Коллоидные системы в организме и их функции реферат

Обновлено: 05.07.2024

3. Устойчивость и разрушение коллоидных растворов …………….

Коллоидные системы для человека играют большую роль. По сути, человеческий организм - одна общая коллоидно-дисперсионная система. Потому что в организме практически все вещества растворены одно в другом и находятся в постоянном движении. Коллоидные системы занимают промежуточное положение между грубодисперсными системами и истинными растворами. Они широко распространены в природе. Весь наш организм состоит из коллоидных систем. Белки, кровь, лимфа, углеводы, пектины находятся в коллоидном состоянии. Коллоидные системы играют важную роль не только в жизнедеятельности человеческого организма. Они имеют и огромное прикладное значение.

На основе изучения коллоидно-дисперсных процессов были созданы новые материалы, изобретено множество химических процессов, которые активно применяются в производстве, а также для очистки воды (в том числе, сточных вод . Пищевая, текстильная, резиновая, кожевенная, лакокрасочная, керамическая промышленности, технология искусственного волокна, пластмасс, смазочных материалов) связаны с коллоидными системами.

Дисперсные системы

Чистые вещества в природе встречаются очень редко. Кристаллы чистых веществ – сахара или поваренной соли, например, можно получить разного размера – крупные и мелкие. Каков бы ни был размер кристаллов, все они имеют одинаковую для данного вещество внутреннюю структуру – молекулярную или ионную кристаллическую решетку. В природе чаще всего встречаются смеси различных веществ. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы. Такие системы мы будем называть дисперсными

Дисперсной называется система, состоящая из двух или более веществ, причем одно из них в виде очень маленьких частиц равномерно распределено в объеме другого. То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ. Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой.

Между дисперсионной средой и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называются гетерогенными (неоднородными). И дисперсную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях – твердом, жидком и газообразном.

Дисперсионные системы можно разделить по размеру частиц дисперсионной фазы. Если размер частиц составляет меньше одного нм – это молекулярно - ионные системы, от одного до ста нм - коллоидные, и более ста нм - грубодисперсные. Группу молекулярно дисперсных систем представляют растворы. Это однородные системы, которые состоят из двух или более веществ и являются однофазными. К ним относятся газ, твердое вещество или растворы. В свою очередь эти системы можно разделить на подгруппы:
- Молекулярные. Когда органические вещества, такие как глюкоза, соединяются с неэлектролитами. Такие растворы назвали истинными для того, чтобы можно было отличать от коллоидных. К ним относятся растворы глюкозы, сахарозы, спиртовые и другие.
- Молекулярно-ионные. В случае взаимодействия между собой слабых электролитов. В эту группу входят кислотные растворы, азотистые, сероводородные и другие.

- Ионные. Соединение сильных электролитов. Яркие представители - это растворы щелочей, солей и некоторых кислот.

Типы коллоидных растворов

Лиофобные золи, могут быть получены: методом диспергирования (измельчения крупных тел), и методам конденсации веществ. Устойчивые дисперсные системы состоят из трех компонентов:

1. дисперсионной среды;

2. дисперсной фазы;

Стабилизатор имеют ионную, молекулярную, или высокомолекулярную, природу.

II тип – ассоциативные (мицеллярные коллоиды) - полуколлоиды. Частицы этого типа возникают при достаточной концентрации дифильных молекул низкомолекулярных веществ в агрегаты молекул – мицеллы. Мицеллы - скопления правильно расположенных молекул, удерживаемых дисперсионными силами. Образование мицелл характерно для водных растворов моющих веществ и некоторых органических красителей. В других средах, эти вещества растворяются с образованием молекулярных растворов.

Способы получения коллоидов

Поскольку коллоидные системы по размеру частиц занимают промежуточное положение между грубодисперсными системами и истинными растворами, то методы их получения можно разделить на две группы: диспергационные и конденсационные.


  • механическое дробление с помощью шаровых или коллоидных мельниц;

  • измельчение с помощью ультразвука;

  • электрическое диспергирование (для получения золей металлов);

  • химическое диспергирование (пептизацию).

Конденсационные методы состоят во взаимодействии молекул истинных раствор с образованием частиц коллоидных размеров, что может быть достигнуто как физическими, так и химическими методами.

Физическим методом является метод замены растворителя (напрмер, к истинному раствору канифоли в спирте добавляют воду, затем спирт удаляют).

Химическая конденсация состоит в получении коллоидных растворов путем химических реакций с образованием труднорастворимых соединений:

Способы очистки коллоидов

Существуют три основных способа очистки коллоидов.

1) Диализ. Простейшим прибором для диализа - диализатором - является мешочек из полупроницаемого материала (коллодия), в который помещается диализируемая жидкость. Мешочек опускается в сосуд с растворителем (водой). Периодически или постоянно меняя растворитель в диализаторе можно практически полностью удалить из коллоидного раствора примеси электролитов и низкомолекулярных неэлектролитов.

2) Электродиализ - процесс диализа, ускоряемый действием электрического тока. Электродиализ применяют для очистки коллоидных растворов, загрязненных электролитами. Если необходима очистки коллоидных растворов от низкомолекулярных неэлектролитов, процесс электродиализа малоэффективен. Процесс электродиализа мало отличается от обычного диализа.

3) Ультрафильтрация - фильтрование коллоидных растворов через полупроницаемую мембрану, пропускающую дисперсионную среду с

низкомолекулярными примесями и задерживающую частицы дисперсной фазы или макромолекулы. Для ускорения процесса ультрафильтрации ее проводят при перепаде давления по обе стороны мембраны: под вакуумом или повышенным давлением.

Ультрафильтрация есть не что иное, как диализ, проводимый под давлением.

Устойчивость и разрушение коллоидных растворов

Для коллоидных систем введены понятия о кинетической и агрегативной устойчивости.

Под кинетической устойчивостью понимают способность частиц коллоидного раствора находиться во взвешенном состоянии даже при существенном различии в плотностях дисперсионной среды и дисперсной фазы. Кинетическая устойчивость свойственна сильно разбавленным растворам и очень высокодисперсным золям.

Aгрегативная устойчивость — способность системы сохранять свою степень дисперсности. Устойчивость коллоидных растворов связана с наличием одноименного заряда у коллоидных частиц. Двигаясь, частицы сближаются, при этом проявляются действие отталкивания одноименных ядер частиц и действие притяжения за счет межмолекулярных сил. В зависимости от того, какие силы преобладают, система либо устойчива, либо частицы дисперсной фазы слипаются и укрупняются.

Устойчивость коллоидных растворов можно повысить введением стабилизаторов. В качестве стабилизаторов используют высокомолекулярные соединения, такие, как белки, поверхностно-активные вещества и т.д. Стабилизаторы адсорбируются в поверхностном слое частиц и как бы придают золю свойства раствора использованного стабилизатора.

Под воздействием различных факторов коллоидные растворы способны разрушаться. Разрушение может сопровождаться слипанием отдельных частиц с образованием крупных агрегатов. Такой процесс разрушения коллоидного раствора называется коагуляцией. Коагуляция нарушает агрегативную устойчивость коллоидного раствора, крупные агрегаты частиц легкo седиментируют под действием гравитационных сил.

Причиной коагуляции могут быть самые разнообразные факторы: изменение температуры и концентрации коллоидного раствора, его старение, механические воздействия, введение в раствор золей с противоположным знаком заряда, добавление электролитов. Наибольшее практическое значение имеет последний фактор.

При введении в золь электролита (коагулянта) коагулирующее действие оказывает ион, имеющий противоположный заряд: для отрицательно заряженных золей — катион, для золей с положительным зарядом частицы — анион. Наименьшая концентрация электролита, вызывающая коагуляцию, называется порогом коагуляции. Чем выше заряд коагулирующего иона, тем ниже его пороговая концентрация. Коагуляция золя происходит при достижении в растворе критической величины § - потенциала, т.е. еще до достижения системой изоэлектрического состояния.

При определенных условиях процесс коагуляции может оказаться обратимым, и образовавшийся коагулят вновь может перейти в золь. Этот процесс называет пептизацией. Пептизация тем вероятнее, чем выше гидрофильность осажденного золя, и легче происходит в свежеосажденной системе с рыхлой структурой осадка. Причиной пептизации может быть введение в систему электролита с потенциало-образующими ионами, которые, адсорбируясь на частицах осадка, сообщают им заряд. В такой системе возрастает § -потенциал, одноименно заряженные частицы отталкиваются друг от друга и начинают переходить в раствор.

Таким образом, коллоидные системы суть основа химического состояния всех веществ, из которых построены клетки, ткани и органы организма человека. Этим и обусловлено многообразие функций, которые обеспечивают в организме коллоидные системы.

Можно сказать только одно, что без коллоидной химии нельзя представить повседневную жизнь человека в общем. Сам человек это и есть коллоидная система. Множество процессов и реакций происходят за счет коллоидной химии.

Читайте также: