение от положения равновесия, называют смещением. Угол, образуемый радиусом-вектором, проведенным к движущейся по окружности, с осью абсцисс, называют фазой ф (или фазовым углом), время Т одного полного оборота точки по окружности, называют периодом колебания, а обратную ему величину - частотой ( измеряется в герцах, Гц). Человек слышит звук в диапазоне частот от 16 до 20000 Гц.

    Звуки бывают очень разные. Те, что создают постоянный фон, не организованные в стройную систему, не связанные между собой, и те, что обладают особыми свойствами: чистые, звонкие, определённой высоты, обладающие смысловой выразительностью, - звуки музыкальные. Издают их музыкальные инструменты, звуковая волна в которых возникает от колебаний струны или столба воздуха внутри металлической или деревянной трубки. [3]

    2. Основные характеристики музыкального звука

    Музыкальные звуки различаются по высоте, длительности, продолжительности звучания, тембру (специфической окраской, которая зависит от материала, величины и формы инструмента), от способа извлечения звука и динамики, то есть силе звучания.

    2.1 Громкость звука (интенсивность)

    Если исполнить музыкальное произведение от начала до конца на одном уровне громкости, оно много потеряет в своей выразительности. Если бы инструменты не могли изменять громкость звука, музыка вряд ли могла бы выражать тончайшие оттенки чувств.

    Громкость звука (интенсивность восприятия) определяется амплитудой колебаний, но чтобы интенсивность восприятия (то, что мы слышим) увеличивалась линейно, интенсивность раздражения (пропорциональная квадрату амплитуды колебаний) должна увеличиваться экспоненциально (закон Вебера -- Фехнера). Другими словами, удвоение громкости ощущается лишь при достижении второй степени первоначального раздражения. [3]

    Для измерения громкости в физике пользуются единицами, называемыми фонами (децибелами):

    В данной формуле I' и I -- интенсивности звуков.

    Говорят: громкости I' и I различаются на n фонов, или на n децибел (дБ). Музыкальные термины, которые определяют степень громкости исполнения музыки, называют динамическими оттенками (от греческого слова -- силовой, т.е. сила звука). В нотах можно увидеть такие обозначения:

    · «рр -- pianissimo(пианиссимо) -- очень тихо;

    · р --рiаnо (пиано) -- тихо;

    · mр --mezzo рiаnо (меццо пиано) -- умеренно тихо, немного громче, чем пиано;

    · mf --mezzo forte (меццо форте) -- умеренно громко, громче, чем меццо пиано;

    · f -- forte (форте) -- громко;

    2.2 Тембр (спектральный состав)

    Музыка способна выразить всё. Ей доступны и движения мысли, и любое чувство, и малейший оттенок настроения.

    Желание человека располагать большим выбором музыкальных голосов и вызвало к жизни многообразие инструментов. И если один инструмент не может что-то передать, то это делает другой. Звук скрипки от звука точно такой же высоты, взятой на кларнете, отличается тембром. Объясняется различие тембра тем, что в обычных звуках присутствуют колебания разных наборов частот и амплитуд. Колебания самой низкой частоты в этом наборе служат основным тоном. Их амплитуда самая большая. Все остальные колебания называют обертонами. Отдельно мы не слышим обертонов, но именно они, смешиваясь с основным тоном, образуют тембр. Тембр - это окраска звука; одна из специфических характеристик музыкального звука [7].

    Количество и качество обертонов зависит от длины, толщины и материала струны, от длины и среднего размера инструмента, от материала, из которого он сделан. Влияет на тембр и форма инструмента.

    2.3 Длительность звука

    Если быстро ударить пальцем по клавише, получится отрывистый, очень короткий звук. А если нажать на нее и держать, то звук получится значительно более долгий, постепенно угасающий. Длительность звучания зависит от продолжительности колебаний источника звука.

    Длительность в музыке обозначают специальной системой значков. Одна и та же нота, изображенная на бумаге, может при исполнении на инструменте длиться разное время (конечно, не сама нота, а звук, обозначаемый ею). Основное обозначение -- это целая нота, равная целому такту в четыре четверти. Она делится на более мелкие доли: половинные, четверти, восьмые, шестнадцатые и т.д. [4]

    2.4 Высота звука (частота)

    Нажав крайнюю левую клавишу рояля или фортепиано, мы услышим очень низкий звук, а нажав крайнюю правую, -- очень высокий. В нашем восприятии музыкальные звуки вызывают чувство пространства. При продвижении вправо по клавиатуре, или, как говорят музыканты, вверх, действительно возникает ощущение подъема, восхождения, просветления. Если открыть крышку рояля, то можно увидеть, что струны в нем не одинаковы. У рояля своеобразная форма, похожая на крыло. Это обусловлено разной длиной его струн: слева длиннее, справа короче. Кроме того, струны, которые соответствуют нижним звукам, толстые, обвитые так называемой канителью, а верхние -- тонкие.

    От длины и массы струны зависит высота звука, а высота звука -- это частота ее колебаний [7]:

    Где l -- длина струны, Р -- ее натяжение, m -- масса единицы длины.

    Стандарты для высоты тона предложены всего поколения три назад, а общеприняты в течение едва ли 25 лет. Как правило, для физиков стандартной высотой тона является "до" первой октавы -- 256 колебаний в секунду (С-256). Большинство знает, что музыкальные инструменты настраиваются на определенный звук средней октавы (например, "ля" имеет частоту 426,6 Гц, или 426,6 колебания в секунду).

    Международный стандарт высоты тона составлял для "ля" 435 Гц, однако в настоящее время во всем мире (вслед за Американской федерацией музыкантов) принята стандартная высота для "ля" 440 Гц. Это ниже концертной высоты тона, однако, и при таком стандарте спеть арии, сочиненные старыми мастерами, могут не все сопрано.

    3. Распространение музыкального звука

    3.1 Продольные и поперечные волны

    Звук может распространяться в виде продольных и поперечных волн. В газообразной и жидкой среде возникают только продольные волны, когда колебательное движение частиц происходит лишь в том направлении, в каком распространяется волна.

    Так, ударяя по струне перпендикулярно её направлению, мы заставляем бежать волну вдоль струны. Звуковые волны несут с собой энергию, которую сообщает им источник звука. Величину кинетической энергии, протекающей за одну секунду через один квадратный сантиметр поверхности, перпендикулярной направления волны, вычислил русский учёный Н.А. Умов. Эту величину назвал потоком энергии. Она выражает меру интенсивности, или, как говорят, силы звука. Чтобы вызывать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью. Величину её называют порогом слышимости.

    Скорость звука можно вычислить как произведение длины волны на частоту колебания, то есть, по формуле:

    где с - скорость звука, л- длина волны, х- частота колебания.

    В газах скорость звука меньше чем в жидкостях, а в жидкостях меньше чем в твёрдых телах.

    Звук может также распространяться и в жидкой, и в твердой среде. Ощущение звука создается только при определенных частотах колебаний в волне. Опыт показывает, что для органа слуха человека звуковыми являются только такие волны, в которых колебания происходят с частотами от 20 до 20000 Гц. [6]

    3.2 Интересные факты о распространении музыкального звука

    Самый низкий из слышимых человеком музыкальных звуков имеет частоту 16 колебаний в секунду. Он извлекается органом. Но применяется не часто - очень басовит. Разобрать и понять его трудно. Зато 27 колебаний в секунду - тон вполне ясный для уха, хоть тоже редкий. Услышать его можно, нажав крайнюю левую клавишу рояля.

    Абсолютный "нижний" рекорд мужского баса, поставленный в XVIII веке певцом Каспаром Феспером - 44 колебания в секунду. 80 колебаний в секунду - обычная нижняя нота хорошего баса и многих инструментов.

    Удвоив число колебаний (повысив звук на октаву), приходим к тону, доступному виолончелям, альтам. Здесь отлично чувствуют себя и басы, и баритоны, и тенора, и женские контральто. А еще октава вверх - и можно попасть в тот участок диапазона, где работают почти все голоса и музыкальные инструменты. Именно в этом районе акустика закрепила всеобщий эталон высоты тона: 440 колебаний в секунду ("ля" первой октавы).

    Вплоть до 1000 - 1200 колебаний в секунду звуковой диапазон полон музыкой. Эти звуки - самые слышные. Звуки выше издают лишь скрипки, флейты, орган, рояль, арфа. И полновластными хозяйками выступают звонкие сопрано. [4]

    Заключение

    В данной работе в рамках физики было рассмотрено понятие звука в целом и понятие музыкального звука в частности. Выполняя данную работу, я узнала, что звук - это механические колебания, распространяющиеся в упругой среде. Изучая музыкальное искусство с точки зрения физики, я рассмотрела основные характеристики музыкального звука, такие как громкость звука, его тембр, высота и длительность.

    Для того, чтобы понять, как звук доходит до уха человека, мне понадобилось изучить способы, с помощью которых звук может распространяться. Так я узнала, что звук распространяется в виде продольных волн, возникающих только в жидкой и газообразной среде и поперечных волн, которые возникают только в твердых телах.

    Продольные волны возникают тогда, когда колебательное движение частиц происходит лишь в том направлении, в каком распространяется волна, возникновение поперечных волн происходит тогда, когда частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.

    Особенно интересным стало то, что ощущение звука может возникать только при определенных частотах колебаний в волне. Для органа слуха человека звуковыми являются только такие волны, в которых колебания происходят с частотами от 20 до 20000 Гц, а значит звуки, которые не попадают в этот диапазон, попросту не улавливаются человеком.

    Звуки бывают разными по частоте, рассматривая вопрос о частоте звука, я узнала интересный факт - самый низкий из всех музыкальных звуков, слышимых человеком, имеет частоту 16 колебаний в секунду и извлекается он органом.

    Список использованной литературы

    1. Газарян С.С. В мире музыкальных инструментов/Для учащихся старших классов. -- М.: Просвещение, 2005.

    2. Гл. ред. Г.В.Келдыш. Музыкальный энциклопедический словарь. -- М.: Советская энциклопедия, 1990.

    3. Звук // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). -- СПб., 1890--1907

    5. Физический энциклопедический словарь. -- М.:Советская энциклопедия, 1963. Т. 3.

    6. Эллиот. Л., Уилкокс У. Физика/Пер. с англ. Под ред. А.И.Китайгородского. -- М.: Физматгиз, 2013.

    Подобные документы

    Общая характеристика и особенности музыки как вида искусства, ее возникновение и взаимосвязь с литературой. Роль музыки как фактор развития личности. Звук как материал, физическая основа построения музыкального образа. Мера громкости музыкального звука.

    реферат [15,8 K], добавлен 15.03.2009

    Клавишные музыкальные инструменты, физические основы действия, история возникновения. Что такое звук? Характеристика музыкального звука: интенсивность, спектральный состав, длительность, высота, мажорная гамма, музыкальный интервал. Распространение звука.

    реферат [38,9 K], добавлен 07.02.2009

    Изучение генезиса философско-музыкальных концепций (социально–антропологического аспекта). Рассмотрение сущности музыкального искусства с точки зрения абстрактно-логического мышления. Анализ роли музыкального искусства в духовном становлении личности.

    монография [149,5 K], добавлен 02.04.2015

    Взгляды на психологию музыкального восприятия. Физиологические основы слуха. Созвучия, воспринимаемые как унисон. Психологические предпосылки возникновения музыки. Ощущение музыкального звука и его компоненты. Тембр, консонанс, диссонанс и чувство ритма.

    курсовая работа [43,8 K], добавлен 09.05.2009

    Теоретический анализ проблемы восприятия музыкального произведения в трудах отечественных исследователей. Аксеосфера музыкального искусства и ее влияние на развитие личности. Сущность и особенности восприятия музыкального произведения.




    Музыкальная физика или музыка как физический процесс

    1 Муниципальное общеобразовательное бюджетное учреждение Гимназия №14 г. Белорецк муниципального района Белорецкий район Республики Башкортостан

    1 Муниципальное общеобразовательное бюджетное учреждение Гимназия №14 г. Белорецк муниципального района Белорецкий район Республики Башкортостан


    Автор работы награжден дипломом победителя III степени

    Текст работы размещён без изображений и формул.
    Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

    В мир музыки, мир волшебных звуков мы попадаем с самых первых дней своей жизни. Первая колыбельная, которую поет нам мама, первая музыкальная игрушка.

    Я увлекаюсь музыкой с детства. Мне всегда было интересно как появлялись звуки и как их извлекать на разных инструментах. Но позже, в школе, на одном из уроков физики я познакомилась с одной из её областей – акустика. Эта тема меня заинтересовала, и я решила более подробно изучить её.

    Нет более интересной области науки, чем та, что изучает физическую природу звука. Высота, частота звука влияет на восприятие музыки человеком. Одна доставляет удовольствие, другая раздражает слух и вызывает агрессию. Поэтому знания акустики важны музыканту.

    В своей работе я попытаюсь вам рассказать о звукоизвлечении с позиции физики и музыки у разных музыкальных инструментов.

    Мы считаем, что данная работа очень актуальна, поскольку совмещает физику, музыку и биологию.

    Цель нашей работы: исследовать процесс звукоизвлечения разных типов инструментов с точки зрения физики.

    Задачи:

    изучить роль звука в жизни человека, физике и музыке

    провести исследование по влиянию громкости звука, высоты, тембра различных музыкальных инструментов у группы моих одноклассников.

    сделать вывод о применении знаний физики при игре на музыкальных инструментов

    Гипотеза исследования: если использовать знания физики, то возможно освоить игру на многих м музыкальных инструментах.

    Объект исследования: звукоизвлечение у фортепиано, скрипки, гитары, флейты, барабанов.

    Предмет исследования: фортепиано, скрипка, гитара, флейта, барабан.

    1.Анализ теоретического материала.

    1.1.Роль звука в жизни человека

    Мы привыкли слышать различные шумы. Когда мы находимся на природе, мы слышим пение птиц, скрип деревьев, шелест листвы, шум прибоя. И это нас умиротворяет. В городе же звуков гораздо больше - это и автомобильные гудки, и шорох шин, и грохот ближайшей стройки, и вой автомобильной сигнализации, и смех малышей на детской площадке.

    Звук по-разному действует на людей в зависимости от их возраста, общего состояния здоровья и слуховой чувствительности, однако в той или иной степени интенсивный шум негативно влияет на всех. Разумеется, человеческий организм должен защитить себя, и поэтому в результате воздействия сильных акустических колебаний мы начинаем терять слух. Кстати, для того, чтобы потерять слух, не обязательно работать у токарного станка - достаточно часто слушать громкую музыку (8).

    Важным моментом является сочетание определенных музыкальных ритмов с тем, чем именно занят человек и какого результата хочет добиться. Простые примеры из жизни каждого дают понимание о том, что релаксирующая спокойная музыка помогает снять раздражительность и уснуть, а бодрая способна активизировать силы организма и являться вдохновляющим фактором при тяжелой физической работе или спортивных нагрузках. Имеет влияние не только жанр и этническая принадлежность, ритм и громкость, а также музыкальные инструменты, участвующие в исполнении произведения. Например, звучание некоторых инструментов (пианино) очищает щитовидную железу, стимулирует мозговую активность (5).

    Здоровье человека имеет зависимость от музыкального воздействия, объясняющуюся, прежде всего тем, что любая музыка или ритм синхронизирует работу органов и систем. Делается это в сторону улучшения или нарушения баланса – вопрос подбора произведения, Организм человека чувствителен к воздействию волн различной частоты и вхождению с ним в резонанс влияет на работу всех систем органов.

    1.2. Роль звука в физике

    Мы называем колебания среды звуковыми, но это не значит, что все звуковые колебания мы слышим. Звуковые колебания возникают в любой среде, способной сжиматься, а так как несжимающихся тел в природе нет, то, значит, частицы любого материала могут оказаться в этих условиях. (6). При звуковых колебаниях каждая частица воздуха в среднем остается на месте – она совершает лишь колебания около положения равновесия. В самом простейшем случае частица воздуха может совершать гармоническое колебание, которое, как мы помним, происходит по закону синуса. Такое колебание характеризуется максимальным смещением от положения равновесия – амплитудой и периодом колебания, т.е. временем, затрачиваемым на совершение полного колебания.

    Функция органа слуха базируется на двух принципиально различающихся процессах — механоакустическом, определяемом как механизм звукопроведения, и нейрональном, определяемом как механизм звуковосприятия (2).

    Распространяющиеся в среде звуковые волны обладают свойством затухания, т. е. снижением амплитуды. Степень затухания звука зависит от его частоты и упругости среды, в которой он распространяется. Чем ниже частота, тем меньше степень затухания, тем дальше распространяется звук. Поглощение звука средой заметно возрастает с увеличением его частоты. Поэтому ультразвук, особенно высокочастотный, и гиперзвук распространяются на очень малые расстояния, ограниченные несколькими сантиметрами (4) Чем ближе собственная частота колебаний облучаемого объекта к частоте падающих волн, тем больше звуковой энергии этот объект поглощает, тем выше становится амплитуда его вынужденных колебаний, в результате чего этот объект сам начинает издавать собственный звук с частотой, равной частоте падающего звука. Барабанная перепонка благодаря своим акустическим свойствам обладает способностью резонировать на широкий спектр звуковых частот практически с одинаковой амплитудой (1)

    В слуховом ощущении субъективно (звук оценивается человеком) различаются высота, громкость и тембр звука.

    Простой музыкальный тон создается периодическим колебанием определенной частоты. Сложные звуки представляют собой сочетания чистых тонов.

    Оркестр музыкантов воспроизводит почти все слышимые частоты. Диапазон рояля охватывает тона с частотами примерно от 25 до 4000 Гц.

    Звуки, находящиеся на границе слухового диапазона, раздражают человеческое ухо. Например, писк комара – верхняя граница звука, раскаты грома – нижний звук.

    1.3. Роль звука в музыке

    Не все комбинации звуков доставляют удовольствие слушающему. Оказывается, приятное ощущение создают такие звуки, частоты колебаний которых находятся в простых отношениях (3). При помощи бесклавишных инструментов – типа скрипки – музыкант может взять любой тон и дать звучание любому сочетанию тонов.

    В таком инструменте, как рояль, дело обстоит иначе. Струны рояля настроены на определенные частоты, удар о клавиши не может изменить тональности звука.

    Вы видели, как настраивают гитару – струну натягивают на колки. Если длина струны и степень натяжения подобраны, то струна будет издавать, если ее тронуть, вполне определенный тон.

    Если, однако, вы послушаете звук струны, трогая ее в различных местах – посередине, на одной четверти от места крепления, в любом другом месте, то услышите не вполне одинаковые звуки. Тон будет один и тот же, а окраска звука, или, как говорят музыканты, тембр звука, будет различным.

    В зависимости от возбуждения струна может колебаться и с большими частотами. Все эти частоты, как говорят, относятся к собственным колебаниям струны.

    Звукоизвлечение отличается у различных инструментов. Инструменты подразделяются на большие группы: струнные, клавишные, ударные, духовые. В духовых инструментах звук издается в результате колебаний столба воздуха, заключенного внутри трубки. Чем больше объем воздуха, тем более низкий звук он издает.У струнных инструментов звук здесь издается колеблющейся струной. Для усиления звука струны стали натягивать над полым корпусом - так появились лютня и мандолина, цимбалы, гусли и гитара.

    Струнная группа делится на две основные подгруппы : смычковые и щипковые инструменты. Звук струнносмычковых инструментов извлекается смычком, которым водят по натянутым струнам. А для щипковых смычок не нужен: музыкант пальцами защипывает струну, заставляя ее колебаться.

    Если пальцы, ударяющие по струнам, заменить молоточками, а молоточки приводить в движение с помощью клавиш, получатся клавишные инструменты.

    Выводы по первой главе: звук имеет важное значение в жизни человека, воздействие звука может быть как полезным, так и разрушающим. Звук характеризуется определенными физическими характеристиками: тембром, тоном, высотой, частотой, амплитудой– которые воздействуют на слуховой анализатор.

    2.Исследование музыки как физического процесса

    2.1.Методики исследования

    Большинство опытов со звуком дает чисто субъективные результаты, которые зависят не только от характера наблюдаемых материальных явлений, но и от

    собственных реакцией наблюдателя, от его впечатлений, ощущений, представлений. Они связаны с деятельностью организма наблюдателя, с его воспринимающими сенсорными механизмами.

    В качестве оборудования во всех опытах использовались скрипка, фортепиано, гитара, флейта, барабаны., тюнер, звукозаписывающая студия (Приложение 1).

    Опыт №1. Исследование тембра звука.

    Цель опыта: определить наиболее приятный для слуха тембр звука

    Оборудование: скрипка, фортепиано, гитара, флейта, барабаны.

    Опыт №2. Исследование громкости звука

    Цель опыта: определение комфортной для человеческого слуха громкости музыкальных инструментов

    Опыт №3. Исследование высоты звука.

    Цель опыта: определить частоту самого низкого и самого высокого звука у выбранных инструментов с помощью тюнера, и на слух.

    Опыт № 4. Анализ звукоизвлечения с точки зрения физики

    Цель опыта: применить знания о звуковых физических процессах при собственной игре на музыкальных инструментах.

    Ни одни из описываемых опытов не может причинить зрению ни малейшего ущерба, При проведении многих опытов необходима нормальная функционирование слухового аппарата. Для некоторых эти опыты, безусловно, окажутся трудными, к тому же здесь не миновать расхождений в точности оценки результатов.

    Вр время опытов учтены принципы научного исследования. В некоторых случаях, направляя действия наблюдателя, опыт повторен, а затем подсчитан средний арифметический результат.

    2.2. Представление результатов опытов

    В опыте №1 пятерым людям предлагалось прослушать музыкальный фрагмент на разных инструментах и оценить ощущения по 10-балльной шкале. 1-неприятно, 10-нравится. Результаты опыта представлены в таблице 1.

    • Для учеников 1-11 классов и дошкольников
    • Бесплатные сертификаты учителям и участникам

    Музыкальные инструменты и особенности их звучания. Работу выполнила Шарафанов.

    Описание презентации по отдельным слайдам:

    Музыкальные инструменты и особенности их звучания. Работу выполнила Шарафанов.

    Музыкальные инструменты и особенности их звучания. Работу выполнила Шарафанова София Ученица 11 класса Руководитель Учитель физики Дреев Н.Ф.

    Музыка и различные звуки сопровождает человека всю жизнь. Нас окружают звуки.

    Музыка и различные звуки сопровождает человека всю жизнь. Нас окружают звуки леса, пение птиц, шум моря и, конечно же, музыка. Она с нами всегда, в часы веселья, и в моменты грусти, в печали и в радости, ночью и днем. Для извлечения звуков человек придумал различные виды музыкальных инструментов. В настоящее время существуют музыкальные инструменты, которые подразделяются на несколько групп: струнные; духовые; ударные.

    Возникновение музыкальных инструментов: Трудно сейчас выяснить, как и когда п.

    Возникновение музыкальных инструментов: Трудно сейчас выяснить, как и когда появился первый музыкальный инструмент. Легенда гласит, что пастушью дудку первыми придумали еще греческие боги. Музыка сопровождала и первобытных людей: они танцевали, хлопали и барабанили. Напрашивается вывод, что первыми музыкальными приспособлениями были ударные музыкальные инструменты.

    Виды музыкальных инструментов делятся на разные классы и семейства в зависимо.

    Виды музыкальных инструментов делятся на разные классы и семейства в зависимости от: источника звука; материала изготовления; тембра и вида звучания; способа извлечения звуков.

    Каждый музыкальный инструмент имеет свое устройство для того, чтобы можно был.

    Каждый музыкальный инструмент имеет свое устройство для того, чтобы можно было получить необходимый звук. Так появилась классификация музыкальных инструментов. Список все время пополняется, появились электронные музыкальные инструменты. Но живая музыка, по-прежнему, вне конкуренции. На самом деле, каждое тело, если привести его в движение или колебание, может издавать звук. Этот вид источника звука используется для классификации. Группы инструментов, в зависимости от способа получения звука, делятся на подгруппы.

    Струнные инструменты

    Струнные музыкальные инструменты - это группа инструментов, в которых источни.

    Струнные музыкальные инструменты - это группа инструментов, в которых источником звука являются колебания струн. Струнные инструменты подразделяются на: щипковые – гусли, гитара, домбра, балалайка, домбра, ситар, арфа; смычковые - скрипка, альт, виолончель, контрабас; ударные - фортепиано, цимбалы, В начале XX века появились электромузыкальные инструменты. Первый такой инструмент – терменвокс, был изобретен еще в 1917 году. Сегодня созданы многочисленные современные синтезаторы звука, которые могут имитировать не только звучание многих известных музыкальных инструментов, а и воспроизводят всевозможные звуки - раскаты грома, пение птиц, звук самолета или проходящего поезда. Как правило, синтезаторы выпускаются с фортепианной клавиатурой.

    Скрипка Страдивари Уже три столетия прошло с момента смерти великого итальян.

    Скрипка Страдивари Уже три столетия прошло с момента смерти великого итальянского струнных дел мастера Антонио Страдивари, а секрет изготовления его инструментов так и не раскрыт. Звук сделанных им скрипок, словно пение ангела, возносит слушателя до небес.

    Уникальность звучания скрипки Группа ученых из Тайваня и Германии пришла к вы.

    Уникальность звучания скрипки Группа ученых из Тайваня и Германии пришла к выводу, что своим выдающимся звучанием скрипки Страдивари обязаны особому химическому составу древесины, который был достигнут благодаря обработке дерева специальным составом. При этом отличия в составе неорганических веществ оказались куда более заметными. Ученые выяснили, что древесина скрипок Страдивари была обработана сложным консервирующим составом, содержавшим алюминий, кальций, медь, натрий, калий и цинк. По всей видимости, этот состав использовался мастером для предварительного вымачивания древесины. В настоящее время такой способ подготовки древесины не используется при изготовлении скрипок - древесину для инструментов просто сушат на воздухе несколько лет. Кроме того, из документов XVIII и XIX веков следует, что и тогда скрипичные мастера не применяли специальных составов для обработки древесины.

     Духовые инструменты

    Духовые музыкальные инструменты - вид инструментов, у которых звук возникает.

    Духовые музыкальные инструменты - вид инструментов, у которых звук возникает от колебания воздуха в трубке. Классифицируются по производителю, материалу и способам звукоизвлечения. Эту категорию можно разделить на: деревянные – флейта, фанот, гобой; медные – тромбон, труба, туба, валторна.

    Ударные инструменты Ударные музыкальные инструменты появились во времена, ко.

    Ударные инструменты Ударные музыкальные инструменты появились во времена, когда люди занимались охотой. Были изобретены ударные музыкальные инструменты, названия которых известны всем: барабаны и бубны. Их делали из высушенных шкур и полых предметов: плодов, деревянных колодок, глиняных горшков. Для получения звука били по ударным инструментам пальцами, ладонями или специальными палочками. То есть, ударные музыкальные инструменты – это инструменты, у которых извлечение звуков происходит с помощью ударов, тряски, молоточков, палочек или ладоней.

    Сегодня ударные - самое многочисленное семейство музыкальных инструментов. По.

    Сегодня ударные - самое многочисленное семейство музыкальных инструментов. По звуковысотности они подразделяются на две группы: Неопределенная высота звучания - барабаны, там – там, тарелки, бубен, треугольник, кастаньеты; Определенная высота звучания – колокольчики, литавры, вибрафон, ксилофон.

    Читайте также: