Реферат на тему ямр спектроскопия

Обновлено: 06.07.2024

Возможности развития двумерной спектроскопии ЯМР. Использование методов Фурье-спектроскопии с использованием Фурье-преобразования в процессе проведения двумерного ЯМР-эксперимента, обработка данных. Корреляция и ее значение в гетероядерном случае.

Двумерная спектроскопия ЯМР

Развитие двумерной спектроскопии ЯМР открыло новые возможности для развития разнообразных биологических приложений ЯМР. В принципе каждая серия экспериментов, в которых наряду с интервалом времени детектирования t2 варьируется второй параметр, например длительность периода эволюции ti, представляет собой двумерный ЯМР. Примером такого эксперимента является серия одномерных спектров, характеризующих некую химическую реакцию, которые измеряются последовательно через определенный промежуток времени t. Если по одной из осей откладывать значения времени ti, а по другой выписывать спектры, регистрируемые в эти моменты времени, то получим двумерный спектр. Такого рода двумерная спектроскопия известна с момента открытия метода ЯМР.

От 2М-спектроскопии обычно требуется выполнение следующего условия: вторая переменная обязательно должна быть связана со специфическими свойствами исследуемой спиновой системы. В настоящее время развито достаточно большое число методов получения двумерных спектров ЯМР. Эти методы реализованы в виде стандартных процедур - сервисных программ - и получаемые экспериментальные данные могут быть представлены в виде функции двух частотных переменных. Двумерная спектроскопия ЯМР обладает рядом преимуществ по сравнению с одномерными методами: Информация может быть представлена как функция двух переменных. Это позволяет достигнуть достаточно хорошего разрешения в сложных спектрах, например в таких, которые в одномерном случае представляют собой наложение перекрывающихся линий. Двумерные эксперименты позволяют проводить надежное отнесение линий в таких спектрах. Одновременно с этим разделением по двум переменным можно провести выбор соответствующих физических взаимодействий, что обеспечит разделение по двум измерениям. Наконец, в двумерной спектроскопии ЯМР можно достаточно просто наблюдать многоквантовые переходы, которые в первом приближении запрещены правилами отбора по спиновому квантовому числу.

Путем введения других временных переменных можно осуществить переход к n_мерным спектрам ЯМР. Следует, однако, отметить, что ограничение проведения эксперимента по времени некоторым значением, обычно реализуемым на практике, не позволяет значительно увеличить число временных переменных, так что реально достижимое число переменных - три.

1. Двумерный ЯМР-эксперимент

В настоящее время в двумерной ЯМР-спектроскопии, как правило, используются методы Фурье-спектроскопии. В этом случае проводится детектирование сигнала SUi, t2) из которого путем Фурье-преобразования вычисляется двумерный спектр S в частотной области. В принципе двумерный ЯМР-спектр можно получить и с использованием альтернативного метода - стохастического метода, однако этот метод находится пока в стадии разработки.

Основной 2М-ЯМР-эксперимент можно схематически представить во временной области, разделив его на следующие 4 фазы: подготовки, эволюции, смешивания и детектирования. На фазе детектирования сигналы, как и в одномерном случае, регистрируются через равные промежутки времени Д t2, затем они подвергаются оцифровке и накапливаются. Фаза подготовки, как правило, состоит из 90°-ного импульса, формирующего поперечную намагниченность. На протяжении фазы эволюции, длительность которой равна t, поперечная компонента намагниченности изменяется. Затем следует период смешивания, который, вообще говоря, в некоторых экспериментах может отсутствовать. Компоненты поперечной намагниченности связаны между собой разнообразными взаимодействиями. На протяжении интервала длительностью ti они подлежат детектированию и преобразованию. Длительность периода ti постоянно возрастает от эксперимента к эксперименту на величину ДЯй, причем длительность интервала tj определяется так же, как и интервала t2, теоремой Найквиста. Спектр, соответствующий каждому значению t, накапливается отдельно. Таким образом, строится двумерная матрица, в которой каждой паре значений соответствует сигнал амплитудой S - Двумерное Фурье-преобразование превращает сигнал во временной области S. Такое Фурье-преобразование можно записать следующим образом:

Выражение представляет собой следующую цепь операций: сначала все сигналы свободной индукции подвергаются Фурье-преобразованию по переменной t2. Возникающая при всём этом новая матрица данных содержит в строках спектры ЯМР, соответствующие значениям ti. Затем проводится второе Фурье-преобразование по переменной t\, т.е. данные, приведенные в столбцах, рассматриваются как отдельные сигналы свободной индукции, и они, как обычно, подвергаются Фурье-преобразованию.

Фурье-преобразование имеет действительную и мнимую части. Обычно вычисляют только действительную часть или модуль функции S. Интенсивности в двумерных спектрах имеют вид поверхностей, представленных как график функции двух переменных, т.е. напоминают изображение земной поверхности. Графически двумерные спектры представляют двумя способами. Первое представление - двумерная поверхность - дает наглядную картину 2М-спектра. Второе представление выглядит как географическая карта, на которой линии уровня соответствуют сигналам одинаковой интенсивности. Такое представление обычно используется при обработке двумерных спектров для того, чтобы избежать перекрывания слабых сигналов сильными.

В табл. приведены последовательные этапы обработки данных при построении одномерных спектров. Если попытаться перечислить все варианты двумерной ЯМР-спектроскопии, то это была бы весьма сложная задача, поскольку их более сотни. При этом для биологических приложений используются лишь некоторые из них. Чтобы их упорядочить, прежде всего необходимо подчеркнуть различие между гетероядерной и гомоядерной 2М-спектроскопией. В гомоядерной спектроскопии наблюдается взаимодействие ядер одного сорта, например, протонов. В этом случае двумерная импульсная последовательность состоит из импульсов, воздействующих на спиновую систему на близких частотах. В гетероядерных экспериментах наблюдаются взаи-модействия ядер различных типов, например, Си Н, и в импульсной последовательности содержатся импульсы из различных частотных областей.

Обработка данных при проведении двумерных экспериментов

1. Соответствие ССИ различным значениям инкрементов t1 в матрице.S. Н й строк матрицы содержат отдельные сигналы свободной индукции W2 значений

в каждой строке), при всём этом строки упорядочены в соответствии с ростом времени fj.

2. Цифровая фильтрация всех ССИ: умножение всех строк на соответствующую фильтрующую функцию.

3. Фурье-преобразование всех ССИ, подвергнутых фильтрации; строки матрицы содержат только спектры S.

7. Проведение Фурье-преобразования данных в направлении г1 по столбцам.

8. Коррекция фазы в направлении Я1.

9. Представление 2М-спектров S и диполь-дипольным.

2. Обнаружение спин-спинового взаимодействия в гомоядерном случае

Как уже отмечалось, косвенное спин-спиновое взаимодействие, характеризуемое константой взаимодействия J, тесно связано с ковалентной химической структурой. Если химическая структура известна, то можно провести отнесение соответствующих резонансных линий. Если же структура неизвестна, то можно выбрать структуру из нескольких альтернативных. В общем случае следует найти ответ на следующие два вопроса: Какие из ядерных спинов связаны между собой взаимодействием? Насколько велико это взаимодействие? В принципе можно получить ответ на оба эти вопроса для достаточно простых структур даже с использованием одномерных методик, например, с помощью развязки или построения теоретических спектров. В более сложном случае, когда в спектрах содержатся перекрывающиеся линии, эти методы приводят к успеху только при использовании большою числа трудоемких и длительных экспериментов. С помощью двумерных методов эту информацию можно получить из одного эксперимента. Стандартным методом при всём этом является метод COSY, в котором применяются два 90°-ных импульса, разделенных временем эволюции t1. Полученный спектр симметричен относительно диагонали, на которой расположены так называемые диагональные пики. Эти спектры по содержащейся в них информации соответствуют одномерному спектру. Основная информация содержится в пиках, расположенных вне диагонали - это так называемые кросс-пики. Именно эти пики указывают на то, между какими ядрами существует спин-спиновое взаимодействие, т.е. они позволяют определить те константы спин-спинового взаимодействия, которые превышают ширину линий компонент мультиплетов. Тонкая структура кросс-пиков позволяет получить представление о величине констант спин-спинового взаимодействия.

По спектрам, получаемым по методу COSY, можно достаточно просто установить характер связи. При этом, исходя из какого-либо кросс-пика, находим соответствующий ему кросс-пик по горизонтали и по вертикали. Большинство всех двумерных спектров выглядит так же, как и спектр, полученный по методу COSY. Имеет место несколько вариантов экспериментов COSY. Основным является эксперимент, позволяющий существенно упростить спектры за счет м-квантовой фильтрации. При этом упрощение спектров может привести к потере информации. Как правило, в основном ограничиваются получением спектров после двух- и трехбайтовой фильтрации, так как с ростом порядка фильтрации неизбежно понижается отношение сигнал/шум. Особую практическую ценность имеет эксперимент, называемый эстафетным COSY_экспериментом - эстафетный когерентный перенос). В спектре, полученном с использованием этого метода, наряду с обычными COSY_пиками, наблюдаются сигналы, позволяющие судить о наличии в спиновой системе кроме двух слабо взаимодействующих ядерных спинов еще одного спина, с которым они оба взаимодействуют, причем это взаимодействие достаточно велико.

Как правило, информация, полученная с помощью эксперимента COSY, может быть получена и с помощью метода SECSY, в котором сбор данных задерживается по сравнению с методом COSY на величину ti: в эксперименте используется импульсная последовательность 90° - Ай - 90° - fй - сбор данных. При использовании этой последовательности вид спектра будет несколько иным. Одномерному спектру соответствует спектр, расположенный на средней линии. Кросс-пики располагаются на наклонных прямых, расположенных под углом 135° по отношению к средней линии. Так как при использовании метода SECSY не удается получить спектры с кросс-пиками, фаза которых соответствует фазе поглощения, то спектроскопия SECSY применяется в том случае, когда объем памяти для накопления данных в экспериментах COSY недостаточен. Метод cynep-SECSY является более чувствительным вариантом метода SECSY.

Первым из двумерных экспериментов, нашедших практическое применение, является разрешенная двумерная спектроскопия, в которой используется следующая импульсная последовательность: 90° - ti - 180° -1\ - сбор данных. J_разрешенный спектр по информативности соответствует одномерному спектру, в котором мультиплеты повернуты перпендикулярно оси. Как и в одномерном случае, этот эксперимент можно использовать для исследования процессов химического обмена. Соответствующая импульсная последовательность приведена на рис. Внешний вид NOESY_спектров совпадает с видом спектров, полученных по методу COSY, с той лишь разницей, что в данном случае кросс-пики не устанавливают соответствия между взаимодействующими спинами, а определяют, какие из спинов участвуют в обмене. Интенсивность этих кросс-пиков зависит от длительности тт выбранного периода смешивания. С ростом Тт интенсивность кросс-пиков непрерывно возрастает, достигает максимального значения, а затем снова уменьшается до нуля. Зависимость от времени при всём этом соответствует наблюдаемой в одномерном случае при обнаружении ЯЭО. При малых значениях интервала смешивания Тт для интенсивности кросс-пика /дв между линиями, которые соответствуют резонансу спинов А и В, справедлива формула

где IАВ обозначает расстояние между ядрами.

На практике используется две модификации спектроскопии NOESY. Эксперимент NOESY с подавлением интенсивности сигналов, расположенных на главной диагонали. Эксперимент ROESY, в котором проводится измерение ЯЭО во вращающейся системе координат. Иногда для этого эксперимента используется сокращение CAMELSPIN. Эксперимент полезен, если необходимо провести качественное отнесение линий в спектре, а эксперимент проводят в том случае, если времена корреляции Тс таковы, что в лабораторной системе координат ЯЭО практически не наблюдается.

2. Корреляция в гетероядерном случае

Гетероядерная корреляция, т.е. корреляция между одномерными спектрами ЯМР, полученными для разного сорта ядер, обладает рядом привлекательных свойств. Прежде всего, эти методы, как и большинство методов двумерной спектроскопии, приводят к улучшению разрешения в спектрах, т.е. позволяют провести отнесение линий в сложных перекрывающихся спектрах. Корреляция между двумя различными спектрами ЯМР, например, на ядрах № и 13 С облегчает отнесение линий в спектрах, так как в протонных спектрах содержится дополнительная информация о спектрах 13 С, и наоборот. Отнесение линий существенно упрощается, если проведено полное отнесение в спектре хотя бы одного из ядер. Двумерные корреляционные спектры могут быть дополнительно использованы также и для того, чтобы повысить чувствительность в спектрах ядер с низким естественным содержанием, т.е. повысить возможности детектирования ядер с низкой чувствительностью. Простейший вариант гетероядерного корреляционного эксперимента совершенно аналогичен эксперименту COSY: используемая в этом методе импульсная последовательность также состоит из двух 90°-ных импульсов, между которыми имеется интервал длительностью ц, причем импульсы подаются на частоте, соответствующей резонансу ядра I, а спад свободной индукции записывается в течение времени Я2. Различие состоит в том, что в момент, когда подается второй 90°-ный импульс на частоте резонанса ядра I, подается дополнительный 90°-ный импульс на частоте резонанса ядер 5. Отношение сигнал/шум, достигаемое при использовании различных методов, описывается следующим выражением:

Здесь уехс-гиромагнитное отношение ядерных спинов, которые возбуждаются в первом периоде эксперимента, до проведения наблюдения, a yobs - гиромагнитное отношение ядер, наблюдение которых проводится в данный момент. В экспериментах с накоплением данных необходимо учитывать и такие параметры, как время продольной релаксакции Туехс возбуждаемых спинов и интервал между импульсами TR.

Следовательно, наилучшее значение отношения сигнал/шум может быть достигнуто в таком эксперименте, в котором сначала осуществляется перенос поляризации от спинов с большим г к спинам с меньшим у, а затем, на стадии детектирования, осуществляется обратный перенос поляризации. В частности, для системы N-'rl оценка подформуле показывает, что теоретически чувствительность в спектрах N может быть увеличена примерно в 300 раз.

Мерой ССВ является константа спинового взаимодействия J. Это расстояние между компонентами расщепления, выраженное в герцах. Так как константа спинового взаимодействия в отличие от химического сдвига не зависит от напряженности внешнего магнита Н0у то ее выражают не в относительных, а в абсолютных единицах. Число компонентов расщепления сигнала М рассчитывается по формуле М = 2nJ +1, которая для… Читать ещё >

Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия) ( реферат , курсовая , диплом , контрольная )

ЯМР-спектроскопия является одним из наиболее современных методов исследования строения органических соединений. В дополнение к электронной и колебательной спектроскопии ЯМР-метод, относящийся к резонансной спектроскопии, позволяет решать наиболее тонкие вопросы структурной химии, в частности вопросы электронного состояния атомов в молекуле. Метод пригоден для исследования молекул, в состав которых входят атомы с нечетным числом протонов или нейтронов. Такие ядра обладают ядерным спином и являются парамагнитными. В табл. 4.3 приведены свойства ядер некоторых атомов.

Таблица 4.3. Магнитные свойства ядер атомов.

Магнитный момент ядра |1; (в ядерных магнетонах).

ЯМР-спектры чаще всего снимаются на ядрах Н (метод называется протонным магнитным резонансом, ПМР), I3 C, , 9 F и 3| Р. Однако в настоящее время ЯМР-метод развит для всех элементов периодической системы, которые в составе природных изотопов имеют ядра с ненулевым спином. Ядра атомов, имеющие спин — очень слабый ядерный магнитик, в постоянном магнитном поле с высокой напряженностью поля Я0, взаимодействуют с ним и ориентируются в направлении магнитных силовых линий (рис. 4.10). Переориентация ядерного спина против магнитных силовых линий требует затраты энергии. Эту энергию ядро может получить при поглощении кванта электромагнитного излучения /*vp с низкой энергией, отвечающей радиочастотному излучению. Если образец вещества, спектр ЯМР которого нужно измерить, поместить в ампуле между полюсами мощного магнита (с Н0 = 60 — 300 МГц), а перпендикулярно полю Н0 создать высокочастотное электромагнитное излучение v с помощью индукционной катушки, то может возникнуть резонансное взаимодействие магнитных полей.

Состояние резонанса наступает тогда, когда постоянное магнитное поле создает такую разность энергий АЕ двух спиновых состояний ядра атома (например, +/2 и -/ как на рис. 4.10), которая равна поглощаемому кванту высокочастотного электромагнитного излучения:

Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия).

где vp — резонансная частота высокочастотного излучения, поглощаемая ядром; ji, — магнитный момент (магнетон Бора); /— спин ядра.

Простейший спектр протона.

Рис. 4.11. Простейший спектр протона.

Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия).

Рнс. 4.10. Спин атомного ядра в магнитном поле Н0. Энергетические уровни ядра со спином Ц/ = ½.

Спектр ПМР wpem-бутанола.

Рис. 4.12. Спектр ПМР wpem-бутанола.

Протоны неодинаковых по природе молекул имеют резонансные сигналы при различных значениях Я0. Это различие возникает у протонов в одной и той же молекуле, содержащей несколько протонов, если только эти протоны связаны с неодинаковыми по природе атомами (рис. 4.12), входящими в состав функциональных групп.

На энергетическое состояние спина протона (и любого другого магнитного ядра атома в методе ЯМР) сильное влияние оказывает электронная плотность взаимодействующей с ним его собственной 15-орбитали. И электронная плотность, и энергия расщепления спина протона в постоянном магнитном поле зависят от природы химической связи этого протона с другим атомом, с которым он контактирует (атом К), а также от атомного окружения этого контактного атома (состава и природы групп Xи Y-).

Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия).

Электронная плотность связи Н-К в результате взаимного влияния атомов (электронных эффектов) является функцией состава молекулы. Протон, как элементарная частица ничтожного размера, внедряется в электронную оболочку атома, с которым он связан. На рис. 4.13 представлены модели рас;

Контурные карты электронной плотности молекул гидридов.

По этой причине резонансный сигнал в протонсодержащей молекуле появляется не при значении поля Н0, а при другом эффективном его значении Н^

Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия).

которое ниже на величину, связанную с постоянной диамагнитного экранирования, или просто константой экранирования а. Значения, а очень малы и составляют для протона около КГ 6 и немного больше для других ядер. Эти значения зависят от электронной плотности вблизи ядра.

В остатках углеводородов электроноакцепторные группы, напримерN02, -СООН, -SOjOH, уменьшают электронную плотность вокруг протона, а вместе с ней и постоянную экранирования. В этом случае резонанс (появление пика протона в ПМР-спектре) наступает при меньшей напряженности поля. Электронодонорные группы, связанные с атомом, несущим при себе протон, наоборот, увеличивают электронное экранирование ядра 'Н или другого атома и большую величину напряженности внешнего поля. Примером может служить ПМР-спектр ряда соединений (рис. 4.14). Из рис. 4.14 видно, что по спектрам ПМР легко различаются как природа функциональных групп, так и их число в молекуле. В качестве эталона, относительно которого измеряется положение сигнала протона, так называемый химический сдвиг б сигнала протона, выбирается чаще всего тетраметилсилан (ТМС) — химически инертное вещество, добавляемое в ампулу вместе с исследуемым соединением и имеющее единичный интенсивный сигнал протонов в силь;

Действие электроакцепторных групп на сигнал протона в ПМРспектрах.

Рис. 4.14. Действие электроакцепторных групп на сигнал протона в ПМРспектрах

ном поле. Все другие вещества, приведенные на рис. 4.14, такие, как циклогексан, ацетон, трихлорэтан, 1,4-диоксан, дихлорметан и хлороформ, имеют сигнал в более слабом поле.

Химический сдвиг сигнала протона измеряют чаще всего в миллионных долях (м.д.) от напряженности постоянного магнитного поля Я0. Тогда химический сдвиг 5 будет равен для любого протона:

Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия).

где Яст и vCT — соответственно, напряженность и частота, при которой появляется сигнал стандарта (чаще всего ТМС); Я и v — сигналы исследуемого вещества; Я0 и v0 — соответственно, напряженность внешнего магнитного поля и рабочая частота генератора. Иногда удобно измерять химический сдвиг сигнала не в миллионных долях, а в герцах. С этой целью б умножается на частоту генератора: Л = 8v0.

Ранее химический сдвиг измерялся в единицах т (тау). Принималось для ТМС хтмс = 1 0; 6 = 10 — х.

В молекулах неорганических соединений атом водорода связан с более электроотрицательными атомами, чем атом углерода. Поэтому протоны в них менее экранированы, чем на связи Н-С, и сигналы протонов О-Н, N-H, S-H, Р-Н появляются в более слабых полях. Так, группаОН спиртов имеет сигнал около 5 м.д., тогда как С-Н при насыщенном атоме углерода (углерод без л-связей) имеет б ® 1 м.д.

Появление при атоме углерода л-связи (простой, сопряженной, ароматической) понижает электронное экранирование и повышает электроотрицательность атома С и величину б. В табл. 4.4 приведено положение простых сигналов типичных протонов. Как видно из табл. 4.4, особенно сильное дезэкранирование наблюдается у NH-протонов, находящихся по соседству с кетогруппой и одновременно с бензольным ядром, у С-Н-протонов альдегидной группы, независимо от того, связана она с алкилом или бензольным ядром. Максимальное дезэкранирование протона происходит у сульфогруппы вследствие сдвига электронной плотности сО-Н-связи на атом серы, несущий высокий положительный заряд. Аналогичная причина наблюдается и у альдегидов. У них один из протонов связан с атомом углерода, на котором дробный (+)-заряд достигает большого значения (+0,4). Сдвиг сигнала протона в сильное поле у металлоорганических соединений также обусловлен накоплением отрицательного заряда на метилрадикалах. В этих случаях значения 5М д отрицательные ["https://referat.bookap.info", 21].

Особенно сильное экранирующее и дезэкранирующее действие на протоны оказывают кольцевые токи в ароматических циклах (бензол и арены, порфирины и фталоцианины и т. д. ). В ароматических циклах, отличающихся высокой делокализацией я-электронов, при действии на них сильного магнитного поля возникает кольцевой ток. Чем больше размер ароматического цикла, тем больше кольцевой ток (рис. 4.15).

Кольцевые токи и индукция собственного магнитного поля в ароматических циклах.

Рис. 4.15. Кольцевые токи и индукция собственного магнитного поля в ароматических циклах.

Как видно из рис. 4.15, кольцевой ток в магнитном поле создает собственное магнитное поле, направленное против внешнего магнитного поля Н0 внутри кольца и вдоль магнитного поля снаружи кольца.

Таблица 4.4. Химические сдвиги в спектрах ПМР относительно ТМС.

Химический сдвиг, м.д.

Химический сдвиг, м.д.

Химический сдвиг, М.Д.

Химический сдвиг, м.д.

Это собственное магнитное поле понижает напряженность внешнего поля и поэтому сигнал протонов, находящихся внутри контура цикла (как это имеет место в аннуленах), расположен в более сильном магнитном поле, которое следует приложить, чтобы подавить еще и противодействующее собственное поле. Напротив, как видно из рис. 4.15, на протоны, находящиеся вне контура цикла, действует собственное магнитное поле цикла, которое совпадает по направлению с Я0. Поэтому собственное поле вычитается из Я0, и сигналы этих протонов располагаются в более слабом поле. В [18]-аннулене для внутренних протонов б = -1,9 м.д., для внешних 6 = 9,8 м.д.:

Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия).

Кроме положения в спектрах ПМР сигналы протонов характеризуются интенсивностью и формой. Интенсивность пика сигнала определяется числом протонов данного сорта в молекуле, т. е. протонов, способных взаимодействовать с внешним полем одинаковой силы. Из рис. 4.12 следует, что интенсивность сигнала, измеряемого площадью, которую он занимает на графике, для протонов СН3-групп wpew-бутанола в 9 раз выше, чем интенсивность сигнала О-Н-протона. Таким образом, по интенсивности пика определяется число различного сорта протонов в молекуле.

Не всегда сигналы в спектре ПМР являются одиночными, простыми, как на рис. 4.14. Если в молекуле, а к такому типу молекул относится большинство, имеются неидентичные по электронному окружению протоны, то единичные сигналы могут расщепляться на 2 (дублет), 3 (триплет), 4 (квартет, или квадруплет), 5 (квинтет), 6 (секстет) и более компонент, т. е. может возникать тонкая структура полос спектра ПМР. Подобное расщепление происходит в результате спин-спинового взаимодействия протонов и проявляется в спектрах ПМР при высоких напряженностях магнитного поля, т. е. на приборах с высоким разрешением. Разрешение прибора определяется величиной химического сдвига сигнала протона. Так, на приборах с рабочей частотой v0 = 60 МГц абсолютное значение (не в величинах 6) химического сдвига Av = 300 Гц, тогда как на приборе в 100 МГц Av = 500 Гц.

Спин — спиновое взаимодействие (ССВ) возникает в результате воздействия на энергию спинового состояния протона магнитных полей соседних протонов или других магнитных ядер. Этот тип взаимодействия проявляется только при наличии в молекуле протонов с различными химическими сдвигами. Если протоны эквивалентны, как, например, в CHj, СН2=СН2 и т. д. , то ССВ не наблюдается. Отсутствует оно также в молекулах с неидентичными протонами, если они располагаются на достаточном удалении друг от друга (через За-связи и более).

Мерой ССВ является константа спинового взаимодействия J. Это расстояние между компонентами расщепления, выраженное в герцах. Так как константа спинового взаимодействия в отличие от химического сдвига не зависит от напряженности внешнего магнита Н то ее выражают не в относительных, а в абсолютных единицах. Число компонентов расщепления сигнала М рассчитывается по формуле М = 2nJ +1, которая для протона с J -Уг превращается в М — п +1, где п — число протонов, находящихся по соседству с подвергающимся их действию протоном. Рассмотрим конкретный пример этанола. В слабом магнитном поле в ПМР-спектре появляются три простых сигнала протонов СН3— (1,11 м.д.), СН2— (3,6 м.д.) и ОН- (5,2 м.д.). Мультиплетного расщепления не наблюдается. При повышении напряженности поля Н0 возрастает также и рабочая частота индукционной катушки v0. При частоте 60 МГц и высоком разрешении сигнал протонов СН3— группы расщепляется на 3 компоненты с соотношением интенсивности 1:2:1 в магнитном поле двух протонов соседней СН2-группы в соответствии с А/ = 2 + 1 = 3. Магнитное поле протона ОН-группы на СН3 не действует. На протоны СН2-групиы одновременно действуют магнитные поля протонов СН3— и ОН-групп. При этом в поле ОН-протона сигнал протонов СН2 расщепляется на дублет в соответствии с М= п +1 = 1 +1 = 2.

Каждый из сигналов дублета под действием протонов СН3 расщепляется еще на 4 компоненты в соответствии с М = п +1 = 3 + 1 = 4. Итак, сигнал протонов СН2 расщепляется на октет с соотношением интенсивности полос 1:3:3:3:3:3:3:1. Сигнал протонаОН расщепляется в поле СН2-протонов на триплет с соотношением интенсивностей пиков 1:2:1 (рис. 4.16). Четкое соотношение интенсивностей компонент в спектре выполняется не всегда.

Наличие тонкой структуры ПМР-спектров высокого разрешения и измерение констант спинового взаимодействия J позволяет для сложных молекул органических соединений более уверенно устанавливать положение атомов водорода. Для еще более сложных молекул используется замещение известного атома водорода на дейтерий. Исчезновение сигнала протона, которое при этом происходит, позволяет окончательно убедиться в правильности их отнесения к тому или иному месторасположению. С целью ориентировки в.

ПМР (спектр высокого разрешения для этанола, снятый на частоте 60 МГ.

Рис. 4.16. ПМР (спектр высокого разрешения для этанола, снятый на частоте 60 МГц W.2 «Л.1 = 4,5 Гц) У2, з = J-i.i — 7 Гц решении ряда структурных задач в табл. 4.5 приведены некоторые значения констант спин-спинового взаимодействия некоторых протонов.

Таблица 4.5. Константы спин-спинового взаимодействия протонов


ЯМР-спектроскопия — спектроскопический метод исследования химических объектов, использующий явление ядерного магнитного резонанса. Наиболее важными для химии и практических применений являются спектроскопия протонного магнитного резонанса (ПМР-спектроскопия), а также спектроскопия ЯМР на ядрах углерода-13 ( 13 C ЯМР-спектроскопия), фтора-19 ( 19 F ЯМР-спектроскопия), фосфора-31 ( 31 P ЯМР-спектроскопия).

Подобно инфракрасной спектроскопии, ЯМР выявляет информацию о молекулярном строении химических веществ. Однако, он обеспечивает более полную информацию, чем ИС, позволяя изучать динамические процессы в образце — определять константы скорости химических реакций, величину энергетических барьеров внутримолекулярного вращения. Эти особенности делают ЯМР-спектроскопию удобным средством как в теоретической органической химии, так и для анализа биологических объектов.

1 Базовая ЯМР техника

1.1 Химический сдвиг

1.2 Спин-спиновое взаимодействие

1.2.1 Взаимодействие второго порядка (сильное)

2 Приложение ЯМР спектроскопии к исследованию белков

Базовая ЯМР техника

Образец вещества для ЯМР помещается в тонкостенную стеклянную трубку (ампулу). Когда ее помещают в магнитное поле, ЯМР активные ядра (такие как 1 H или 13 C) поглощают электромагнитную энергию. Резонансная частота, энергия абсорбции и интенсивность испущенного сигнала пропорциональны силе магнитного поля. Так в поле в 21 Тесла, протон резонирует при частоте 900 МГц.

Химический сдвиг

В зависимости от местного электронного окружения разные протоны в молекуле резонируют на слегка отличающихся частотах. Так как и это смещение частоты, и основная резонансная частота прямо пропорциональны величине индукции магнитного поля, то это смещение преобразуется в независимую от магнитного поля безразмерную величину известную как химический сдвиг. Химический сдвиг определяется как относительное изменение относительно некоторых эталонных образцов. Частотный сдвиг экстремально мал в сравнении с основной ЯМР частотой. Типичный сдвиг частоты равен 100 Гц, тогда как базовая ЯМР частота имеет порядок 100 МГц. Таким образом, химический сдвиг часто выражается в частях на миллион (ppm). Для того чтобы обнаружить такое маленькое различие частоты, приложенное магнитное поле должно быть постоянным внутри объема образца.

Так как химический сдвиг зависит от химического строения вещества, он применяется для получения структурной информации о молекулах в образце. К примеру, спектр для этанола (CH3CH2OH) дает 3 отличительных сигнала, то есть 3 химических сдвига: один для группы CH3, второй для СН2-группы и последний для OH. Типичный сдвиг для CH3-группы примерно равен 1 ppm, для CH2-группы присоединенной к OH - 4 ppm и OH примерно 2—3 ppm.

Из-за молекулярного движения при комнатной температуре сигналы 3 метиловых протонов усредняются в течение ЯМР процесса, который длится лишь несколько миллисекунд. Эти протоны вырождаются и формируют пики при том же химическом сдвиге. Программное обеспечение позволяет проанализировать размер пиков для того, чтобы понять как много протонов дает вклад в эти пики.

Спин-спиновое взаимодействие

Наиболее полезную информацию для определения структуры в одномерном ЯМР-спектре даёт так называемое спин-спиновое взаимодействие между активными ЯМР ядрами. Это взаимодействие возникает в результате переходов между различными спиновыми состояниями ядер в химических молекулах, что приводит к расщеплению сигналов ЯМР. Это расщепление может быть простым и сложным и, как следствие, его либо просто интерпретировать, либо оно может запутать экспериментатора.

Это связывание обеспечивает детальную информацию о связях атомов в молекуле.

Взаимодействие второго порядка (сильное)

Простое спин-спиновое взаимодействие предполагает, что константа взаимодействия мала в сравнении с разницей в химических сдвигах между сигналами. Если разность сдвигов уменьшается (или константа взаимодействия увеличивается), интенсивность мультиплетов образцов искажается, становится более сложной для анализа (особенно если система содержит более 2 спинов). Однако в мощных ЯМР-спектрометрах искажения обычно умеренные и это позволяет легко интерпретировать связанные пики.

Эффекты второго порядка уменьшаются с увеличением разницы частоты между мультиплетами, поэтому высокочастотный ЯМР спектр показывает меньшее искажение чем низкочастотный спектр.

Приложение ЯМР спектроскопии к исследованию белков

Большинство последних инноваций в ЯМР спектроскопии сделаны в так называемой ЯМР спектроскопии белков, которая становится очень важной техникой в современной биологии и медицине. Общей задачей является получение 3-мерной структуры белка в высоком разрешении, подобно изображениям получаемым в рентгеновской кристаллографии. Из-за присутствия большего числа атомов в белковой молекулы в сравнении с простым органическим соединением, базовый 1 H спектр переполнен перекрывающимися сигналами, поэтому прямой анализ спектра становится невозможным. Поэтому были разработаны многомерные техники, чтобы решить эту проблему.

Чтобы улучшить результаты этих экспериментов применяют метод меченых атомов, используя 13 С или 15 N. Таким образом становится возможным получить 3D-спектр белкового образца, что стало прорывом в современой фармацевтике. В последнее время получают распространение методики(имеющие как преимущества так и недостатки) получения 4D-спектров и спектров большей размерности, основанные на методах нелинейного семплирования с последующим восстановлением сигнала спада свободной индукции с помощью специальных математических методик.

Спектроскопия

Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, впервые осуществленном на практике Пёрселлом, образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, амагнитное поле, действующее на нее, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем ядра, лишенные электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его еще называют методом непрерывного облучения (CW, continous wave).

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

Спектры ЯМР



Спектр 1 H 4-этоксибензальдегида. В слабом поле (синглет ~9,25 м.д) сигнал протона альдегидной группы, в сильном (триплет ~1,85-2 м.д.) — протонов метила этоксильной группы.

Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;

интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;

ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH3)4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчета констант экранирования и на их основании соотнести сигналы.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Развитие двумерной спектроскопии ЯМР открыло новые возможности для развития разнообразных биологических приложений ЯМР. В принципе каждая серия экспериментов, в которых наряду с интервалом времени детектирования t2 варьируется второй параметр, например длительность периода эволюции ti, представляет собой двумерный ЯМР. Примером такого эксперимента является серия одномерных спектров, характеризующих некую химическую реакцию, которые измеряются последовательно через определенный промежуток времени t. Если по одной из осей откладывать значения времени ti, а по другой выписывать спектры, регистрируемые в эти моменты времени, то получим двумерный спектр. Такого рода двумерная спектроскопия известна с момента открытия метода ЯМР.

От 2М-спектроскопии обычно требуется выполнение следующего условия: вторая переменная обязательно должна быть связана со специфическими свойствами исследуемой спиновой системы. В настоящее время развито достаточно большое число методов получения двумерных спектров ЯМР. Эти методы реализованы в виде стандартных процедур – сервисных программ – и получаемые экспериментальные данные могут быть представлены в виде функции двух частотных переменных. Двумерная спектроскопия ЯМР обладает рядом преимуществ по сравнению с одномерными методами: Информация может быть представлена как функция двух переменных. Это позволяет достигнуть достаточно хорошего разрешения в сложных спектрах, например в таких, которые в одномерном случае представляют собой наложение перекрывающихся линий. Двумерные эксперименты позволяют проводить надежное отнесение линий в таких спектрах. Одновременно с этим разделением по двум переменным можно провести выбор соответствующих физических взаимодействий, что обеспечит разделение по двум измерениям. Наконец, в двумерной спектроскопии ЯМР можно достаточно просто наблюдать многоквантовые переходы, которые в первом приближении запрещены правилами отбора по спиновому квантовому числу.

Путем введения других временных переменных можно осуществить переход к n‑мерным спектрам ЯМР. Следует, однако, отметить, что ограничение проведения эксперимента по времени некоторым значением, обычно реализуемым на практике, не позволяет значительно увеличить число временных переменных, так что реально достижимое число переменных – три.

1. Двумерный ЯМР-эксперимент

В настоящее время в двумерной ЯМР-спектроскопии, как правило, используются методы Фурье-спектроскопии. В этом случае проводится детектирование сигнала SUi, t2) из которого путем Фурье-преобразования вычисляется двумерный спектр S в частотной области. В принципе двумерный ЯМР-спектр можно получить и с использованием альтернативного метода – стохастического метода, однако этот метод находится пока в стадии разработки.

Основной 2М-ЯМР-эксперимент можно схематически представить во временной области, разделив его на следующие 4 фазы: подготовки, эволюции, смешивания и детектирования. На фазе детектирования сигналы, как и в одномерном случае, регистрируются через равные промежутки времени Д t2, затем они подвергаются оцифровке и накапливаются. Фаза подготовки, как правило, состоит из 90°-ного импульса, формирующего поперечную намагниченность. На протяжении фазы эволюции, длительность которой равна t, поперечная компонента намагниченности изменяется. Затем следует период смешивания, который, вообще говоря, в некоторых экспериментах может отсутствовать. Компоненты поперечной намагниченности связаны между собой разнообразными взаимодействиями. На протяжении интервала длительностью ti они подлежат детектированию и преобразованию. Длительность периода ti постоянно возрастает от эксперимента к эксперименту на величину ДЯй, причем длительность интервала tj определяется так же, как и интервала t2, теоремой Найквиста. Спектр, соответствующий каждому значению t, накапливается отдельно. Таким образом, строится двумерная матрица, в которой каждой паре значений соответствует сигнал амплитудой S – Двумерное Фурье-преобразование превращает сигнал во временной области S. Такое Фурье-преобразование можно записать следующим образом:


Выражение представляет собой следующую цепь операций: сначала все сигналы свободной индукции подвергаются Фурье-преобразованию по переменной t2. Возникающая при этом новая матрица данных содержит в строках спектры ЯМР, соответствующие значениям ti. Затем проводится второе Фурье-преобразование по переменной t\, т.е. данные, приведенные в столбцах, рассматриваются как отдельные сигналы свободной индукции, и они, как обычно, подвергаются Фурье-преобразованию.

Фурье-преобразование имеет действительную и мнимую части. Обычно вычисляют только действительную часть или модуль функции S. Интенсивности в двумерных спектрах имеют вид поверхностей, представленных как график функции двух переменных, т.е. напоминают изображение земной поверхности. Графически двумерные спектры представляют двумя способами. Первое представление – двумерная поверхность – дает наглядную картину 2М-спектра. Второе представление выглядит как географическая карта, на которой линии уровня соответствуют сигналам одинаковой интенсивности. Такое представление обычно используется при обработке двумерных спектров для того, чтобы избежать перекрывания слабых сигналов сильными.



В табл. приведены последовательные этапы обработки данных при построении одномерных спектров. Если попытаться перечислить все варианты двумерной ЯМР-спектроскопии, то это была бы весьма сложная задача, поскольку их более сотни. Однако для биологических приложений используются лишь некоторые из них. Чтобы их упорядочить, прежде всего необходимо подчеркнуть различие между гетероядерной и гомоядерной 2М-спектроскопией. В гомоядерной спектроскопии наблюдается взаимодействие ядер одного сорта, например, протонов. В этом случае двумерная импульсная последовательность состоит из импульсов, воздействующих на спиновую систему на близких частотах. В гетероядерных экспериментах наблюдаются взаи-модействия ядер различных типов, например, Си Н, и в импульсной последовательности содержатся импульсы из различных частотных областей.

Обработка данных при проведении двумерных экспериментов

1. Соответствие ССИ различным значениям инкрементов t1 в матрице.S. Н й строк матрицы содержат отдельные сигналы свободной индукции W2 значений

в каждой строке), при этом строки упорядочены в соответствии с ростом времени fj.

2. Цифровая фильтрация всех ССИ: умножение всех строк на соответствующую фильтрующую функцию.

3. Фурье-преобразование всех ССИ, подвергнутых фильтрации; строки матрицы содержат только спектры S.

7. Проведение Фурье-преобразования данных в направлении г1 по столбцам.

8. Коррекция фазы в направлении Я1.

9. Представление 2М-спектров S и диполь-дипольным.

2. Обнаружение спин-спинового взаимодействия в гомоядерном случае

Как уже отмечалось, косвенное спин-спиновое взаимодействие, характеризуемое константой взаимодействия J, тесно связано с ковалентной химической структурой. Если химическая структура известна, то можно провести отнесение соответствующих резонансных линий. Если же структура неизвестна, то можно выбрать структуру из нескольких альтернативных. В общем случае следует найти ответ на следующие два вопроса: Какие из ядерных спинов связаны между собой взаимодействием? Насколько велико это взаимодействие? В принципе можно получить ответ на оба эти вопроса для достаточно простых структур даже с использованием одномерных методик, например, с помощью развязки или построения теоретических спектров. В более сложном случае, когда в спектрах содержатся перекрывающиеся линии, эти методы приводят к успеху только при использовании большою числа трудоемких и длительных экспериментов. С помощью двумерных методов эту информацию можно получить из одного эксперимента. Стандартным методом при этом является метод COSY, в котором применяются два 90°-ных импульса, разделенных временем эволюции t1. Полученный спектр симметричен относительно диагонали, на которой расположены так называемые диагональные пики. Эти спектры по содержащейся в них информации соответствуют одномерному спектру. Основная информация содержится в пиках, расположенных вне диагонали - это так называемые кросс-пики. Именно эти пики указывают на то, между какими ядрами существует спин-спиновое взаимодействие, т.е. они позволяют определить те константы спин-спинового взаимодействия, которые превышают ширину линий компонент мультиплетов. Тонкая структура кросс-пиков позволяет получить представление о величине констант спин-спинового взаимодействия.

По спектрам, получаемым по методу COSY, можно достаточно просто установить характер связи. При этом, исходя из какого-либо кросс-пика, находим соответствующий ему кросс-пик по горизонтали и по вертикали. Большинство всех двумерных спектров выглядит так же, как и спектр, полученный по методу COSY. Существует несколько вариантов экспериментов COSY. Основным является эксперимент, позволяющий существенно упростить спектры за счет м-квантовой фильтрации. При этом упрощение спектров может привести к потере информации. Как правило, в основном ограничиваются получением спектров после двух- и трехбайтовой фильтрации, так как с ростом порядка фильтрации неизбежно понижается отношение сигнал/шум. Особую практическую ценность имеет эксперимент, называемый эстафетным COSY‑экспериментом – эстафетный когерентный перенос). В спектре, полученном с использованием этого метода, наряду с обычными COSY‑пиками, наблюдаются сигналы, позволяющие судить о наличии в спиновой системе кроме двух слабо взаимодействующих ядерных спинов еще одного спина, с которым они оба взаимодействуют, причем это взаимодействие достаточно велико.

Как правило, информация, полученная с помощью эксперимента COSY, может быть получена и с помощью метода SECSY, в котором сбор данных задерживается по сравнению с методом COSY на величину ti: в эксперименте используется импульсная последовательность 90° – Ай – 90° – fй – сбор данных. При использовании этой последовательности вид спектра будет несколько иным. Одномерному спектру соответствует спектр, расположенный на средней линии. Кросс-пики располагаются на наклонных прямых, расположенных под углом 135° по отношению к средней линии. Так как при использовании метода SECSY не удается получить спектры с кросс-пиками, фаза которых соответствует фазе поглощения, то спектроскопия SECSY применяется в том случае, когда объем памяти для накопления данных в экспериментах COSY недостаточен. Метод cynep-SECSY является более чувствительным вариантом метода SECSY.

Первым из двумерных экспериментов, нашедших практическое применение, является разрешенная двумерная спектроскопия, в которой используется следующая импульсная последовательность: 90° – ti – 180° -1\ – сбор данных. J‑разрешенный спектр по информативности соответствует одномерному спектру, в котором мультиплеты повернуты перпендикулярно оси. Как и в одномерном случае, этот эксперимент можно использовать для исследования процессов химического обмена. Соответствующая импульсная последовательность приведена на рис. Внешний вид NOESY‑спектров совпадает с видом спектров, полученных по методу COSY, с той лишь разницей, что в данном случае кросс-пики не устанавливают соответствия между взаимодействующими спинами, а определяют, какие из спинов участвуют в обмене. Интенсивность этих кросс-пиков зависит от длительности тт выбранного периода смешивания. С ростом Тт интенсивность кросс-пиков непрерывно возрастает, достигает максимального значения, а затем снова уменьшается до нуля. Зависимость от времени при этом соответствует наблюдаемой в одномерном случае при обнаружении ЯЭО. При малых значениях интервала смешивания Тт для интенсивности кросс-пика /дв между линиями, которые соответствуют резонансу спинов А и В, справедлива формула


где IАВ обозначает расстояние между ядрами.

На практике используется две модификации спектроскопии NOESY. Эксперимент NOESY с подавлением интенсивности сигналов, расположенных на главной диагонали. Эксперимент ROESY, в котором проводится измерение ЯЭО во вращающейся системе координат. Иногда для этого эксперимента используется сокращение CAMELSPIN. Эксперимент полезен, если необходимо провести качественное отнесение линий в спектре, а эксперимент проводят в том случае, если времена корреляции Тс таковы, что в лабораторной системе координат ЯЭО практически не наблюдается.

2. Корреляция в гетероядерном случае

Гетероядерная корреляция, т.е. корреляция между одномерными спектрами ЯМР, полученными для разного сорта ядер, обладает рядом привлекательных свойств. Прежде всего, эти методы, как и большинство методов двумерной спектроскопии, приводят к улучшению разрешения в спектрах, т.е. позволяют провести отнесение линий в сложных перекрывающихся спектрах. Корреляция между двумя различными спектрами ЯМР, например, на ядрах № и 13 С облегчает отнесение линий в спектрах, так как в протонных спектрах содержится дополнительная информация о спектрах 13 С, и наоборот. Отнесение линий существенно упрощается, если проведено полное отнесение в спектре хотя бы одного из ядер. Двумерные корреляционные спектры могут быть дополнительно использованы также и для того, чтобы повысить чувствительность в спектрах ядер с низким естественным содержанием, т.е. повысить возможности детектирования ядер с низкой чувствительностью. Простейший вариант гетероядерного корреляционного эксперимента совершенно аналогичен эксперименту COSY: используемая в этом методе импульсная последовательность также состоит из двух 90°-ных импульсов, между которыми имеется интервал длительностью ц, причем импульсы подаются на частоте, соответствующей резонансу ядра I, а спад свободной индукции записывается в течение времени Я2. Различие состоит в том, что в момент, когда подается второй 90°-ный импульс на частоте резонанса ядра I, подается дополнительный 90°-ный импульс на частоте резонанса ядер 5. Отношение сигнал/шум, достигаемое при использовании различных методов, описывается следующим выражением:


Здесь уехс-гиромагнитное отношение ядерных спинов, которые возбуждаются в первом периоде эксперимента, до проведения наблюдения, a yobs – гиромагнитное отношение ядер, наблюдение которых проводится в данный момент. В экспериментах с накоплением данных необходимо учитывать и такие параметры, как время продольной релаксакции Туехс возбуждаемых спинов и интервал между импульсами TR.

Следовательно, наилучшее значение отношения сигнал/шум может быть достигнуто в таком эксперименте, в котором сначала осуществляется перенос поляризации от спинов с большим г к спинам с меньшим у, а затем, на стадии детектирования, осуществляется обратный перенос поляризации. В частности, для системы N-'rl оценка подформуле показывает, что теоретически чувствительность в спектрах N может быть увеличена примерно в 300 раз.

Читайте также: