Реферат отливы и отливы

Обновлено: 04.07.2024

Самый высокий уровень воды, наблюдаемый за сутки или половину суток во время прилива, называется полной водой, самый низкий уровень во время отлива – малой водой, а момент достижения этих предельных отметок уровня – стоянием (или стадией) соответственно прилива или отлива. Средний уровень моря – условная величина, выше которой расположены отметки уровня во время приливов, а ниже – во время отливов. Это результат осреднения больших рядов срочных наблюдений. Средняя высота прилива (или отлива) – осредненная величина, рассчитанная по большой серии данных об уровнях полных или малых вод. Оба этих средних уровня привязаны к местному футштоку.

Оглавление

Определение ..……………. …………………………….
3
Сущность явления ………………………………………….
3
Изменение во времени ………………………………………
6
Распространение и масштабы проявления ……………….
6
Мифы и легенды …………………………………………….
9
История исследования ………………………………………
9
Экологические последствия ……………………………….
12
Влияние на хозяйственную деятельность …………………
12
Влияние человека на данный процесс …………………….
13
Возможность прогнозирования и управления …………….
13
Список литературы …………

Файлы: 1 файл

Приливы и отливы.doc

Ньютону удалось также заметить, что такие важные астрономические эффекты как изменение расстояния Луны от Земли в течение месяца и расстояния от Земли до Солнца в течение года приведут, естественно, к соответствующему изменению величин приливообразующих сил и к особым долгопериодным аномалиям в ходе приливов. Последние носят названия параллактических неравенств, наличие которых было также объяснено Ньютоном.

Ньютон обнаружил, что в рамках его теории путём учёта изменений в склонениях Луны и Солнца можно объяснить и такой казалось бы малозначительный факт, подмеченный уже к тому времени наблюдателями, что в разных местах вечерний прилив выше, чем утренний в одно время года, и ниже в другое. Поскольку между весенним и осенним равноденствием Солнце имеет северное склонение (лунная орбита почти не меняет своего склонения относительно солнца), то линия из центра Земли к Луне всегда будет на солнечной стороне, т.е. в северных широтах. Эта линия – ось приливного эллипсоида, так что летом дневной прилив выше ночного, а зимой когда склонение Солнца южное – наоборот.

Приходится лишь удивляться, как Ньютон смог в то время объяснить практически все основные особенности приливов. Видимо, хорошее знание астрономии позволило ему сразу уловить причины аномалий приливов, связанные с изменением во времени взаимного расположения Земли, Солнца и Луны.

Теория морских приливов, созданная Ньютоном и известная в настоящее время под названием статическая (потому что предполагалось существование равновесного эллипсоида в каждый момент времени), открыла всем глаза на природу приливов и их особенности. Это было блестящим достижением. Но вот один факт из приливных наблюдений не мог не смущать Ньютона и послужил зародышем дальнейшего развития теории приливов. Факт этот заключался в том, что наблюдаемые приливы могли сильно запаздывать или наоборот опережать статические приливы.

Чтобы объяснить несоответствия, отмеченные в статической теории, динамическая теория прилива рассматривает явление не в статике, а в движении, как волну. Эта теория была выдвинута П. Лапласом (1749 – 1827), развивалась Дж. Эри, Дж. Дарвином, А. Дудсоном и продолжает совершенствоваться.

В 1773 – 1775 гг. в своей знаменитой работе "Небесная механика" Лаплас впервые сформулировал динамические уравнения движения жидкости под действием приливообразующих (периодических) сил. Основное отличие динамической теории от статической заключалось в том, что не требовалась мгновенная реакция жидкости на действие приливообразующих сил Ньютона. Естественно, что как частный случай из динамической теории должна была получаться статическая. Лапласу в своей теории удалось показать то, что ускользнуло от Ньютона, а именно, решающую роль в характере приливов глубины водоёмов, так как период свободных колебаний приливных волн зависит от неё. Лаплас сделал первые попытки применения теории к данным наблюдений над приливами во французском порту Брест, так как ему было ясно, что успехи в предсказании приливов теперь должны зависеть от понимания гидродинамики больше, чем от знания астрономии. В Бресте с 1711 до 1715 г. проводились довольно детальные наблюдения над колебаниями уровня моря. Но они были далеки от совершенства. А новые наблюдения, инициированные Лапласом, начались только в 1806 г. Таким образом, эпоха, когда наблюдения над морскими приливами стали использовать для проверки теории, началась только с ХIХ века.

Для практической деятельности человека, в частности для судовождения, очень важно заранее знать уровень воды в любое время суток и в любом месте. Для этого создаются специальные карты и таблицы приливов. По инициативе англичанина Уэвелла в 1834 г. в течение двух недель были сделаны наблюдения над приливами и отливами по всему побережью Великобритании и Ирландии, а затем они были повторены в июне 1835 г., причём в то же самое время производились наблюдения от м. Нордкап до Гибралтарского пролива и от устья реки Св. Лаврентия до устьев Миссисипи. Такая программа наблюдений являлась следствием того, что Уэвелл решил построить фактически первую карту приливов в Мировом океане. В 1833 г. в "Философских трудах" эта карта была опубликована как приложение к его статье "Опыт построения первой карты котидальных линий". Котидальные линии, как пишет Уэвелл, те, которые соединяют точки, в которых в одно и то же время отмечается высокая вода. Они показывают гребень приливной волны и тем самым дают сведения о прикладном часе (время между прохождением Луны через меридиан и моментом наступления полной воды) в разных местах. Первые таблицы приливов были составлены в 1870 г. английским учёным У. Кельвином. [4]

Экологические последствия.

В зимнее время приливно- отливные явления, перемешивающие водные массы, как правило, задерживают начало льдообразования. Однако в дальнейшем приливо-отливные явления непрестанно взламывают ледяной покров, причём на открывающихся пространствах чистой воды идёт интенсивное льдообразование, вследствие чего общее количество льдов увеличивается. [2]

Влияние на хозяйственную деятельность.

Прежде приливно-отливные явления приводили лишь к разрушениям или создавали известные неудобства. Изучив их природу, человек начал использовать эту пока ещё почти необузданную силу. Так построена полуэкспериментальная Кислогубская приливная электростанция (ПЭС). Существуют проекты строительства ПЭС в Мезенском заливе Белого моря и других местах.

Таким образом, “обуздав” силу приливов и отливов человечество может решить много проблем с энергетикой. [3]

Влияние человека на данный процесс.

Человек на процесс приливов и отливов повлиять никак не может, так как этот процесс связан с притяжением Луны и Солнца. Людям остается только прогнозировать их и использовать энергию приливов и отливов в своих интересах.

Возможность прогнозирования и управления.

Измерение уровней приливов осуществляется при помощи устройств различных типов.

Футшток – это обычная рейка с нанесенной на нее шкалой в сантиметрах, прикрепляемая вертикально к пирсу или к опоре, погруженной в воду так, что нулевая отметка находится ниже наиболее низкого уровня отлива. Изменения уровня считывают непосредственно с этой шкалы.

Поплавковый футшток. Такие футштоки используются там, где постоянное волнение или мелководная зыбь затрудняют определение уровня по неподвижной шкале. Внутри защитного колодца (полой камеры или трубы), вертикально установленного на морском дне, помещается поплавок, который соединен с указателем, закрепленным на неподвижной шкале, или пером самописца. Вода проникает в колодец сквозь небольшое отверстие, расположенное значительно ниже минимального уровня моря. Его приливные изменения через поплавок передаются на измерительные приборы.

Гидростатический самописец уровня моря. На определенной глубине размещается блок резиновых мешков. По мере изменения высоты прилива (слоя воды) меняется гидростатическое давление, которое фиксируется измерительными приборами. Автоматические регистрирующие устройства (мареографы) также могут применяться для получения непрерывной записи приливо-отливных колебаний в любой точке.

Таблицы приливов. При составлении таблиц приливов используются два основных метода: гармонический и негармонический. Негармонический метод всецело базируется на результатах наблюдений. Кроме того, привлекаются характеристики портовых акваторий и некоторые основные астрономические данные (часовой угол Луны, время ее прохождения через небесный меридиан, фазы, склонения и параллакс). После внесения поправок на перечисленные факторы расчет момента наступления и уровня прилива для любого порта является чисто математической процедурой.

Гармонический метод является отчасти аналитическим, а отчасти основан на данных наблюдений за высотами приливов, проводившихся в течение по меньшей мере одного лунного месяца. Для подтверждения этого типа прогнозов для каждого порта необходимы длительные ряды наблюдений, поскольку за счет таких физических явлений, как инерция и трение, а также сложной конфигурации берегов акватории и особенностей рельефа дна возникают искажения. Поскольку приливо-отливным процессам присуща периодичность, к ним применяется анализ гармонических колебаний. Наблюдаемый прилив рассматривается как результат сложения серии простых составляющих волн прилива, каждая из которых вызвана одной из приливообразующих сил или одним из факторов. Для полного решения используется 37 таких простых составляющих, хотя в некоторых случаях дополнительные компоненты сверх 20 основных пренебрежимо малы. Одновременная подстановка 37 констант в уравнение и собственно его решение осуществляется на компьютере. [3]

Использование энергии приливов. Разработаны четыре метода использования энергии приливов, но наиболее практичным из них является создание системы приливных бассейнов. При этом колебания уровня воды, связанные с приливо-отливными явлениями, используются в системе шлюзов так, что постоянно поддерживается перепад уровней, позволяющий получать энергию. Мощность приливных электростанций непосредственно зависит от площади бассейнов-ловушек и потенциального перепада уровней. Последний фактор, в свою очередь, является функцией амплитуды приливо-отливных колебаний. Достижимый перепад уровней, безусловно, наиболее важен для производства электроэнергии, хотя стоимость сооружений зависит от площади бассейнов. В настоящее время крупные приливные электростанции действуют в России на Кольском п-ове и в Приморье, во Франции в эстуарии р.Ранс, в Китае близ Шанхая, а также в других районах земного шара. [3]

Приливные электростанции (ПЭС). Для создания экономичной приливной электростанции необходимо сочетание необычайно большого перепада уровней при приливе и отливе (6 м и более) с особенностями береговой линии, позволяющими создать плотину и водный бассейн соответствующих размеров. На Земле не так много мест, где выполняются эти условия: побережья штата Мэн (США) и провинции Нью-Брансуик (Канада), некоторые заливы Желтого моря, Персидский залив, Аляска, некоторые места Аргентины, юг Англии, север Франции, север европейской России и ряд заливов Австралии. Но даже в таких подходящих местах, как залив Пассамакуодди на границе штата Мэн и провинции Нью-Брансуик, ПЭС в настоящее время вряд ли могли бы по стоимости вырабатываемой электроэнергии конкурировать с современными ТЭС.

В проектах ПЭС обычно предусматривается создание двух бассейнов – верхового и низового – с водопропускными отверстиями и затворами. Верховой бассейн наполняется во время прилива, а затем опорожняется в низовой, опорожнившийся при отливе. [3]

Итак, человек не может управлять приливом (отливом), но использует энергию от этих процесса. Уровень развития гидроэнергетики в разных странах и на разных континентах неодинаков. Больше всего гидроэлектроэнергии производят Соединенные Штаты, за ними идут Россия, Украина, Канада, Япония, Бразилия, КНР и Норвегия.

С незапамятных времен человек стремился использовать энергию приливов. Первые приливные мельницы появились на побережье Бретани, Андалузии и Англии еще в ХII в. В более поздние времена сотни таких устройств приводили в движение лесопильные и мукомольные машины в британских владениях на территории Новой Англии (США).
В настоящее время действует совсем немного приливных станций. Электростанция Ранс является первым и крупнейшим предприятием такого рода в мире. Она была задумана как прототип более крупных приливных станций на побережье Бретани. Строительство началось в 1961 г. и завершилось в 1968 г.

Содержание

Введение. 3
1. Энергия приливов. 4
2. Энергия отливов. 6
3. Энергия приливов и отливов 7
Заключение. 9
Список использованной литературы 10

Прикрепленные файлы: 1 файл

экология.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Политехнический институт (филиал) федерального государственного автономного образовательного учреждения высшего профессионального образования «Северо-Восточный федеральный университет

Кафедра Горного и нефтегазового дела

Доклад по экологии

Работу выполнила: студентка гр. ДН-13-5

Захарова О. Д.

Работу проверила: Слепцова Е. В.

Мирный, 2014г.

Введение.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные воды
вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней. Однако истинный ход прилива и отлива весьма сложен.

Энергия приливов.

Наиболее очевидным способом использования океанской энергии представляется постройка приливных электростанций (ПЭС).

Приливы обусловлены силами притяжения Луны и Солнца в сочетании с центробежными силами, развивающимися при вращении систем Земля-Луна и Земля-Солнце. Движение этих тел относительно друг друга порождает различные приливные циклы: полусуточный, весенний квадратурный, полугодовой и другие более длительные циклы. Все оказывают влияние на уровень подъема воды, и знание этих колебаний необходимо для правильного проектирования приливных энергетических систем.

Амплитуда приливов может значительно увеличиваться за счет таких факторов, как склоны, воронки, характерное отражение и резонанс. Наиболее часто такие условия наблюдаются в устьях рек.

Теоретически приливные электростанции могли бы производить в целом 635 тыс. ГВт•ч/год электроэнергии, что является энергетическим эквивалентом более чем 1 млрд баррелей нефти. Наиболее перспективными в этом отношении районами являются залив Фанди в Канаде и США, залив Кука на Аляске, Шозе в бухте Мон-Сен-Мишель во Франции, Мезенский залив в России, устье р. Северн в Великобритании, залив Уолкотт в Австралии, Сан-Хосе в Аргентине, залив Асанман в Южной Корее.

С незапамятных времен человек стремился использовать энергию приливов. Первые приливные мельницы появились на побережье Бретани, Андалузии и Англии еще в ХII в. В более поздние времена сотни таких устройств приводили в движение лесопильные и мукомольные машины в британских владениях на территории Новой Англии (США).

В настоящее время действует совсем немного приливных станций. Электростанция Ранс является первым и крупнейшим предприятием такого рода в мире. Она была задумана как прототип более крупных приливных станций на побережье Бретани. Строительство началось в 1961 г. и завершилось в 1968 г.

Система использует двадцать четыре 10-мегаваттных турбины Каплана, обладает проектной мощностью 240 МВт и ежегодно производит около 50 ГВт•ч электроэнергии. Амплитуда прилива в устье реки составляет 14 м. Плотина длиной 750 м ограничивает бассейн площадью 22 км2, который содержит 180 млн м3 полезной воды.

Другая крупная приливная электростанция мощностью 20 МВт расположена в Аннаполис-Ройал, в заливе Фанди (провинция Новая Шотландия, Канада). Она была официально открыта в сентябре 1984 г. Система смонтирована на о. Хогс в устье р. Аннаполис на основе уже существующей дамбы, защищающей плодородные земли от затопления морской водой в период штормов. Амплитуда прилива колеблется от 4,4 до 8,7 м.

Стоимость станции Аннаполис-Ройал составила 53 млн долл., или 2650 долл. за киловатт мощности. Согласно проекту, цена производимого электричества должна была составлять 2,7 цента за киловатт. Удовлетворительные показатели данной станции подтвердили рентабельность низконапорных гидроресурсов, открыли широкие перспективы строительства крупных приливных станций в Канаде и других частях земного шара.

Возможное воздействие приливных электростанций на окружающую среду будет связано с увеличением амплитуды приливов на океанской стороне плотины. Это может приводить к затоплению суши и сооружений при высоких приливах или во время штормов и к вторжению солёной воды в устья рек и подземные водоносные слои. Водные пищевые цепи и сообщества организмов в приливной зоне могут пострадать в результате изменения уровня воды и усилившихся течений как за плотиной, так и перед ней; для водных организмов небезопасно так же прохождение через турбины.

Энергия отливов.

Очень мощным источником энергии являются приливы и отливы. Если верить цифрам, они могут дать человечеству около 70 миллионов миллиардов кВт/ч в год. Если сравнивать, то это примерно столько энергии, сколько можно получить из всех разведанных запасов бурого и каменного угля. В 1977г. вся экономика СССР базировалась на 1150 миллиардах кВт/ч, экономика США - на 200 миллиардах кВт/ч. Так что, в теории, только приливы и отливы могли обеспечить энергетическое процветание 6000 СССР, но это сухие цифры не имеющие ничего общего с реальностью.

Технология гидроэлектростанций , основанных на приливах и отливах, досконально проработаны в инженерном плане, многие варианты уже опробованы в некоторых странах, даже в Кольском полуострове. Выдвинута даже оптимальная стратегия использования такой энергии: во время приливов накапливать воду в водохранилищах, а во время максимальной нагрузки на энерго-добывающую сеть, разгружать ее, используя энергию, накопленную при приливе.

Приливы и отливы, вызываемые силой гравитации, служат предметом изучения нескольких наук — физики, астрономии и физической географии. На побережьях океанов и открытых морей приливы и отливы можно наблюдать ежедневно. Обычно уровень воды у берегов дважды повышается и дважды понижается в течение суток, точнее, 24 ч 50 мин. Это время соответствует периоду видимого обращения Луны на небе. Люди давно связали приливы и отливы с Луной, а Исаак Ньютон показал, что их причина — притяжение спутником Земли, точнее, ее водной оболочки.

Во время отливов

Полнолуние

Луна, как и другие небесные тела, притягивает Землю. Капли воды на участке, наиболее близком к Луне в определенный момент, притягиваются спутником сильнее, чем капли на наиболее далеких от нее территориях.

В результате водная оболочка Земли вытягивается в направлении Луны. На стороне нашей планеты, обращенной к ее спутнику, и на противоположной ее стороне вода поднимается, за этот счет она опускается в других местах.

Как возникают приливы и отливы в результате воздействия нашего спутника

Солнце тоже вызывает приливы, но они слабее лунных. Дело в том, что приливные силы зависят не от самой силы притяжения, а от ее неоднородности, которая уменьшается быстрее, чем сила притяжения. Можно сравнить это со светом от разных источников. Поднесите руку на несколько сантиметров к горящей свечке на столе. Сразу станет теплее. Приблизившись на те же пару сантиметров к мощному фонарю на улице, вы не заметите разницы. Свечка в данном случае — небольшая, но близкая Луна, а большой фонарь — огромное, но далекое Солнце.

Для наблюдателя на Земле Луна движется по небу с запада на восток и за сутки (точнее, за 24 ч 50 мин) делает полный оборот вокруг нашей планеты. Приливные выступы как бы следуют за Луной, образуя приливную волну (точнее, две волны в противоположных точках земного шара). Волна движется с запада на восток против вращения Земли со скоростью около 1800 км/ч и над каждым местом в океане проходит дважды в сутки. Однако существуют территории, где за сутки происходит только один прилив.

Уровень воды в разное время суток меняется

Высота прилива

В открытом океане приливная волна невысока и незаметна. Но у берегов, особенно в небольших бухтах, материк препятствует движению приливной волны, и за время между отливом и приливом вода накапливается. Приливы у берегов (то есть разница между уровнями воды при приливе и отливе) бывают в среднем 4—5 м. Самый большой прилив в мире — около 18 м — наблюдается в заливе Фанди на восточном побережье Канады. Во внутренних морях приливы намного меньше: массы воды из океана не могут пройти через узкие проливы, и уровень воды зависит от площади моря. Так, в Средиземном море приливы достигают 1—2 м, а в Черном море — 10 см.

Прилив на острове Англси у побережья Уэльса

Возникают ли приливы на суше?

Приливные волны возникают и на твердой поверхности Земли, но они невелики, поскольку наша планета очень плотная и упругая, как стальной шар. Эту упругость удалось определить именно благодаря приливам. Ведь если бы Земля была абсолютно твердой, приливы бы не возникали, а если бы она была абсолютно жидкой, они оказались бы очень большими.

В древности мореплаватели ежедневно наблюдали повышение и понижение уровня воды, но не имели представления о природе этих процессов. Считалось, что таким образом дышит живая планета. На протяжении многих столетий ученые разгадывали загадку циклических изменений уровня воды в Мировом океане. Но лишь в 20 веке океанологи выяснили, что приливы и отливы на Земле – следствие гравитационного влияния Луны.

Что такое прилив и отлив

Прилив и отлив – изменение уровня воды в Мировом океане, вызванное влиянием на планету Луны и Солнца.

Изменение уровня воды

Механизм приливно-отливного процесса следующий:

Также высота прилива определятся особенностями рельефа берегов. Если участок суши воронкообразной формы, то при движении приливной волны берег сжимается. В итоге уровень воды становится выше, чем на соседних участках суши, имеющих другую форму. Так, из мест самых высоких приливов следует назвать:

Что вызывает приливы и отливы

Главные причины образования приливов и отливов:

  • гравитационное воздействие Луны (в большей степени);
  • воздействие Солнца (в меньшей степени).

Воздействие Луны

Земля и Луна пребывают в непрерывной связи согласно закону всемирного тяготения. Планета притягивает спутник, но и Луна влияет на планету. Благодаря такой связи, сохраняется определенное расстояние между орбитами космических объектов. Земля и Луна при движении то приближаются друг к другу, то отдаляются.

Когда спутник приближается к планете, планетарная кора изгибается в сторону объекта притяжения. Из-за этого воды Мирового океана смещаются, поднимаются над планетарной поверхностью. Но куда уходит вода во время отлива, когда Луна отдаляется? Водная масса не исчезает, она возвращается в исходное положение. То есть на планете вода постоянно перемещается с места на место.

Влияние Луны

Причем приливы в аналогичное время происходят и на противоположной к Луне стороне Земли. Но если в первом случае вспучивание земной коры и подъем воды обусловлены прямым притяжением спутника, то на противоположной стороне явление вызвано снижением притяжения. То есть земная кора оседает, и освободившееся пространство заполняется водой.

В астрономии считается, что приливные волны влияют на скорость движения Земли. Они создают течения, а те движутся, испытывая сопротивление земной коры. В результате планета постепенно замедляется. Несколько миллиардов лет назад земные сутки длились 22 часа. В далеком будущем Земля замедлится настолько, что ее сутки синхронизируются с лунными, и тогда приливно-отливные явления исчезнут.

Воздействие Солнца

Гравитационное воздействие Солнца на Землю не так выражено, как лунное. Звезда как притягивающий объект гораздо крупнее Луны, но находится на значительном расстоянии от планеты. Поэтому солнечная приливная амплитуда меньше в 2 раза, чем лунная.

При полнолунии и новолунии три космических тела (Солнце, Луна, Земля) выстраиваются в линию. В результате солнечная амплитуда накладывается на лунную, отмечаются максимальные колебания воды – сизигийные.

Сизигийный

Минимальный по силе прилив наблюдается при действии сил Луны и Солнца под прямым углом друг к другу. Он носит название квадратурный.

Квадратурный

Разновидности

По длительности цикла приливы и отливы бывают следующих видов:

  1. Полусуточные (Атлантический океан, моря Северного Ледовитого океана). В сутки отмечаются по 2 прилива и отлива. Чередующиеся амплитуды почти не различаются, представляются синусоидальной кривой.
  2. Суточные (Тихий океан). Фиксируются редко. В сутки по 1 приливу и отливу. Если Луна находится на линии экватора, то вода стоит. Если спутник незначительно склоняется, то в экваториальной зоне наблюдаются небольшие приливы. Если склонение значительное, то отмечаются сильные подъемы воды в тропических областях.
  3. Смешанные (Тихий океан). По высоте фиксируются суточные или полусуточные явления с искаженной конфигурацией. То есть за половину суток уровень воды изменяется в соответствии с полусуточными приливами, а за сутки – с суточными. Процесс определяется склонением Луны в конкретный временной промежуток.
  4. Аномальные (Белое море, Английский канал). Вода поднимается и спадает, не соответствуя ни одному из вышеуказанных типов цикла. Такие явления связаны с мелководными участками, влияют на состояние речных устий, где приливы короче отливов.

Как человек использует приливы и отливы

Приливно-отливный процесс обладает огромной силой, но эффективному использованию ее на данном этапе пока не научились. Гидроэлектростанции, работающие на энергии морских приливов, начали сооружать еще в 50 годы 20 века. Но они технически несовершенны, их производительность неудовлетворительная. Поэтому сегодня приливная энергетика не распространена в мире.

Электростанция

Существует связь между судоходными реками и приливами. Во время морского прилива суда получают возможность зайти в реку на многие километры против течения, добраться до портового пункта. График движения судов капитаны сопоставляют с таблицами, в которых отмечено, когда будет подъем и спад воды.

В завершение следует отметить влияние колебаний океанической воды на живую природу. Особенно зависимы от процесса мелкие организмы прибрежной зоны. Их цикл жизни зависит от спада и подъема воды. Во время приливов и отливов представители фауны ищут пищу, перебираются на новое место обитания. Но даже глубоководные организмы чувствительны к колебаниям воды: с приливным циклом у них связаны изменения метаболизма и половой активности.

Читайте также: