Реферат о теории чисел

Обновлено: 28.06.2024

Развитие понятия числа

Описание: Число - важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие числа изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним расширения круга вопросов, требовавшего количественного описания и исследования

Дата добавления: 2015-01-27

Размер файла: 14.79 KB

Работу скачали: 200 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

Тема: Развитие понятия числа

  1. Натуральные числа и дроби.
    1. Введение и применение отрицательных чисел.
    2. Развитие понятия действительного числа.
    3. Комплексные числа

    1.1 НАТУРАЛЬНЫЕ ЧИСЛА И ДРОБИ

    Число - важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие числа изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним расширения круга вопросов, требовавшего количественного описания и исследования. На первых ступенях развития понятие числа определялось потребностями счёта и измерения, возникавшими в непосредственной практической деятельности человека. Затем число становится основным понятием математики, и дальнейшее развитие понятия числа определяется потребностями этой науки.

    Потребность счета предметов привела к возникновению понятия натурального числа. Все народы, обладавшие письменностью, владели понятием натурального числа и пользовались той или иной системой счисления. О ранних этапах возникновения и развития понятия числа, можно судить лишь на основе косвенных данных, которые доставляют языкознание и этнография. Первобытному человеку, видимо, не требовалось умение считать, чтобы установить, полной или нет, является какая-нибудь совокупность.

    С развитием понятия натурального числа как результата счёта предметов в обиход включаются действия над числами. Действия сложения и вычитания возникают сначала как действия над самими совокупностями в форме объединения двух совокупностей в одну и отделения части совокупности. Умножение, по-видимому, возникло в результате счёта равными частями (по два, по три и т.д.), деление — как деление совокупности на равные части. Лишь в многовековом опыте сложилось представление об отвлечённом характере этих действий, о независимости количественного результата действия от природы предметов, составляющих совокупности, о том, что, например, два предмета и три предмета составят пять предметов независимо от природы этих предметов. Тогда стали разрабатывать правила действий, изучать их свойства, создавать методы для решения задач, т. е. начинается развитие науки о числе — арифметики. В первую очередь арифметика развивается как система знаний, имеющая непосредственно прикладную направленность. Но в самом процессе развития арифметики проявляется потребность в изучении свойств чисел. как таковых, в уяснении всё более сложных закономерностей в их взаимосвязях, обусловленных наличием действий. Начинается детализация понятия натурального числа, выделяются классы чётных и нечётных чисел, простых и составных и т.д. Изучение глубоких закономерностей в натуральном ряду чисел продолжается и составляет раздел математики, носящий название теория чисел.

    Натуральные числа, кроме основной функции — характеристики количества предметов, несут ещё другую функцию — характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.) тесно переплетается с понятием количественного числа. (один, два и т.д.). В частности, расположение в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребительным с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов).

    Другое обоснование понятия натурального числа базируется на анализе отношения порядка следования, которое, как оказывается, может быть аксиоматизировано. Построенная на этом принципе система аксиом была сформулирована Дж. Пеано.

    Следует отметить, что перенесение понятия порядкового числа на бесконечные совокупности резко расходится с обобщённым понятием количественного числа; это обусловлено тем, что количественно одинаковые (равномощные) множества могут быть упорядочены различными способами.

    1.2 ВВЕДЕНИЕ И ПРИМЕНЕНИЕ ОТРИЦАТЕЛЬНЫХ ЧИСЕЛ

    Введение отрицательных чисел было с необходимостью вызвано развитием алгебры как науки, дающей общие способы решения арифметических задач, независимо от их конкретного содержания и исходных числовых данных. Необходимость введения в алгебру отрицательного числа возникает уже при решении задач, сводящихся к линейным уравнениям с одним неизвестным. Возможный отрицательный ответ в задачах такого рода может быть истолкован на примерах простейших направленных величин (таких, как противоположно направленные отрезки, передвижение в направлении, противоположном выбранному, имущество — долг, и т.д.). В задачах же, приводящихся к многократному применению действий сложения и вычитания, для решения без помощи отрицательного числа необходимо рассмотрение очень многих случаев; это может быть настолько обременительным, что теряется преимущество алгебраического решения задачи перед арифметическим. Таким образом, широкое использование алгебраических методов для решения задач весьма затруднительно без пользования отрицательного числа. В Индии ещё в 6—11 вв. отрицательные числа систематически применялись при решении задач и истолковывались в основном так же, как это делается в настоящее время.

    В европейской науке отрицательные числа окончательно вошли в употребление лишь со времени Р. Декарта, давшего геометрическое истолкование отрицательного числа как направленных отрезков. Создание Декартом аналитической геометрии, позволившее рассматривать корни уравнения как координаты точек пересечения некоторой кривой с осью абсцисс, окончательно стёрло принципиальное различие между положительными и отрицательными корнями уравнения, их истолкование оказалось по существу одинаковым.

    1.3. РАЗВИТИЕ ПОНЯТИЯ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА

    Совокупность рациональных чисел оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Здесь оказалось необходимым новое расширение понятия числа, заключающееся в переходе от множества рациональных чисел к множеству действительных (вещественных) чисел.

    Веще́ственное, или действи́тельное число — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений.

    Если натуральные числа возникли в процессе счета, рациональные — из потребности оперировать частями целого, то вещественные числа предназначены для измерения непрерывных величин. Таким образом, расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое помимо чисел рациональных включает также другие элементы, называемые иррациональными числами.

    Наглядно понятие вещественного числа можно представить себе при помощи числовой прямой. Если на прямой выбрать направление, начальную точку и единицу длины для измерения отрезков, то каждому вещественному числу можно поставить в соответствие определённую точку на этой прямой, и обратно, каждая точка будет представлять некоторое, и притом только одно, вещественное число. Вследствие этого соответствия термин числовая прямая обычно употребляется в качестве синонима множества вещественных чисел.

    Понятие вещественного числа прошло долгий путь становления. Ещё в Древней Греции в школе Пифагора, которая в основу всего ставила целые числа и их отношения, было открыто существование несоизмеримых величин (несоизмеримость стороны и диагонали квадрата), то есть в современной терминологии — чисел, не являющихся рациональными. Вслед за этим Евдоксом Книдским была предпринята попытка построить общую теорию числа, включавшую несоизмеримые величины. После этого, на протяжении более двух тысяч лет, никто не ощущал необходимости в точном определении понятия вещественного числа, несмотря на постепенное расширение этого поняти. Лишь во второй половине XIX века, когда развитие математического анализа потребовало перестройки его основ на новом, более высоком уровне строгости, в работах К. Вейерштрасса, Р. Дедекинда, Г. Кантора, Э. Гейне, Ш. Мере была создана строгая теория вещественных чисел.

    С точки зрения современной математики, множество вещественных чисел — суть, непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле.

    Первая развитая числовая система, построенная в Древней Греции, включала только натуральные числа и их отношения. Однако вскоре выяснилось, что для целей геометрии и астрономии этого недостаточно: например, отношение длины диагонали квадрата к длине его стороны не может быть представлено ни натуральным, ни рациональным числом.

    Долгое время это прикладное определение считалось достаточным, так что практически важные свойства вещественных чисел и функций не доказывались, а считались интуитивно очевидными

    Современная теория вещественных чисел была построена во второй половине XIX века, в первую очередь трудами Вейерштрасса, Дедекинда и Кантора. Они предложили различные, но эквивалентные подходы к теории этой важнейшей математической структуры и окончательно отделили это понятие от геометрии и механики.

    При конструктивном определении понятия вещественного числа, на основе известных математических объектов (например, множества рациональных чисел), которые принимают заданными, строят новые объекты, которые, в определённом смысле, отражают наше интуитивное понимание о понятии вещественного числа. Существенным отличием между вещественными числами и этими построенными объектами является то, что первые, в отличие от вторых, понимаются нами лишь интуитивно и пока не являются строго определённым математическим понятием.

    Эти объекты и объявляют вещественными числами. Для них вводят основные арифметические операции, определяют отношение порядка и доказывают их свойства.

    Исторически первыми строгими определениями вещественного числа были именно конструктивные определения. В 1872 году были опубликованы одновременно три работы: теория фундаментальных последовательностей Кантора, теория Вейерштрасса (в современном варианте — теория бесконечных десятичных дробей) и теория сечений в области рациональных чисел Дедекинда.

    1.4. КОМПЛЕКСНЫЕ ЧИСЛА

    Совокупность всех комплексных чисел обладает так же, как совокупность действительных чисел и совокупность рациональных чисел, свойством замкнутости по отношению к действиям сложения, вычитания, умножения и деления. Более того, совокупность всех комплексных чисел обладает свойством алгебраической замкнутости, заключающейся в том, что каждое алгебраическое уравнение с комплексными коэффициентами имеет корни снова в области всех комплексных чисел. Совокупность всех действительных чисел (и тем более рациональных) свойством алгебраической замкнутости не обладает. Как установлено Вейерштрассом, совокупность всех комплексных чисел не может быть далее расширена за счёт присоединения новых чисел так, чтобы в расширенной совокупности сохранились все законы действий, имеющие место в совокупности комплексных чисел.

    Теория чисел-раздел математики, в котором изучаются свойства чисел.

    С разложением чисел на простые множители связан ряд арифметических функций. Укажем некоторые из них. φ(n)-функция Эйлера-количество чисел от 1 до n, взаимно простых с числом n (т. е. не имеющих с n общих множителей, кроме единицы); α(n)-количество делителей числа n, τ(n) - сумма всех делителей числа n, π(n)- функция Чебышева - количество простых чисел, не превосходящих n. С помощью этих функций выражаются многие свойства натуральных чисел. Теорема Евклида утверждает, что простых чисел бесконечно много. Это означает, что π(n) → ∞ при возрастании числа n. Удалось выяснить, как быстро функция π(n) стремится к бесконечности. Оказалось, что примерно так же, как функция

    Эта теорема носит название асимптотического закона распределения простых чисел. Она была сформулирована и в существенной части доказана П. Л. Чебышевым (1849), а полностью доказала лишь 50 лет спустя.

    Асимптотический закон распределения простых чисел - это результат так называемой аналитической теории чисел, которая широко использует методы математического анализа для исследования теоретико-числовых функций. Обнаруженный во второй половине XIX в. факт связи такого дискретного объекта, как целые числа, с глубокими свойствами функций оказал большое влияние на развитие теории чисел.

    Разложение чисел на множители учитывает только структуру множества натуральных чисел, связанную с умножением, наиболее глубокие и трудные задачи теории чисел возникают при сравнении сложения и умножения. К числу таких задач можно отнести, например, проблему Гольдбаха - можно ли всякое четное число представить как сумму двух простых; великую теорему Ферма (см. Ферма великая теорема) -можно ли n-ю степень числа представить как сумму n-х степеней двух каких-либо чисел и т. п.

    Теория чисел привлекательна тем, что в ней много простых по формулировкам, но трудных и интересных задач. Этих задач - решенных и нерешенных - накопилось очень много, и часто теория чисел представляется собранием разрозненных изящных головоломок. Однако это не так. Теория чисел создала свои замечательные методы, причем многие из них активно развиваются в последние десятилетия, что влило новую живую струю в эту самую древнюю часть математики.

    Классическим методом теории чисел является метод сравнений. Отождествляя между собой числа, дающие одинаковые остатки при делении на выбранное число, часто удается установить невозможность какого-либо соотношения. Например, рассматривая остатки от деления на 3 (или, как говорят, по модулю 3), легко доказать неразрешимость в натуральных числах уравнения Зх2 + 4у2 = 5z2.

    Аналитический метод состоит, как мы уже говорили, в том, что, отправляясь от чисел, строят функции, которые исследуют методами математического анализа.

    1) Простые числа. Доказательство бесконечности множества простых чисел. Основная теорема арифметики.
    2) Совершенные числа
    3) Иррациональные числа. Доказательство того, что корень из двух - не является рациональным.
    4) Понятие об алгебраических числах.

    Раздел математики занимающийся изучением целых чисел и их свойств называется теория чисел или высшая арифметика.

    Среди целых чисел особое место занимают натуральные числа, которые можно разделить на два класса: простые и составные. К первому классу относятся числа, имеющие своими делителями два числа: единицу и само себя. Ко второму классу относятся все остальные числа.

    К теории чисел также относится вопрос о целочисленных решениях различных видов уравнений. Диофантово уравнение вида aX + bY = c , где a,b,c — целые числа, X и Y — неизвестные числа, является простейшим уравнением в целых числах. Если c делится на НОД(a,b) , то уравнение имеет целочисленные решения. В этом случае с помощью алгоритма Евклида находится решение уравнения aX + bY = 1 , из которого потом получаются все решения диофантова уравнения. Если же с не делится на НОД(a,b) , то исходное уравнение не имеет решений в целых числах. Другим целочисленным уравнением является уравнение X 2 +Y 2 =Z 2 (уравнение Пифагора). Вавилонским математикам было известно, что оно имеет бесконечное множество решений, а древнегреческий математик Диофант (около 250 года нашей эры) описал способ нахождения всех решений данного уравнения.

    Пьер Ферма

    В 18 веке Л. Эйлер (1707-1783) первым из математиков стал создавать общие методы и применять другие разделы математики к решению задач теории чисел. Применение методов математического анализа положили начало аналитической теории чисел, в которой важное место занимают методы тригонометрических сумм, позволяющие оценивать число решений уравнений или систем уравнений в целых числах.

    Аналитические методы широко применяются и в аддитивной теории чисел, в которой изучается разложение натуральных чисел на слагаемые определённого вида: представление числа в виде суммы простых чисел, суммы двух квадратов (об этих вопросах упоминалось ранее) и т.д., представление в виде четырех квадратов, девяти кубов и т.д. Так же к этому разделу теории чисел относится проблема Варинга представления числа N в виде суммы k слагаемых, каждое из которых есть n степень натурального числа , т.е N = a1 n + . + ak n , где k зависит только от n .

    Алгебраическая теория чисел расширяет понятие числа. Здесь рассматриваются алгебраические целые числа, корни многочленов с рациональными коэффициентами и старшим членом равным единице.

    Элементарная теория чисел изучает целые числа без использования методов других разделов математике. Здесь рассматриваются такие вопросы как делимость целых чисел, числа Фибоначчи, построение магических квадратов, алгоритм нахождения наименьшего общего делителя и наибольшего общего кратного, малая теорема Ферма.

    Многие вопросы теории чисел легко сформулировать, но трудно доказать, а ряд вопросов остаются открытыми, например, еще не найдена формулы по которой выводятся все простые числа. Великая теорема Ферма, сформулированная в 1637 году, оставалась без доказательства более 3 столетий и была доказана Уалсом в 1995 году.

    1)Последователи учения Пифагора считали, что числа содержат в себе мистическую сущность вещей. Эти математические абстракции руководят миром, устанавливая порядок в нем. Пифагорейцы предполагали, что все существующие в мире закономерности можно выразить с помощью чисел. Именно с Пифагора теория развития чисел стала интересовать множество ученых. Символы эти считались основой материального мира, а не просто выражениями некоторого закономерного порядка. История развития числа и счета началась с того, что был создан практический счет предметов, а также измерения объемов, поверхностей и линий. Постепенно формировалось понятие о натуральных числах. Этот процесс осложнялся тем, что первобытный человек не умел отделять от конкретного представления абстрактное. Счет в результате этого оставался долгое время лишь вещественным. Использовались пометки, камешки, пальцы и т. п. Применяли для запоминания его результатов узелки, зарубки и пр. После изобретения письменности история развития числа была отмечена тем, что начали использовать буквы, а также особые значки, применявшиеся для сокращенного изображения на письме больших чисел. Обычно воспроизводился при таком кодировании принцип нумерации, аналогичный использовавшемуся в языке. Позднее появилась идея считать десятками, а не только единицами. В 100 различных индоевропейских языках названия чисел от двух до десяти сходны, как и названия десятков. Следовательно, очень давно появилось понятие абстрактного числа, еще до того, как языки эти были разделены. Счет по пальцам первоначально был широко распространен, и это объясняет то, что у большинства народов при образовании числительных особое положение занимает символ, обозначающий 10. Десятичная система счисления происходит именно отсюда. Хотя существуют и исключения. Например, 80 в переводе с французского языка - "четыре двадцатки", а 90 - "четыре двадцатки плюс десять". Употребление это восходит к счету по пальцам ног и рук. Устроены аналогично числительные абхазского, осетинского и датского языков. В грузинском языке счет двадцатками еще яснее. Ацтеки и шумеры считали первоначально пятерками. Существуют также и более экзотические варианты, которыми отмечена история развития числа. Например, в научных расчетах вавилоняне применяли шестидесятеричную систему. В так называемых "унарных" системах число образуется с помощью повторения знака, символизирующего единицу. Древними людьми такой способ применялся примерно 10-11 тыс. лет до н. э. Существуют также непозиционные системы, в которых количественные значения используемых для записи символов не зависят от их места в коде числа. Используется сложение цифр.

    2) Знание математики Древнего Египта основано сегодня на двух папирусах, которые датируются приблизительно 1700 годом до н. э. Математические сведения, излагаемые в них, восходят к более древнему периоду, около 3500 года до н. э. Египтяне эту науку использовали для того, чтобы вычислять вес различных тел, объемы зернохранилищ и площади посевов, размеры податей, а также необходимое для возведения сооружений количество камней. Однако основной областью применения математики была астрономия, связанные с календарем расчеты. Календарь необходим был для определения дат различных религиозных праздников, а также предсказания разливов Нила. Письменность в Древнем Египте была основана на иероглифах. В тот период система счисления уступала вавилонянской. Пользовались египтяне непозиционной десятичной системой, в которой количеством вертикальных черт обозначались числа от 1 до 9. Индивидуальные символы вводились для степеней десяти. История развития числа в Древнем Египте продолжилась следующим образом. С возникновением папируса было введено иератическое письмо (то есть скоропись). Специальный символ использовался в нем для обозначения чисел от 1 до 9, а также кратных 10, 100 и т. д. Развитие рациональных чисел в то время происходило медленно. Они записывались, как сумма дробей с равным единице числителем.

    3)На использовании различных букв алфавита была основана греческая система счисления. История натуральных чисел в этой стране отмечена тем, что употреблявшаяся с 6-3 веков до н. э. аттическая система для обозначения единицы применяла вертикальную черту, а 5, 10, 100 и т. д. писались с помощью начальных букв их названий на греческом языке. В ионической системе, более поздней, использовались для обозначения чисел 24 действующие буквы алфавита, а также 3 архаические. Как первые 9 чисел (от 1 до 9) обозначались кратные 1000 до 9000, однако перед буквой ставилась при этом вертикальная черта. "М" обозначались десятки тысяч (от греческого слова "мириои"). После нее следовало число, на которое следовало умножить 10000. В Греции в 3 веке до н. э. возникла числовая система, в которой собственный знак алфавита соответствовал каждой цифре. Греки, начиная с 6 века, в качестве цифр стали использовать первые десять знаков своего алфавита. Именно в этой стране не только активно развивалась история натуральных чисел, но и зародилась математика в современном ее понимании. В других государствах того времени она применялась либо для обыденных нужд, либо для различных магических ритуалов, с помощью которых выясняли волю богов (нумерология, астрология и т. п.).

    4) В Древнем Риме использовалась нумерация, которая под именем римской сохранилась и до сегодняшних дней. Мы ее применяем для обозначения юбилейных дат, веков, наименования конференций и съездов, нумерации строф стихотворения или глав книги. С помощью повторения цифр 1, 5, 10, 50, 100, 500, 1000, обозначавшихся у них, соответственно, как I, V, X, L, C, D, M записываются все целые числа. Если большая цифра находится перед меньшей, они суммируются, если же перед большей стоит меньшая, то последняя вычитается из нее. Одну и ту же цифру нельзя ставить более трех раз. Долгое время страны Западной Европы пользовались в качестве основной римской нумерацией.

    5)Это такие системы, в которых количественные значения символов зависят от их места в коде числа. Основные их достоинства - простота выполнения различных арифметических операций, а также небольшое число символов, необходимых для записи чисел. Достаточно много существует таких систем. Например, двоичная, восьмеричная, пятеричная, десятичная, двадцатеричная и др. Каждая имеет собственную историю.

    7)На глиняных табличках клинописными значками писали вавилоняне. Они дошли до наших дней в немалом количестве (более 500 тыс., около 400 из которых связаны с математикой). Следует отметить, что корни культуры вавилонян были унаследованы в значительной степени от шумеров - счетная методика, клинописное письмо и т. п. Намного совершеннее египетской была вавилонская система счета. Вавилоняне и шумеры применяли 60-ричную позиционную, которая сегодня увековечена в делении круга на 360 градусов, а также часа и минуты на 60 минут и секунд соответственно.

    8)Развитие понятия о числе осуществлялось и в Древнем Китае. В этой стране цифры обозначались с помощью специальных иероглифов, появившихся примерно 2 тыс. лет до н. э. Однако окончательно начертание их установилось лишь к 3 веку до н. э. И сегодня применяются эти иероглифы. Сначала мультипликативным был способ записи. Число 1946, например, можно представить, используя римские цифры вместо иероглифов, как 1М9С4Х6. Но расчеты на практике производились на счетной доске, где была иной запись чисел - позиционной, как в Индии, а не десятичной, как у вавилонян. Пустым местом обозначался нуль. Лишь около 12 века н. э. появился для него специальный иероглиф.

    9) Многообразны и широки достижения математики в Индии. Эта страна внесла большой вклад в развитие понятия о числе. Именно здесь была изобретена десятичная позиционная система, привычная нам. Индийцы предложили символы для записи 10 цифр, с некоторыми изменениями использующиеся в наши дни повсеместно. Именно в этой стране были заложены также основы десятичной арифметики. Современные цифры произошли от индийских значков, начертание которых использовалось еще в 1 веке н. э. Изначально индийская нумерация была изысканной. Средства для записи чисел до десяти в пятидесятой степени применялись в санскрите. Сначала для цифр использовалась так называемая "сиро-финикийская" система, а с 6 века до н. э. - "брахми", с отдельными знаками для них. Эти значки, несколько видоизменившись, стали современными цифрами, называемыми сегодня арабскими. Неизвестный индийский математик примерно в 500 году н. э. изобрел новую систему записи - десятичную позиционную. Выполнение различных арифметических действий в ней было неизмеримо проще, чем в других. Индийцы в дальнейшем применяли счетные доски, которые были приспособлены к позиционной записи. Ими были разработаны алгоритмы арифметических операций, в том числе получения кубических и квадратных корней. Индийский математик Брахмагупта, живший в 7-м веке, ввел в употребление отрицательные числа. Далеко продвинулись индийцы в алгебре. Символика их более богата, чем у Диофанта, хотя несколько засорена словами.

    11)Эти числа были введены впервые в связи с тем, что была выделена формула вычисления корней кубического уравнения. Тартальей, итальянский математик, получил в первой половине шестнадцатого века выражение расчета для корня уравнения через некоторые параметры, для нахождения которых нужно было составить систему. Однако было выяснено, что подобная система имела решение не для всех кубических уравнений в действительных числах. Это явление объяснил Рафаэль Бомбелли в 1572 году, что было по сути введением комплексных чисел. Однако полученные результаты долгое время считались сомнительными многими учеными, и лишь в девятнадцатом веке история комплексных чисел ознаменовалась важным событием - их существование было признано после появления трудов К. Ф. Гаусса.

    * Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

    I. Краткий исторический очерк 3

    II. Поле алгебраических чисел 4

    2.1. Понятие числового поля 4

    2.2. Алгебраическое число 5

    2.3. Поле алгебраических чисел 11

    III. Рациональные приближения алгебраических чисел 14

    3.1 Теорема Лиувиля 14

    3.2 Трансцендентные числа Лиувиля 16

    Курсовая по алгебре

    Тема: “Алгебраические числа”

    Первоначальные элементы математики связаны с появлением навыков счета, возникающих в примитивной форме на сравнительно ранних ступенях развития человеческого общества, в процессе трудовой деятельности.

    Исторически теория чисел возникла как непосредственное развитие арифметики. В настоящее время в теорию чисел включают значительно более широкий круг вопросов, выходящих за рамки изучения натуральных чисел. В теории чисел рассматриваются не только натуральные числа, но и множество всех целых чисел, а так же множество рациональных чисел.

    Если рассматривать корни многочленов: f(x)=x n +a1x n-1 +…+an с целыми коэффициентами, то обычные целые числа соответствуют случаю, когда этот многочлен имеет степень n=1. Во множестве комплексных чисел естественно выделить так называемые целые алгебраические числа, представляющие собой корни многочленов с целыми коэффициентами.

    Изучение свойств таких чисел составляет содержание одного из важнейших разделов современной теории чисел, называемого алгебраической теорией чисел. Она связана с изучением различных классов алгебраических чисел.

    I. Краткий исторический очерк.

    Огромное значение в развитии теории чисел имели замечательные работы К. Гаусса (1777-1855). Гаусс наряду с изучением обычных чисел начал рассматривать так же и арифметику чисел, получивших название целых гауссовских чисел, а именно числа вида a+bi, где a и b – обычные целые числа. Эти его исследования положили начала алгебраической теории чисел.

    Теория алгебраических чисел была построена в работах Куммера (1810-1893) и Дирихле (1805-1859) и развита затем Кронекером (1823-1891), Дедекиндом (1831-1916) и Е.И. Золотаревым (1847-1878). Работы Лиувилля (1809-1882) и Эрмита (1822-1901) явились основой трансцендентных чисел.

    Вопросы аппроксимации алгебраических чисел рациональными были существенно продвинуты в начале века А. Туэ, а затем в пятидесятых годах в работах К. Рота.

    В последнее время все большее внимание специалистов по теории чисел привлекает алгебраическая теория чисел.

    Здесь надо назвать работы Г. Хассе, Е. Гекке, а в особенности французского математика А. Вейля, результаты которого были использованы во многих теорико-числовых исследованиях, как например Д. Берджессом в проблеме о наименьшем квадратичном вычете.

    К алгебраической теории чисел относятся и интересные работы советского математика И.Р. Шафаревича, а так же работы Б.Н. Делонга по теории кубических форм.

    II. Поле алгебраических чисел.

    2.1 Понятие числового поля

    Естественный и важный подход к выделению и изучению тех или иных множеств чисел связан с замкнутостью множеств чисел относительно тех или иных действий.

    Определение 1: Мы говорим, что некоторое множество чисел М замкнуто относительно некоторого действия, если для всяких двух чисел их М, для которых определен результат данного действия над ним, число, является этим результатом, всегда принадлежащим М.

    N Множество натуральных чисел замкнуто относительно сложения, т.к. a, bN  (a+b) N.

    В отношении умножения множество N так же замкнуто. Но оно не является замкнутым относительно вычитания и деления. Действительно:

    Множество целых чисел Z замкнуто относительно сложения, вычитания и умножения.

    Множество чисел вида 2 к , кN, замкнуто относительно умножения и деления.

    В связи с замкнутостью действий на множестве выделились классы числовых множеств.

    Рассмотрим один их классов, называемых полем.

    Определение 2: Множество чисел М, содержащие не менее двух чисел, называется числовым полем, если оно замкнуто относительно действий сложения, вычитания, умножения и деления.

    Последнее означает, что для любых a, b M, должно иметь место a+b, a-b, a*b M. Так же для любого aM и любого b0 из М, должно выполняться a:bM.

    Среди важнейших числовых полей наиболее важными являются:

    поле всех рациональных чисел;

    поле всех вещественных чисел;

    поле всех комплексных чисел.

    Что касается множества всех целых чисел, то оно не является числовым полем, ибо не замкнуто относительно деления.

    Существует бесконечно много числовых полей. Нас, в данном случае интересует поле алгебраических чисел.

    2.2 Определение алгебраического числа.

    Существуют различные признаки, по которым их общего множества Z выделяю те или иные подмножества, подвергаемые специальному изучению. С точки зрения важного для алгебры понятия алгебраического уравнения, естественным представляется выделение классов чисел, являющихся корнями алгебраических уравнений, коэффициенты которых принадлежат тому или иному классу чисел.

    Определение 3: Число Z называется алгебраическим, если оно является корнем какого-нибудь алгебраического уравнения с целыми коэффициентами:

    Числа не являющиеся алгебраическими называются трансцендентными.

    В определении алгебраического числа можно допустить, чтобы коэффициенты a0, a1, … ,an-1, an были любыми рациональными числами, поскольку, умножив левую и правую части уравнения на целое число, являющиеся общим кратным знаменателем всех коэффициентов, мы получили уравнение с целыми коэффициентами, корнем которого будет наше число.

    К алгебраическим числам принадлежат, в частности, и все рациональные числа. Действительно, рациональное число z= (p, qN) очевидно является корнем уравнения: qx-p=0.

    Также всякое значение корня любой степени из рационального числа является алгебраическим числом. Действительно, число z= (p, qN) является корнем уравнения:

    Существуют и другие алгебраические числа, нежели указанное выше.

    Чиcло z= является алгебраическим. Действительно, возводя в квадрат обе части равенства, определяющего число z, получим: z 2 =2+2+3. Отсюда z 2 -5=N).

    Из равенства . Отсюда, возводя в квадрат, получим: . Следовательно, я является корнем уравнения:

    - алгебраическое число 3-й степени, т.е. кубическая иррациональность. Действительно, это число есть корень многочлена 3-й степени с целыми коэффициентами x 3 -2=0 и не является корнем какого-либо многочлена 1-й или 2-й степени с целыми коэффициентами.

    Определение 5: Если алгебраическое число n-й степени z является корнем многочлена f(x)=x n +b1x n-1 + … +bn (n1) (1) с рациональными коэффициентами, то f(x) называется минимальным многочленом для z.

    Таким образом, минимальным многочленом для z называется многочлен наименьшей степени с рациональными коэффициентами и старшим коэффициентом, равном единице, корнем которого является z.

    Если вместо многочлена (1) взять какой-либо другой многочлен с рациональными коэффициентами степени n, корнем которого является z, то многочлен (1) может быть получен из него делением всех коэффициентов на старший член.

    Минимальным многочленом для является x 3 -2, так как корень этого многочлена не является корнем какого-либо многочлена степени с рациональными коэффициентами.

    Теорема 1: Если f(x) минимальный многочлен алгебраического числа z и f(x) многочлен с рациональными коэффициентами, такой, что F(z)=0, то f(x) делитель F(x), т.е. F(x)=f(x)g(x), где g(x) также многочлен с рациональными коэффициентами.

    Доказательство: Согласно известной теореме алгебры F(x) можно представить в виде:

    где g(x) и к(ч) – многочлены с рациональными коэффициентами, причем степень r(x) меньше степени f(x). Поскольку F(x)=0 и f(z)=0, то придавая x значение z, получаем r(z)=0; z – корень многочлена r(x) с рациональными коэффициентами степени, меньшей чем у минимального для z многочлена, т.е. меньшей чем степень z. Это может быть только если r(x) тождественно равен нулю, а значит F(x)=f(x)g(x). Теорема доказана.

    Теорема 2: Для любого алгебраического числа z минимальный многочлен неприводим над полем рациональных чисел.

    Доказательство:

    Пусть f(x) – минимальный многочлен для z. Предположим, что f(x) приводим над полем рациональных чисел, т.е., что f(x)=(x)(x), (x)(x) – многочлены с рациональными коэффициентами, степени меньшей, чем n.

    Из равенства (x)(x)=f(x)=0 следует, что из двух чисел (x) и (x), по крайней мере одно равно нулю. Пусть например (x)=0, тогда z – корень тождественно не равного нулю многочлена (x) с рациональными коэффициентами, степени меньшей, чем n, т.е. меньшей чем у f(x). А это противоречит тому, что f(x) – минимальный многочлен для z. Предположение, что f(x) приводим над полем рациональных чисел, оказалось неверным, т.е. f(x) неприводим над этим полем. Теорема доказана.

    Теорема 3: Если z корень неприводимого над полем рациональных чисел многочлена F(x) с рациональными коэффициентами степени n, то z – алгебраическое число степени n.

    Доказательство:

    Обозначим минимальный многочлен для z через f(x). Согласно теоремы 1: F(x)=f(x)g(x); где g(x) – многочлен с рациональными коэффициентами. Поскольку F(x) неприводим над полем рациональных чисел и f(x) отлично от постоянного, то g(x)=c, где c – рационально. F(x)=cf(x), т.е. z – алгебраическое число n-й степени. Теорема доказана.

    Пусть p – простое число.

    )=b0+b1x+ … bnx n . Таким образом, вместе с  алгебраическими числами являются - и - алгебраические числа одной и той же степени, откуда следует, что и - и и - алгебраическое число 4 степени. Действительно, если =, то  2 =5+)(x+) (4)

    Из теоремы единственности над полем рациональных чисел множители f(x) должны являться произведением каких-то множителей правой части равенства (4). Легко видеть, что из этих множителей нельзя составить многочлен с рациональными коэффициентами степени меньшей, чем 4, т.е. f(x) – неприводимый над полем рациональных чисел многочлен, а, следовательно, согласно теореме 3, - алгебраическое число 4-й степени.

    В 1844 г., французским математиком Лиувиллем, впервые была доказана общая теорема:

    Теорема 5: Для любого действительного алгебраического числа  степени n можно подобрать положительноеc, зависящее только от , такое, что для всех рациональных чисел (7)

    Доказательство:

    Пусть f(x)=A0x n + A1x n-1 +An неприводимый многочлен с целыми коэффициентами, корнем которого является . В качестве f(x) можно, например, взять многочлен, получающийся из минимального для  многочлена после умножения всех коэффициентов на наименьшее кратное их знаменателей.

    Согласно теореме Безу, имеем:

    где g(x) – многочлен с действительными коэффициентами.

    Возьмем произвольное >0. |g(x)| - непрерывная, а следовательно, ограниченная функция от x в сегменте -; +, т.е. существует положительное число M, такое, что |g(x)|M, для всех x из этого сегмента. Обозначим через c=min и

    Поскольку числитель (10). Сравнивая неравенства (9) и (10) получаем . Теорема доказана.

    Пусть z – неквадратное целое число. Найти c>0, такое, что для всех рациональных чисел .

    - корень многочлена x-В. Деля x 2 -D на x-, находим g(x)=x+.

    При - 0 существует хотя бы одна рациональная дробь , такая, что , а это противоречит тому, что имеет место (11). Предположение, что  алгебраическое число, т.е. трансцендентное число. Теорема доказана.

    Числа , для которых при любых n1 и c>0 неравенство (11) имеет решение в целых числах a и b называются трансцендентными числами Лиувилля.

    , где k выбрано настолько большим, что

    Поскольку для произвольных n1 и c>0 можно найти дробь , то  – трансцендентное число.

    Алгебраические числа имеют широкое применение в теории чисел, алгебре, геометрии и других разделов математики. Они позволяют раскрыть вариантности алгебры для практических приложений. Это имеет большое значение в подготовке учителя для средней школы.

    Изучение свойств таких чисел составляет содержание одного из важнейших разделов современной теории чисел, называемого алгебраической теорией чисел.

    К этому разделу относятся вопросы, связанные с изучением различных классов алгебраических чисел.

    Эта работа может служить в качестве учебного пособия при изучении теории алгебраических чисел. А так же она удобна в использовании при подготовке к экзамену.

    В работе введена сплошная нумерация теорем и определений арабскими цифрами. Все теоремы даны с полными доказательствами. Приведенные примеры алгебраических чисел и действий над ними, даны с доступными пояснениями и, при необходимости, с доказательством.

    Большое место в работе занимают теоретические сведения о развитии алгебры теории чисел. Помимо введения, дающего общий очерк развития теории чисел, первый параграф посвящен уже конкретно развитию теории алгебраических чисел. Так же на протяжении всей работы можно наблюдать исторические комментарии.

    Данная работа дает представление о современном состоянии рассматриваемого вопроса и дает представление о теории алгебраических чисел и о теории чисел вообще, как о развивающейся науке.

    Читайте также: