Реферат на тему земная кора

Обновлено: 05.07.2024

Геология как наука подразделяется на ряд самостоятельных отделов, которые изучают определённые вопросы строения, развития и истории земной коры. К ним относятся: общая геология, структурная геология, геологическое картирование, тектоника, минералогия, кристаллография, геоморфология, палеонтология, петрография, литология, а также — геология полезных ископаемых, включая геологию нефти и газа.

Основные положения общей и структурной геологии являются фундаментом для понимания вопросов геологии нефти и газа. В свою очередь, основные теоретические положения по происхождению нефти и газа, миграции углеводородов и формированию их скоплений лежат в основе поисков нефти и газа. В геологии нефти и газа рассматриваются также закономерности размещения различных типов скоплений углеводородов в земной коре, которые служат основой для прогнозирования нефтегазоносности исследуемых областей и районов и используются в поисково- разведочных работах на нефть и газ.

В данной работе будут рассмотрены вопросы, касающиеся земной коры: ее состав, строение, процессы в ней происходящие.

    1. ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ ЗЕМЛИ И СОСТАВЕ ЗЕМНОЙ КОРЫ.

В целом планета Земля имеет форму геоида, или сплюснутого у полюсов и экватора эллипсоида, и состоит из трех оболочек.

В центре находится ядро (радиус 3400 км), вокруг которого располагается мантия в интервале глубин от 50 до 2900 км. Внутренняя часть ядра предполагается твёрдой, железо — никелевого состава. Мантия находится в расплавленном состоянии, в верхней части которой располагаются магматические очаги.

На глубине 120 - 250 км под материками и 60 - 400 км под океанами залегает слой мантии, называемый астеносферой. Здесь вещество находится в близком к плавлению состоянии, вязкость его сильно понижена. Все литосферные плиты как бы плавают в полужидкой астеносфере, как льдины в воде.

Выше мантии находится земная кора, мощность которой резко изменяется на материках и в океанах. Подошва коры (поверхность Мохоровичича) под континентами находится на глубине в среднем 40 км, а под океанами — на глубине 11 — 12 км. Поэтому, средняя мощность коры под океанами (за вычетом толщи воды) составляет около 7 км.

Земную кору слагают горные породы, т. е. сообщества минералов (полиминеральные агрегаты), возникшие в земной коре в результате геологический процессов. Минералы — природные химические соединения или самородные элементы, обладающие определенными химическими и физическими свойствами и возникшие в земле в результате химико-физических процессов. Минералы делятся на несколько классов, каждый из которых объединяет десятки и сотни минералов. Например, сернистые соединения металлов образуют класс сульфидов (200 минералов), соли серной кислоты формируют 260 минералов класса сульфатов. Существуют классы минералов: карбонатов, фосфатов, силикатов, последние из которых наиболее широко распространены в земной коре и образуют более 800 минералов.

    1. ТИПЫ ГОРНЫХ ПОРОД, СОСТАВЛЯЮЩИХ ЗЕМНУЮ КОРУ.

Итак, горные породы - природные агрегаты минералов более или менее постоянного минералогического и химического состава, образующие самостоятельные геологические тела, слагающие земную кору. Форма, размеры и взаимное расположение минеральных зерен обусловливают структуру и текстуру горных пород.

По условиям образования ( генезиса) различают: осадочные, магматические и метаморфические породы.

2.1. Осадочные горные породы.

Генезис осадочных пород — либо результат разрушения и переотложения ранее существовавших горных пород, либо выпадение осадков из водных растворов (различные соли), либо — результат жизнедеятельности организмов и растений. Характерной чертой осадочных горных пород является их слоистость, отражающая изменяющиеся условия отложения геологических осадков. Составляют около 10% массы земной коры и покрывают 75 % поверхности Земли. С осадочными горными породами связано св. 3/4 полезных ископаемых (уголь, нефть, газ, соли, руды железа, марганца, алюминия, россыпи золота, платины, алмазов, фосфориты, стройматериалы). В зависимости от исходного материала осадочные породы подразделяются на обломочные (терригенные), хемогенные, органогенные (биогенные) и смешанные.

Обломочные породы образуются за счёт накопления обломков разрушившихся горных пород, т.е. это породы, состоящие из обломков более древних горных пород и минералов. По величине обломков различают грубообломочные (глыбы, щебни, гравий, галька), песчаные (песчаники), пылеватые (алевриты, алевролиты) и глинистые породы. Наиболее широко распространены в земной коре такие обломочные породы, как пески, песчаники, алевролиты, глины.

Хемогенные породы являются химическими соединениями, которые образуются в результате выпадения из водных растворов. К ним относятся: известняки, доломиты, каменные соли, гипс, ангидрит, железные и марганцевые руды, фосфориты и др

Органогенные породы накапливаются в результате отмирания и захоронения животных и растений, т.е. органогенные породы (от орган и греч . genes - рождающий, рожденный) (биогенные породы) - осадочные горные породы, состоящие из остатков животных и растительных организмов или продуктов их жизнедеятельности (известняк-ракушечник, мел, ископаемые угли, горючие сланцы и др.). Породы смешанного генезиса, как правило, образуются за счёт различного сочетания всех рассматриваемых выше факторов. Среди этих пород выделяются песчаные и глинистые известняки, мергели (сильно известковые глины) и др.

2.2. Магматические горные породы

Генезис магматических пород — результат застывания магмы на глубине или на поверхности. Магма, являясь расплавленной и насыщенной газообразными компонентами, изливается из верхней части мантии.

В состав магмы в основном входят следующие элементы: кислород, кремний, алюминий, железо, кальций, магний, натрий, калий, водород. В небольших количествах в магме присутствуют: углерод, титан, фосфор, хлор и др. элементы.

Магма, внедряясь в земную кору, может застывать на различной глубине или изливаться на поверхность. В первом случае образуются интрузивные породы, во втором — эффузивные. В процессе остывания горячей магмы в слоях земной коры происходит образование минералов различной структуры (кристаллической, аморфной и др.). Эти минералы формируют горные породы. К примеру, на большой глубине при застывании магмы образуются граниты, на сравнительно небольшой глубине — кварцевые порфиры и т. д.

Эффузивные породы образуются при быстром застывании магмы на поверхности Земли или на морском дне. Примером могут служить туфы, вулканическое стекло.

Интрузивные горные породы - магматические горные породы, образовавшиеся в результате застывания магмы в толще земной коры.

Магматические горные породы по содержанию SiO2 (кварц и другие соединения) делятся на: кислые (SiO2 более 65%), средние — 65—52%, основные (52—40%) и ультраосновные (менее 40% SiO2). По содержанию в породах кварца изменяется окраска пород. Кислые обычно имеют светлую окраску, основные и ультраосновные — темную до черной. К кислым породам относятся: граниты, кварцевые порфиры; к средним: сиениты, диориты, нефелиновые сиениты; к основным: габбро, диабазы, базальты; к ультраосновным: пироксены, перидотиты и дуниты.

2.3. Метаморфические горные породы.

Метаморфические породы образуются в результате воздействия высоких температур и давлений на горные породы другого первичного генезиса (осадочные или магматические), т. е. за счёт химических преобразований под действием метаморфизма. К метаморфическим породам относятся: гнейсы, кристаллические сланцы, мрамор. К примеру, мрамор образуется за счёт метаморфизма первичной осадочной породы — известняка.

Необходимо отметить, что изучение строения земли очень занимательно и требует подробного рассмотрения этой темы, включая исторический аспект формирования земли, ее коры.
Человек проник в космос на многие миллионы километров, а в глубь Земли он продвинулся куда меньше.

Содержание

Введение……………………………………………………….……………5
Глава 1 Основные этапы развития земной коры………………………..8
1.1 Раннеархейский этап. Формирование протоконтинентальной коры……………………………………………………………………..8
1.2 Средне- и позднеархейский этап. Возникновение собственно континентальной коры и становление первой Пангеи…………….9
1.3 Раннепротерозойский этап. Распад первой Пангеи, обособление платформ и подвижных поясов. Дальнейшее разрастание континентальной коры………………………………………………11
1.4 Среднепротерозойский этап. Частичный распад и восстановление единства второй Пангеи…………………………………………….13
1.5 Позднепалеозойско - раннемезозойский этап. Возрождение Пангеи…………………………………………………………………14
1.6 Позднепротерозойско-раннепалеозойский этап. Деструкция протерозойской Пангеи, заложение и начало развития подвижных поясов неогея (1,0—0,4 млрд лет)…………………………………15
1.7 Позднемезозойско-кайнозойский этап. Распад Пангей и образование молодых океанов. Формирование современной структуры и рельефа Земли (0,2—0 млрд лет)…………………..17
Глава 2.Строение земной коры:
2.1 Океаническая кора………………………………………………..22
2.2 Континентальная кора….………………………………………. 23
2.2.1 Состав верхней континентальной коры….…. 23
2.3 Границы между верхней и нижней корой………………………..25
Глава 3. Методы изучения земной коры……………………………..26
Заключение…………………………………….………………………….30
Список использованной литературы……………………………………..

Вложенные файлы: 1 файл

KURSOVAYa.docx

Курсовая работа: 25с., 1 рис., 1 табл., 9 источников.

ЗЕМНАЯ КОРА, ОКЕАНИЧЕСКАЯ КОРА, КОНТИНЕНТАЛЬНАЯ КОРА, КОРА ВЫВЕТРИВАНИЯ

Объектом исследования является земная кора.

Предметом исследования является строение земной коры и методы ее изучения.

Цель работы: изучить строение земной коры; ознакомиться с методами изучения земной коры.

При выполнении работы использованы методы:

  • сравнительный метод;
  • исторический метод;
  • метод анализа документов.

В процессе работы проведены следующие исследования и разработки: проведен теоретический анализ строения земной коры, теоретически определены границы слоев земной коры и границы между верхней и нижней корой.

Автор подтверждает, что приведенный в работе расчетно-аналитический материал правильно и объективно отражает состояние исследуемого процесса, а все заимствованные из литературных и других источников теоретические, методологические и методические положения и концепции сопровождаются ссылками на их авторов.

Глава 1 Основные этапы развития земной коры………………………..8

    1. Раннеархейский этап. Формирование протоконтинентальной коры…………………………………………………………………… ..8
    2. Средне- и позднеархейский этап. Возникновение собственно континентальной коры и становление первой Пангеи…………….9
    3. Раннепротерозойский этап. Распад первой Пангеи, обособление платформ и подвижных поясов. Дальнейшее разрастание континентальной коры………………………………………………11
    4. Среднепротерозойский этап. Частичный распад и восстановление единства второй Пангеи…………………………………………….13
    5. Позднепалеозойско - раннемезозойский этап. Возрождение Пангеи……………………………………………………………… …14
    6. Позднепротерозойско-раннепалео зойский этап. Деструкция протерозойской Пангеи, заложение и начало развития подвижных поясов неогея (1,0—0,4 млрд лет)…………………………………15
    7. Позднемезозойско-кайнозойский этап. Распад Пангей и образование молодых океанов. Формирование современной структуры и рельефа Земли (0,2—0 млрд лет)…………………..17

    Глава 2.Строение земной коры:

      1. Океаническая кора………………………………………………..22
      2. Континентальная кора….………………………………………. 23
        1. Состав верхней континентальной коры….…. 23

        Глава 3. Методы изучения земной коры……………………………..26

        Список использованной литературы……………………………………..31

        Основными целями работы является:

        • рассмотреть основные этапы формирование рельефа земли;
        • определить строение коры земли, ее составляющие.

        Формирование планеты Земля путем аккреции составивших ее частиц — планетезималей — должно было протекать очень быстро, в течение сотни миллионов лет. Существуют разные мнения по вопросу о том, являлась ли эта аккреция гомогенной, т.е. не сопровождалась разделением исходного материала по составу, или гетерогенной, с образованием сначала железного ядра из материала типа железных метеоритов. Наиболее вероятной, по общим соображениям, представляется промежуточная точка зрения — первоначально образовалось лишь внутреннее ядро, а внешнее возникло уже позднее, в ходе глубинной дифференциации мантийного материала на железо, вероятно, с примесью никеля, стекающее в ядро, и силикаты, поднимающиеся в мантию. Слой D" на границе ядра и мантии может представлять современную зону такого разделения. Эта дифференциация, постепенно замедляясь, может продолжаться и до настоящего времени, сопровождаясь выделением тепла.

        Как бы то ни было, в эпоху 3,5 млрд лет назад внешнее ядро Земли уже должно было существовать и было расплавленным, ибо с этого времени породы земной коры обнаруживают остаточную намагниченность. Вместе с тем имеются серьезные основания полагать, что рост внутреннего ядра за счет внешнего также продолжался в дальнейшем, особенно начиная с границы архей — протерозой.

        Земля уже в процессе аккреции должна была существенно разогреться вследствие соударения слагавших ее планетезималей и особенно выделения ядра, хотя бы только внешнего. Этому еще дополнительно способствовали начавшийся распад естественнорадиоактивных элементов, первоначальный запас которых был значительным, причем отдельные изотопы ( 26 Аl, 127 J и некоторые другие) вскоре вымерли, продолжавшаяся дифференциация мантийного вещества и, наконец, твердые приливы, вызываемые гравитационным притяжением еще близко расположенной Луны. Луна должна была возникнуть ненамного позже рождения Земли, как об этом свидетельствует возраст ее древнейших пород — 4,4 млрд лет. В отношении происхождения Луны наиболее популярна теперь гипотеза, согласно которой она образовалась из материала, выброшенного за предел Роша 1 при ударе, вызванном падением на Землю крупного астероида, по размеру близкого Марсу.

        Разогрев Земли на самой ранней стадии ее развития мог вызвать, по убеждению многих специалистов, плавление не только внешнего ядра, но и более поверхностных частей планеты, вплоть до возникновения так называемого магматического океана. По другой версии, наиболее поверхностная часть твердой Земли не была расплавлена, но расплавленная зона — прототип астеносферы — возникла на небольшой глубине. Так или иначе, это создавало условия для выплавления из мантии первичной коры основного состава. Породы этой коры нигде не обнаружены и, возможно, не сохранились, за исключением ксенолитов в более молодых образованиях. Самые древние породы Земли имеют возраст 4,0—3,8 млрд лет; они обнаружены на Украинском щите (основные породы, возможно, в виде включений в несколько более молодых тоналитах), на Канадском щите (провинция Слейв), в юго-западной Гренландии. Но в Западной Австралии в кварцитах с возрастом около 3,5 млрд лет открыты зерна циркона, датированные в 4,3—4,2 млрд лет; это древнейшие минералы на Земле. Так как цирконы характерны скорее для кислых пород, можно предполагать, что уже в эту отдаленную эпоху могли образоваться породы кислого состава. Тем не менее аналогия с Луной, где древнейшие породы, как, впрочем, и более молодые, представлены базальтами и анортозитами, состав предполагаемых ксенолитов и общие петрологические соображения (о том, что значительные количества кислых пород не могут быть продуктом прямого плавления мантии) склоняют к мысли об основном, базальтовом, составе первичной коры Земли.

        Важным фактором развития Земли на рассматриваемом этапе и несколько позднее, в интервале 4,2—3,8 млрд лет — в основном по аналогии с Луной и ее морями, должна была быть еще метеоритная бомбардировка. Если расплавленный слой находился на некоторой глубине под твердым слоем, наиболее крупные метеориты (астероиды) при падении могли пробивать этот слой и образовывать кратеры, заполнявшиеся базальтовой лавой. Некоторые исследователи предполагают, что такие кратеры могли в унаследованном виде сохраниться в современной структуре коры.

        Уже на данном этапе могла начать формироваться атмосфера Земли, что подтверждается изотопией благородных газов. Предполагают, что начало этому процессу положило выделение газов при соударении планетезималей. Но гидросферы еще не существовало, так как поверхность Земли если и не была расплавленной, то во всяком случае обладала достаточно высокой температурой.

        И так, уже на самом раннем этапе развития началось расслоение Земли на оболочки — ядро, внутреннее и, возможно, внешнее, мантию, кору и атмосферу.

        ГЛАВА 1 Основные этапы развития земной коры

        1.1 Раннеархейский этап. Формирование протоконтинентальной коры (4,0—3,5 млрд лет)

        Остается неясным, на какую площадь распространилось образование серогнейсового протосиаля и привело ли оно к возникновению сплошного слоя. Редкая встречаемость цирконов с возрастом более 3,5 млрд лет в более молодых обломочных породах приводит к выводу, что скорее всего протоконтинентальная кора к началу архея выступала над поверхностью мелководного протоокеана отдельными островами. Но эти острова, как мы увидим ниже, вполне могли послужить ядрами будущих материков.

        Таким образом, на втором этапе своего развития Земля обогатилась еще двумя оболочками — протоконтинентальной корой и гидросферой. Более того, обнаружение следов жизни в серии Исуа свидетельствует и о появлении биосферы. Приповерхностный расплавленный слой заместился лишь частично подплавленной астеносферой, которая начиналась непосредственно под тонкой и еще пластичной корой.

        1.2 Средне- и позднеархейский этап. Возникновение собственно континентальной коры и становление первой Пангеи (3,5— 2,5 млрд лет)

        На этом этапе широкое развитие получили зеленокаменные пояса. В течение архея сменилось несколько генераций подобных поясов, которые закладывались по крайней мере в среднем архее предпочтительно на утоненной протоконтинентальной коре. Последняя испытывала при этом дальнейшее утонение (пластичный рифтинг) и насыщалась основными и ультраосновными магматитами, что способствовало ее утяжелению и погружению. Появление в позднем архее известково-щелочных вулканитов и нормальных гранитов свидетельствует о начале субдукции этой субокеанской коры под протоконтинентальную, т.е., по существу, о начале плитнотектонического мегаэтапа развития нашей планеты 1 . Зеленокаменные пояса последовательно причленялись к ядрам протоконтинентальной коры, которая на значительных площадях подверглась переплавлению с образованием уже калиевых гранитоидов. В конечном счете этот процесс привел к созданию обширных гранит-зеленокаменных областей с настоящей континентальной корой, которые составили основу фундамента будущих древних платформ — кратонов. Судя по тому, что низы этой коры испытывали метаморфизм гранулитовой фации, требующий не только высоких температур, но и высоких давлений, мощность коры достигла уже нормальных для современной континентальной коры значений порядка 30—35 км. По некоторым подсчетам, площадь, занимает архейской корой, составляет не менее 70% от общей площади современной континентальной коры. Существуют серьезные основания считать, что к концу архея эта кора сформировала уже единый и крупный континентальный массив — суперконтинент Пангею. На это указывает отсутствие унаследованности между архейскими и раннепротерозоискими подвижными поясами, наложенный характер последних и то обстоятельство, что в их основании обнаруживается все больше переработанной архейской коры.

        Если существовала эпиархейская Пангея, то должен был существовать и ее антипод — мировой океан Панталасса с базальтовой корой океанского типа. Предпосылкой для образования Панталассы и для возникновения характерной для Земли диссимметрии — на одной стороне Пангея (меньших размеров), на другой — Панталасса больших размеров — могло быть то самое падение на Землю астероида, которое привело к выбросу материала, создавшего Луну. Эпиархейская Панталасса была, очевидно, менее глубокой, чем современный Мировой океан, но не за счет меньшего, чем в настоящее время, перепада отметок (так как континентальная кора уже достигла близких к современным значений и, следовательно, контраст между ней и океанской корой был примерно такой же), а за счет меньшего объема воды. Впрочем, интенсивность флюидного потока из мантии, в том числе темп выделения воды в архее, должна была еще оставаться весьма высокой.

        Земная кора — тонкая верхняя оболочка Земли, которая имеет толщину на континентах 40-50 км, под океанами —5-10 км и составляет всего около 1% массы Земли.

        Восемь элементов — кислород, кремний, водород, алюминий, железо, магний, кальций, натрий — образовывают 99,5% земной коры.

        Наибольшую толщину земная кора имеет в горных районах (под Гималаями — свыше 75 км), среднюю — в районах платформ (под Западно-Сибирской низиной — 35-40, в границах Русской платформы — 30-35), а наименьшую—в центральных районах океанов (5-7 км).

        Преобладающая часть земной поверхности — это равнины континентов и океанического дна Континенты окружены шельфом — мелководной полосой глубиной до 200 г и средней шириной близко SO км, которая после резкого обрывчатого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км). Наибольшие глубины (9-11 км) имеют океанические желоба, подавляющее большинство которых расположенная на северной и западной окраинах Тихого океана.

        Земная кора формировалась постепенно: сначала был сформирован базальтовый слой, затем — гранитный, осадочный слой продолжает формироваться и в настоящее время.

        Основная часть литосферы состоит из изверженных магматических пород (95%), среди которых на континентах преобладают граниты и гранитоиды, а в океанах — базальты.

        Доклад Земная кора

        Горные породы — вещество, из которого состоит земная кора. Горные породы подразделяются на следующие группы:

        1. Магматические горные породы. Они образуются при затвердевании магмы в толще земной коры или на поверхности.

        2. Осадочные горные породы. Они образуются на поверхности, формируются из продуктов разрушения или изменения других пород, биологических организмов.

        3. Метаморфические горные породы.

        Они образуются в толще земной коры из других горных пород под действием определенных факторов: температуры, давления.

        С разными породами земной коры, как и с ее тектоническими структурами, связаны разные полезные ископаемые: горючие, металлические, строительные, а также такие, что есть сырьем для химической и пищевой промышленности.

        Глубинные толщи литосферы, которые исследуют геофизическими методами, имеют довольно сложную и еще недостаточно изученное строение, также, как мантия и ядро Земли. Но уже известно, что с глубиной плотность пород возрастает, и если на поверхности она составляет в среднем 2,3-2,7 г/см3, то на глубине близко 400 км — 3,5 г/см3, а на глубине 2900 км (граница мантии и внешнего ядра) — 5,6 г/см3. В центре ядра, где давление достигает 3,5 тыс. т/см2, она увеличивается до 13-17 г/см3. Установлен также и характер возрастания глубинной температуры Земли. На глубине 100 км она составляет приблизительно 1300 К, на глубине близко 3000 км —4800 К, а в центре земного ядра — 6900 К.

        Преобладающая часть вещества Земли находится в твердом состоянии, но на границе земной коры и верхней мантии (глубины 100—150 км) залегает толща смягченных, тестообразных горных пород. Эта толща (100—150 км) называется астеносферой. Геофизики считают, что в разреженном состоянии могут находиться и другие участки Земли (за счет разуплотнения, активного радиораспада пород и т.п.), в частности — зона внешнего ядра. Внутреннее ядро находится в металлической фазе, но относительно его вещественного состава единого мнения на сегодня нет.

        Геология как наука подразделяется на ряд самостоятельных отделов, которые изучают определённые вопросы строения, развития и истории земной коры. К ним относятся: общая геология, структурная геология, геологическое картирование, тектоника, минералогия, кристаллография, геоморфология, палеонтология, петрография, литология, а также — геология полезных ископаемых, включая геологию нефти и газа.

        Основные положения общей и структурной геологии являются фундаментом для понимания вопросов геологии нефти и газа. В свою очередь, основные теоретические положения по происхождению нефти и газа, миграции углеводородов и формированию их скоплений лежат в основе поисков нефти и газа. В геологии нефти и газа рассматриваются также закономерности размещения различных типов скоплений углеводородов в земной коре, которые служат основой для прогнозирования нефтегазоносности исследуемых областей и районов и используются в поисково- разведочных работах на нефть и газ.

        В данной работе будут рассмотрены вопросы, касающиеся земной коры: ее состав, строение, процессы в ней происходящие.

          1. ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ ЗЕМЛИ И СОСТАВЕ ЗЕМНОЙ КОРЫ.

        В целом планета Земля имеет форму геоида, или сплюснутого у полюсов и экватора эллипсоида, и состоит из трех оболочек.

        В центре находится ядро (радиус 3400 км), вокруг которого располагается мантия в интервале глубин от 50 до 2900 км. Внутренняя часть ядра предполагается твёрдой, железо — никелевого состава. Мантия находится в расплавленном состоянии, в верхней части которой располагаются магматические очаги.

        На глубине 120 - 250 км под материками и 60 - 400 км под океанами залегает слой мантии, называемый астеносферой. Здесь вещество находится в близком к плавлению состоянии, вязкость его сильно понижена. Все литосферные плиты как бы плавают в полужидкой астеносфере, как льдины в воде.

        Выше мантии находится земная кора, мощность которой резко изменяется на материках и в океанах. Подошва коры (поверхность Мохоровичича) под континентами находится на глубине в среднем 40 км, а под океанами — на глубине 11 — 12 км. Поэтому, средняя мощность коры под океанами (за вычетом толщи воды) составляет около 7 км.

        Земную кору слагают горные породы, т. е. сообщества минералов (полиминеральные агрегаты), возникшие в земной коре в результате геологический процессов. Минералы — природные химические соединения или самородные элементы, обладающие определенными химическими и физическими свойствами и возникшие в земле в результате химико-физических процессов. Минералы делятся на несколько классов, каждый из которых объединяет десятки и сотни минералов. Например, сернистые соединения металлов образуют класс сульфидов (200 минералов), соли серной кислоты формируют 260 минералов класса сульфатов. Существуют классы минералов: карбонатов, фосфатов, силикатов, последние из которых наиболее широко распространены в земной коре и образуют более 800 минералов.

          1. ТИПЫ ГОРНЫХ ПОРОД, СОСТАВЛЯЮЩИХ ЗЕМНУЮ КОРУ.

        Итак, горные породы - природные агрегаты минералов более или менее постоянного минералогического и химического состава, образующие самостоятельные геологические тела, слагающие земную кору. Форма, размеры и взаимное расположение минеральных зерен обусловливают структуру и текстуру горных пород.

        По условиям образования ( генезиса) различают: осадочные, магматические и метаморфические породы.

        2.1. Осадочные горные породы.

        Генезис осадочных пород — либо результат разрушения и переотложения ранее существовавших горных пород, либо выпадение осадков из водных растворов (различные соли), либо — результат жизнедеятельности организмов и растений. Характерной чертой осадочных горных пород является их слоистость, отражающая изменяющиеся условия отложения геологических осадков. Составляют около 10% массы земной коры и покрывают 75 % поверхности Земли. С осадочными горными породами связано св. 3/4 полезных ископаемых (уголь, нефть, газ, соли, руды железа, марганца, алюминия, россыпи золота, платины, алмазов, фосфориты, стройматериалы). В зависимости от исходного материала осадочные породы подразделяются на обломочные (терригенные), хемогенные, органогенные (биогенные) и смешанные.

        Обломочные породы образуются за счёт накопления обломков разрушившихся горных пород, т.е. это породы, состоящие из обломков более древних горных пород и минералов. По величине обломков различают грубообломочные (глыбы, щебни, гравий, галька), песчаные (песчаники), пылеватые (алевриты, алевролиты) и глинистые породы. Наиболее широко распространены в земной коре такие обломочные породы, как пески, песчаники, алевролиты, глины.

        Хемогенные породы являются химическими соединениями, которые образуются в результате выпадения из водных растворов. К ним относятся: известняки, доломиты, каменные соли, гипс, ангидрит, железные и марганцевые руды, фосфориты и др

        Органогенные породы накапливаются в результате отмирания и захоронения животных и растений, т.е. органогенные породы (от орган и греч . genes - рождающий, рожденный) (биогенные породы) - осадочные горные породы, состоящие из остатков животных и растительных организмов или продуктов их жизнедеятельности (известняк-ракушечник, мел, ископаемые угли, горючие сланцы и др.). Породы смешанного генезиса, как правило, образуются за счёт различного сочетания всех рассматриваемых выше факторов. Среди этих пород выделяются песчаные и глинистые известняки, мергели (сильно известковые глины) и др.

        2.2. Магматические горные породы

        Генезис магматических пород — результат застывания магмы на глубине или на поверхности. Магма, являясь расплавленной и насыщенной газообразными компонентами, изливается из верхней части мантии.

        В состав магмы в основном входят следующие элементы: кислород, кремний, алюминий, железо, кальций, магний, натрий, калий, водород. В небольших количествах в магме присутствуют: углерод, титан, фосфор, хлор и др. элементы.

        Магма, внедряясь в земную кору, может застывать на различной глубине или изливаться на поверхность. В первом случае образуются интрузивные породы, во втором — эффузивные. В процессе остывания горячей магмы в слоях земной коры происходит образование минералов различной структуры (кристаллической, аморфной и др.). Эти минералы формируют горные породы. К примеру, на большой глубине при застывании магмы образуются граниты, на сравнительно небольшой глубине — кварцевые порфиры и т. д.

        Эффузивные породы образуются при быстром застывании магмы на поверхности Земли или на морском дне. Примером могут служить туфы, вулканическое стекло.

        Интрузивные горные породы - магматические горные породы, образовавшиеся в результате застывания магмы в толще земной коры.

        Магматические горные породы по содержанию SiO2 (кварц и другие соединения) делятся на: кислые (SiO2 более 65%), средние — 65—52%, основные (52—40%) и ультраосновные (менее 40% SiO2). По содержанию в породах кварца изменяется окраска пород. Кислые обычно имеют светлую окраску, основные и ультраосновные — темную до черной. К кислым породам относятся: граниты, кварцевые порфиры; к средним: сиениты, диориты, нефелиновые сиениты; к основным: габбро, диабазы, базальты; к ультраосновным: пироксены, перидотиты и дуниты.

        2.3. Метаморфические горные породы.

        Метаморфические породы образуются в результате воздействия высоких температур и давлений на горные породы другого первичного генезиса (осадочные или магматические), т. е. за счёт химических преобразований под действием метаморфизма. К метаморфическим породам относятся: гнейсы, кристаллические сланцы, мрамор. К примеру, мрамор образуется за счёт метаморфизма первичной осадочной породы — известняка.

        Читайте также: