Реферат на тему тугоплавкие металлы

Обновлено: 02.07.2024

Валентность переменчивая от 2 до 6 наиболее устойчив 6-валентный вольфрам 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют. Радиус атома вольфрама- 0,141 нм.

Кларк вольфрама земной коры составляет по Виноградову, 0,00013 г/т. его среднее содержание в горных породах, г/т: ультраосновных – 0,00001, основных – 0,00007, средних – 0,00012, кислых – 0,00019.

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1-2 %.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре ок. 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Вольфрам является одним из наиболее тяжелых и самым тугоплавким металлом. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 о С хорошо поддается ковке и может быть вытянут в тонкую нить.

Вольфрам имеет высокую стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в ангидрид вольфрамовой кислоты; в соляной, серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности. В смеси азотной плавиковой кислоты растворяется, образуя вольфрамовую кислоту. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфроматы, перекисные соединения с общей формулой ME2 WOX . Соединения с галогенами, серой и углеродом.

Вольфрам находит широкое применение в производстве сталей в качестве легирующей добавки, в твердых жаропрочных сплавах, в электротехнике, в производстве кислотоупорных и специальных сплавов, в химической промышленности.

Долгое время более 60 % вольфрама использовалось в металлургии для изготовления инструментальных, нержавеющих легированных и специальных сталей. Присадка вольфрама к стали 1-20 % придает ей прочность, твердость, тугоплавкость, самозакаливаемость, кислотоупорность, повышает предел упругости и сопротивление растяжению. В настоящее время 55 % вольфрама в виде карбида идет на изготовление твердых сплавов, используемых для буровых коронок фельер для волочения проволоки, штампов, пружин, деталей пневматических инструментов, клапанов двигателей. Твердые сплавы, состоящие из вольфрама (3-15 %), хрома (25-35 %) и кобальта (45-65 %) с примесью 0,5-2,7 % углерода, применяются для покрытия сильно изнашивающихся деталей. Сплавы вольфрама медью и серебром являются хорошими контактными материалами и применяются в рабочих частях рубильников, выключателей и др. Сплав вольфрама (85-95 %) с никелем и медью обладающий высокой плотностью, используется в радиотерапии для устройства защитных экранов от гамма лучей.

Металлический вольфрам применяется для изготовления нитей накаливания в электролампах, электродов для водородной сварки, заменяя платину, для нагревателей высокотемпературных электропечей, работающих при температуре свыше 3000 о С, термопар, роторов в гироскопах оптических пирометров для катодов рентгеновских трубок, электровакуумной аппаратуры, радиоприборов, выпрямителей и гальвонометров.


Диаграмма состояния системы железо - вольфрам - титан (Fe-W-Ti)

Диаграмма состояния системы хром-вольфрам (Cr-W)


Молибден принадлежит к малораспространённым элементам. Среднее содержание его в земной коре составляет 3*10-4%(по массе). Концентрация молибдена в рудах незначительна. Эксплуатируются руды, содержащие десятые и даже сотые доли процента молибдена.

Различают несколько видов молибденовых руд:

1. простые кварцево-молибденовые руды, в которых молибденит залегает в кварцевых жилах.

2. Кварцево-молибдено-вольфрамитовые руды, содержащие наряду с молибденитом вольфрамит.

3. Скарновые руды. В рудах этого типа молибденит часто с шеелитом и некоторыми сульфидами(перит, халькоперит) залегают в кварцевых жилах, заполняющих трещины в скарнах(окременённых известняках).

4. Медно-молибденовые руды, в которых молибденит сочетается с сульфидами меди и железа. Это наиболее важный источник получения молибдена.

Все способы получения вольфрама применимы и для получения молибдена. Трёхокись молибдена может быть восстановлена до металла водородом, углеродом и углесодержащими газами, а также металлотермическим методом алюминием и кремнием.

Промышленный способ производства чистого порошкообразного молибдена, превращаемого затем в компактный металл, состоит в восстановлении трехокиси молибдена водородом.

Чистую трехокись молибдена, необходимую для производства металла, получают прокаливанием при 450 – 500˚С парамолибдата аммония в муфельных печах с вращающейся трубой.

При восстановлении трёхокиси молибдена водородом отчётливо выявляются две стадии восстановления:

МоО3 + Н2 МоО2 + Н2О;

МоО2 + 2Н2 Мо + 2Н2О;

Промежуточные окислы( Мо4О 11 и др.), вероятно, образуются в результате вторичного взаимодействия между МоО3 и МоО2 .

Реакция первой стадии восстановления экзотермическая:

∆Н˚298 = -20,3ккал; ∆G˚= -21,289ккал.

Реакция второй стадии восстановления экзотермическая:

В соответствии с высокими значениями Кр первую стадию восстановления проводят при низких температурах 459 - 550˚С. вторую стадию вследствие малых значений Кр при высоких температурах(900 - 1100˚С) остроосушённым водородом.

Первую и вторую стадию восстановления ведут в печах с 9 – 11 трубами из хромоникелевой стали.

При 1000 - 1100˚С стойкость труб из хромоникелевой стали и нихромовых электронагревателей при соприкосновении с воздухом заметно снижается. Поэтому третье восстановление проводят в трубчатых печах с герметичным кожухом, заполненных водородом для защиты труб и нагревателей от окисления.

После третьего восстановления порошки молибдена содержат примерно 0,25 – 0,3% кислорода.

Средний размер частиц порошков молибдена 0,5-2мкм. Они мельче, чем частицы порошка вольфрама, что объясняется низкой температурой первой стадии восстановления, при которой окислы заметно не испаряются.

По физическим, механическим и химическим свойствам молибден (Мо) близок вольфраму (W), хотя несколько отличается от него.

Физические свойства Мо приведены ниже.

Молибден относится к тугоплавким металлам. Полее высокие точки плавления имеют только вольфрам, рений и тантал. Среди других физических свойств молибдена необходимо отметить высокую температуру кипения и электропроводность (меньше чем у меди, нобольше, чем у железа и никеля) и сравнительно малый коэффициент линейного расширениия( примерно 30% от коэфф расширения меди). Твёрдость и предел прочности ниже, чем у вольфрама. Он легче потдаётся обработке давлением. Механические свойства сильно зависят от чистоты металла и предшествующей механической и термической его обработки. Важное свойство молибдена – малое сечение захвата тепловых нейтронов, что делает возможным его применение в качестве кострукционного материала в ядерных реакторах.

На воздухе при обычной температуре Мо стоек. Легкое окисление наблюдается при 400˚С. выше 600˚С металл быстро окисляется с образованием МоО3 . пары воды выше 700˚С интенсивно окисляют Мо до двуокиси молибдена МоО2.

С водородом молибден химически не взаимодействует вплоть до плавления. Однако при нагревании металла во водороде происходит некоторое поглощение газа с образованием твёрдого растврора.

При обычной температуре молибден стоек в соляной и серных кислотах , но несколько растворяется при 80 - 100˚. Азотная кислота и царская водка медленно растворяют молибден на холоде и быстро при нагревании.

Металл растворяется в перекиси водорода с образованием пероксо кислот Н2МоО6 и Н2МоО11.

В плавиковой кислоте молибден устойчив, но в смеси ее с азотной кислотой быстро растворяется. Хорошим растворителем молибдена служит смесь пяти объёмов азотной кислоты, трёх объёмов серной кислоты, и двух объёмов воды. Эта смесь используется для растворения молибденовых кернов после навивки вольфрамовых спиралей.

В холодных растворах щелочей молибден стоек, но несколько разъедается горячими растворами. Металл интенсивно окисляется расплавленными щелочами, особенно в присутствии окислителей, образуя соли молибденовой кислоты.

По сочетанию свойств и доступности для практического применения имеют значение вольфрам, молибден, ниобий, тантал, ванадий и цирконий.

Необходимость применения в промышленности тугоплавких металлов определяется их специфическими свойствами — прочностью при повышенных температурах, коррозионной стойкостью в некоторых агрессивных средах и пр. Некоторые из основных свойств тугоплавких металлов приведены в таблице.

При изготовлении полуфабрикатов и изделий из тугоплавких металлов их необходимо изолировать от контакта с воздухом при всех операциях нагрева: изделия из тантала и ниобия — при 100°С и выше, из ванадия и циркония — при 250°С и выше, а из молибдена и вольфрама— при 500°С и выше.

При определенных условиях производства из тугоплавких металлов можно получать практически все виды металлических полуфабрикатов: поковки, штамповки, листы, фольгу, трубы, прутки, проволоку и т. п.

Тугоплавкие металлы могут работать в вакууме, в восстановительной и нейтральной атмосферах и в некоторых агрессивных и жидкометаллических средах. В окислительной атмосфере при высокой температуре тугоплавкие металлы не жаростойки; в этом случае их можно применять со специальным защитным покрытием.

Небольшие количества примесей внедрения — кислорода, азота, углерода (для ниобия и тантала и водород), а также таких примесей, как кремний, железо, никель, сера, висмут и др., заметно влияют на свойства (и особенно на пластичность) тугоплавких металлов.

Вольфрам и молибден охрупчиваются при незначительных количествах примесей. Наиболее вредно влияет кислород. Тантал и ниобий интенсивно поглощают газы, в результате чего они резко охрупчиваются. Ванадий окисляется при температуре выше 300°С. При повышении содержания газовых примесей пластичность ванадия резко снижается. Так, относительное удлинение ванадия, содержащего 0,12% углерода, 0,18% кислорода и 0,1% азота, равно нулю.

Среди тугоплавких металлов вольфрам имеет самые высокие значения температуры плавления, модуля упругости и коэффициента теплопроводности.

Основной способ получения вольфрама в компактном виде — сварка штабиков, сформированных из порошков (высокотемпературное спекание). Плавка вольфрама осуществляется в электродуговой и электроннолучевой печах в вакууме. Кроме того, вольфрам получают различными методами в виде монокристаллов. Вольфрам деформируется прессованием, ковкой, выдавливанием, прокаткой, волочением. Характер и степень обработки давлением поликристаллического вольфрама существенно влияют на его механические свойства. Горячую обработку вольфрама и его сплавов проводят при 1200—2000 °С, повторную деформацию — при 1200—1400°С. Температура конца деформации не должна быть ниже 600—800 °С. Нагрев под деформацию и промежуточные отжиги проводимость вольфрама значительно увеличивается. Так как вольфрам и его сплавы вследствие высокой теплопроводности обладают способностью быстро охлаждаться, их деформируют с минимальным количеством переходов — прессованием в контейнерах, штамповкой в закрытых штампах и на быстроходных машинах.

Пластической деформацией из вольфрама изготавливают прутки, листы, трубки, проволоку, фольгу, профиль. Вольфрам и его сплавы сравнительно устойчивы в различных газовых средах, кислотах и некоторых расплавленных металлах (натрий, галий, ртуть, висмут).

В целях повышения температуры рекристаллизации и улучшения эксплуатационных свойств изготавливают сплавы вольфрама с рением, окисью тория, окисью кремния, лантаном и другими добавками (сплавы BP , ВТ, ВА, ВЛ и пр.).

Вольфраморениевые сплавы, кроме того, обладают повышенной пластичностью и более низкой температурой перехода из пластичного в хрупкое состояние.

Вольфрам широко применяется в электроламповой, радиотехнической и электровакуумной промышленности (нити накаливания, катоды, нагреватели и экраны печей и другие детали).

Деформацию, термообработку я сварку молибдена следует проводить в вакууме, водороде или нейтральной среде. Первичная деформация литого металла рекомендуется при 1500—1600°С. Дальнейший передел заготовок из плавленого' металла не отличается от технологии передела спеченного металла и выполняется любым методом (ковкой, волочением, прокаткой, прессованием). Во всех случаях передела пластичность получаемых полуфабрикатов зависит от степени чистоты исходного металла и предохранения его от насыщения кислородом и азотом при деформации.

Термообработка молибдена состоит из отжига для снятия напряжений (900— 950°С) и рекристаллизационного отжига при 1200—2000°С.

Чистый рекристаллизованный молибден, изготовленный выплавкой или спеканием в вакууме, пластичен при комнатной температуре. Однако при недостаточной степени чистоты исходного молибдена или атмосферы печи при отжиге после полной рекристаллизации металла температура перехода его в хрупкое состояние может повышаться и резко снижается пластичность при комнатной температуре.

Высадку, гибку, отбортовку, глубокую вытяжку молибденовых листов толщиной менее 0,5 мм можно проводить при комнатной температуре, но лучшие результаты получаются при подогреве листа и инструмента. Заготовки толщиной более 0,5 мм штампуют при 200—700°С. Кратковременный нагрев до 300—400°С можно проводить на воздухе и в масляной ванне. При температуре выше 400°С заготовку нагревают в печи с защитной атмосферой. Детали из молибдена соединяют сваркой, пайкой или клепкой. Соединяемые сваркой поверхности должны быть чистыми, а в атмосфере, окружающей нагретый металл, не должно быть кислорода и азота. Сварку молибдена проводят в вакууме или в аргоне. При содержании в атмосфере сварочной камеры более 0,05% кислорода пластичность сварного соединения резко падает.

Листы толщиной более 0,5 мм и детали сваривают дуговой сваркой с вольфрамовым электродом или электронно-лучевым методом. При 150—200°С сварные соединения пластичны (угол загиба около 180°). Мелкие тонкостенные детали хорошо свариваются контактной сваркой.

В конструкциях, не требующих герметичности, можно соединять детали заклепками (из молибдена, тантала).

Молибден устойчив против воздействия соляной, фосфорной, серной кислот, растворов щелочей и многих расплавленных металлов: натрия, калия, лития, свинца, меди и др. Как и вольфрам, молибден инертен к водороду. Разрушающе действуют на молибден азотная кислота и расплавленные щелочи.

Молибденовые сплавы, имеющие промышленное значение, в основном малоле-гированы. Легирующими элементами, как правило, являются цирконий, титан, ниобий, тантал, образующие с молибденом в вводимых количествах твердые растворы. Малолегированные молибденовые сплавы упрочняются за счет нагартовки их в процессе изготовления полуфабрикатов посредством деформации.

НИОБИЙ. Удовлетворительная прочность, достаточно высокие значения жаропрочности, пластичности, высокая коррозионная стойкость в различных средах, высокая температура плавления и низкий температурный интервал перехода из пластичного состояния в хрупкое делают ниобий одним из перспективных тугоплавких металлов.

Недостаток ниобия — высокая окисляемоеть на воздухе и взаимодействие с водородом при сравнительно низких температурах. При 200°С начинает окисляться. С повышением температуры образуется высший окисел — пятиокись ниобия, что сопровождается увеличением объема примерно в 2,7 раза и вызывает растрескивание. При температуре 250°С ниобий активно взаимодействует с водородом с образованием гидридов. В результате насыщения водородом ниобий охрупчивается. При 1000°С и выше гидрид ниобия разлагается с выделением водорода. Ниобий получают плавлением в вакуумных электроннолучевых или дуговых печах. Механические свойства ниобия в значительной мере зависят от степени чистоты металла, состава и содержания примесей, метода изготовления и режимов предварительной обработки.

Особенность нелегированного ниобия — высокая пластичность и ударная вязкость в деформированном и рекристаллизован-ном состояниях.

Вследствие высокой природной пластичности ниобия к нему применимы все виды обработки давлением. Наиболее высокий запас пластичности у ниобия электроннолучевой плавки, пластичность ниобия дуговой плавки при всех температурах ниже. Запас пластичности ниобия дуговой плавки при осадке при комнатной температуре не превышает 10—20%. С повышением температуры до 1000°С пластичность увеличивается до 50—70%. Ниобий электроннолучевой плавки с меньшим содержанием примесей допускает деформацию осадкой более 80% при комнатной температуре.

Объемную штамповку ниобия и сплавов на его основе проводят из предварительно деформированных и рекристаллизованных заготовок, а листовую штамповку — при комнатной температуре. Заготовки из листов большой толщины и из наиболее прочных сплавов перед штамповкой нагревают.

Ниобий сваривают аргоно-дуговой сваркой. При толщине листа более 1 мм дуговую сварку осуществляют в камере с аргоном или электроннолучевой сваркой в вакууме. Точечную сварку листов толщиной менее 0,5 мм можно проводить на воздухе.

Ниобий применяют при изготовлении химического оборудования, электронно-вакуумных приборов и для производства различных коррозионностойких сплавов.

Наиболее пластичным из группы тугоплавких металлов является тантал. Он хорошо обрабатывается давлением всеми известными методами. В отличие от других тугоплавких металлов тантал достаточно пластичен при низкой температуре — вплоть до — 196°С. При деформации он нагартовывается медленнее, чем большинство металлов. Производится тантал методом порошковой металлургии путем формирования и последующего спекания в вакууме. Прочностные свойства тантала зависят от методов получения и обработки, а также от содержания примесей (азот, кислород, водород, углерод).

Тантал склонен к поглощению газов, в результате чего становится хрупким. Это свойство тантала успешно используется при применении его в качестве геттера. Он активно поглощает водород и азот. С водородом тантал образует гидриды. Максимально объем тантала поглощает более 700 объемов водорода. При 800—1000°С гидрид разлагается с выделением водорода.

При насыщении водородом тантал охрупчивается, возрастают его твердость и электросопротивление. Поэтому во всех случаях нагрева тантал необходимо изолировать от контакта с воздухом и водородом. Наиболее подходящая атмосфера при нагреве тантала для отжига — глубокий вакуум в агрегате, характеризующемся высокой герметичностью, а также в атмосфере чистого аргона или гелия.

При содержании кислорода до 1,2% (ат.) пластичность тантала снижается примерно в 3—4 раза. При этом резко возрастает твердость. При более высоком содержании кислорода пластичность тантала резко снижается и обработка его давлением затруднительна.

Чистый тантал хорошо подвергается гибке, выдавливанию и вытяжке при комнатной температуре. Сваривается тантал в вакууме или в нейтральной среде.

Тантал — один из коррозионностойких металлов. Он хорошо сопротивляется действию соляной и азотной кислот и щелочей.

Тантал применяется в ряде областей современной техники: химическом машиностроении, электронике, вакуумной технике, металлургии и других областях. Исключительно высокая химическая стойкость металла и хорошие коррозионные свойства позволяют применять тантал для изготовления кислотоупорной аппаратуры. Тантал применяется в электровакуумной технике как поглотитель остатков газов в электронных приборах.

Чистый ванадий обладает высокой пластичностью и хорошей способностью подвергаться всевозможным видам обработки давлением (ковке, штамповке, прокатке, прессованию, волочению и т. д.). Ванадий интенсивно взаимодействует с водородом, азотом, кислородом, углеродом. При нагреве до 200—400°С он поглощает водород с образованием гидрида, который в вакууме при температуре выше 400°С разлагается. На воздухе при температуре выше 300°С ванадий окисляется. При температуре 800—900°С в атмосфере азота ванадий образует нитрид.

Примеси углерода, кислорода, азота и водорода сильно влияют на механические свойства ванадия. При большом содержании примесей пластичность ванадия резко снижается. При нагревании ванадий сохраняет достаточно высокие прочностные характеристики до температуры 400— 500°С, свыше 600°С ванадий быстро разупрочняется.

Температура рекристаллизации ванадия высокой чистоты — в пределах 700—800°С. Горячую обработку давлением производят нагревом в атмосфере аргона и других инертных газов.

Ванадий обладает стойкостью к воздействию морской воды, разбавленной соляной кислоты, растворов щелочей. Из пластичного ванадия можно изготовлять листы, прутки, проволоку и т. п.

Металлический цирконий высокой чистоты обладает хорошей способностью к пластической деформации, удовлетворительными механическими свойствами, высокой температурой плавления, стойкостью против коррозии в химически агрессивных средах и к воздействию водяного пара и воды.

Цирконий активно поглощает газы — водород, кислород, азот. Благодаря способности поглощать газы цирконии обладает хорошими геттерными свойствами. С азотом до температуры 400—500°С цирконий реагирует медленно, но при 800—900°С взаимодействие настолько усиливается, что на поверхности металла образуется нитрид циркония. При 300—1000°С цирконий интенсивно поглощает водород, образуя гидрид. При продолжительном нагревании в вакууме выше 1000°С водород в противоположность азоту и кислороду можно полностью удалить из циркония

Теплоемкость и теплопроводность циркония с повышением температуры возрастают. Иодидный цирконий допускает ковку, прокатку и протяжку и по своим технологическим свойствам близок к меди. Механические свойства циркония в значительной мере зависят от способа получения металла, а также от содержания в нем примесей. Обрабатываемость циркония давлением значительно понижается в присутствии примесей.

Относительное удлинение циркония индукционной плавки в 2,5 раза меньше, чем у иодидного циркония. Примесь кислорода в количестве 0,1% увеличивает прочность при комнатной температуре в 1,5 раза. Из циркония получают листы трубы, прутки, профили и проволоку.

Отжиг тонких листов производят в вакууме. Деформированный цирконий полностью разупрочняется при температуре 600°С в течение нескольких минут.

Цирконий применяется в вакуумной технике, электротехнике, машиностроении, оптике и светотехнике. Благодаря высокой коррозионной стойкости в агрессивных средах цирконий и сплавы на его основе применяют в качестве конструкционных материалов в химическом машиностроении.

Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному. Основными представителями данного класса элементов являются элементы пятого периода — ниобий и молибден; шестого периода — тантал, вольфрам и рений

Содержание
Прикрепленные файлы: 1 файл

Реферат.docx

Свойства и применение тугоплавких металлов.

студент группы __________________________

Нижний Новгород 2014

Список используемой литературы……………………………………10

Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному. Основными представителями данного класса элементов являются элементы пятого периода — ниобий и молибден; шестого периода — тантал, вольфрам и рений. Все они имеют температуру плавления выше 2000 °C, химически относительно инертны и обладают повышенным показателем плотности. Благодаря порошковой металлургии из них можно получать детали для разных областей промышленности.

Большинство определений термина тугоплавкие металлы определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, что бы металлы имели температуру плавления выше 4,000 °F (2,200 °C). Это необходимо для их определения как тугоплавких металлов. Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные, в то время как более широкое определение этих металлов позволяет включить в этот список ещё и элементы имеющие температуру плавления 2123 K (1850 °C) — титан, ванадий, хром, цирконий, гафний, рутений и осмий. Трансурановые элементы (которые находятся за ураном, все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам.

Из тугоплавких металлов наибольшее применение в электротехнике получили вольфрам и молибден.

Вольфрам — химический элемент с атомным номером 74 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом W (лат. Wolframium). При нормальных условиях представляет собой твёрдый блестящий серебристо-серый переходный металл.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания. Также есть месторождения вольфрама в Армении и других странах.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре ок. 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

§2. Физические свойства

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C)[2]. Плотность чистого вольфрама составляет 19,25 г/см³[2]. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с.

Вольфрам является одним из наиболее тяжелых, твердых и самым тугоплавким металлом[3]. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

§3. Химические свойства

Проявляет валентность от 2 до 6. Наиболее устойчив 6-валентный вольфрам. 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют.

Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама (VI). Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти нерастворим. В азотной кислоте и царской водке окисляется с поверхности.

Легко растворяется в смеси азотной и плавиковой кислот:

Реагирует с расплавленными щелочами в присутствии окислителей:

Поначалу, данные реакции идут медленно, однако при достижении 400 °C (500 °C для реакции с участием кислорода) вольфрам начинает саморазогреваться и реакция протекает достаточно бурно, с образованием большого количества тепла.

В смеси азотной и плавиковой кислоты растворяется, образуя гексафторвольфрамовую кислоту H2[WF6]. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me2WOX, а также соединения с галогенами, серой и углеродом. Вольфраматы склонны к образованию полимерных анионов, в том числе гетерополисоединений с включением других переходных металлов.

Главное применение вольфрама — как основа тугоплавких материалов в металлургии.

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.

Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки.

Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.

Некоторые соединения вольфрама применяются как катализаторы и пигменты.

Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Известно около 20 минералов молибдена. Важнейшие из них: молибденит MoS2 (60 % Mo), повеллит СаМоО4 (48 % Мо), молибдит Fe(MoO4)3·nH2O (60 % Mo) и вульфенит PbMoO4.

§2. Физические свойства

Молибден — светло-серый металл с кубической объёмноцентрированной решёткой типа α-Fe (a = 3,14 Å; z = 2; пространственная группа Im3m), парамагнитен, шкала Мооса определяет его твердость 4.5 баллами[7]. Механические свойства, как и у большинства металлов, определяются чистотой металла и предшествующей механической и термической обработкой (чем чище металл, тем он мягче). Обладает крайне низким коэффициентом теплового расширения. Молибден является тугоплавким металлом c температурой плавления 2620 °C и температурой кипения — 4639 °C.

Тугоплавкие металлы были выделены в отдельный класс благодаря объединяющему их свойству — высокой температуре плавления. Она выше, чем у железа, которая равна 1539 °C. Поэтому металлы данной группы и получили такое название. Они принадлежат к числу так называемых редкоземельных элементов. Так, например, по распространённости в земной коре ниобий и тантал составляют 3%, а цирконий только 2%.

Тугоплавкие металлы

По температурному показателю плавления кроме перечисленных, к ним относятся металлы, так называемой платиновой группы. Ещё их называют благородными или драгоценными.

Определённая схожесть строения атома обусловила схожесть их свойств. На основании этого можно обобщить некоторые черты проявления таких металлов в земной коре и определиться с технологией их добычи, производства и переработки.

Свойства тугоплавких металлов

За счёт того, что они расположены в соседних группах периодической таблицы, физические свойства у тугоплавких металлов достаточно близкие:

  • Плотность металла колеблется в интервале от 6100 до 10000 кг/м 3 . По этому показателю выделяется только вольфрам. У него он равен 19000 кг/м 3 .
  • Температура плавления. Она превышает температуру плавления железа и колеблется от 1950 °С у ванадия до 3395 °С у вольфрама.
  • Удельная теплоёмкость у них незначительно отличается друг от друга и находится в пределах от 200 до 400 Дж/(кг-град).
  • Коэффициент теплопроводности сильно меняется от элемента к элементу. Если у ванадия он равен 31 Вт/(м-град), то у вольфрама он достигает величины в 188 Вт/(м-град).

Физические свойства тугоплавких металлов

Физические свойства тугоплавких металлов

Химические свойства также достаточно схожие:

  • Очень похожее строение атома.
  • Обладают высокой химической активностью. Это свойство определяет основные трудности при сохранении стабильности их соединений.
  • Прочность межатомных связей определяет высокую температуру плавления. Это обстоятельство объясняет высокую механическую прочность, твёрдость и электрические характеристики (в частности сопротивление).
  • Проявляют хорошую устойчивость при воздействии различных кислот.

К основным недостаткам тугоплавких металлов относятся:

  • Низкая коррозийная стойкость. Процесс окисления происходит достаточно быстро. Его разделяют на две последовательные стадии. Непосредственное взаимодействие металла с кислородом окружающего воздуха, что приводит к образованию оксидной плёнки. На второй стадии происходит процесс диффузии (проникновения) атомов кислорода через образовавшуюся оксидную плёнку.
  • Трудности со свариваемостью тугоплавких металлов. Это вызвано высокой химической активностью к окружающему воздуху при высоких температурах, хрупкостью при насыщении различными примесями. Кроме того, трудно определить точку перегрева и практически невозможно контролировать повышение предела текучести.
  • Трудности их получения использования в чистом виде без примесей.
  • Необходимость применения специальных покрытий от быстрого окисления. Для сплавов, основу которых составляет вольфрам и молибден, разработаны силицидные покрытия.
  • Трудности, связанные с механической обработкой. Для качественной обработки их сначала необходимо нагреть.

Производство тугоплавких металлов

Все способы производства тугоплавких металлов основаны на методиках так называемой порошковой металлургии. Сам процесс происходит в несколько этапов:

  1. На начальном этапе получают порошок металла.
  2. Затем методами химического восстановления (обычно аммонийных солей или оксидов) выделяют требуемый металл. Такое выделение получается в результате воздействия на порошок водорода.
  3. На завершающем этапе получают химическое соединение, называемое гексафторидом соответствующего металла, и уже из него сам металл.

Применение тугоплавких металлов

Начиная со второй половины двадцатого века тугоплавкие металлы стали применяться во многих отраслях промышленного производства. Порошки тугоплавких металлов используются для производства первичной продукции. Тугоплавкие металлы вырабатывают в виде проволоки, слитков, арматуры, прокатного металла и фольги.

Отдельное место такие металлы занимают в технологии выращивания лейкосапфиров. Они относятся к классу монокристаллов и называются искусственными рубинами.

Изделия из тугоплавких металлов входят в состав бытовых и промышленных электрических приборов, огнеупорных конструкций, деталей для двигателей авиационной и космической техники. Особое место занимают тугоплавкие металлы при производстве деталей сложной конфигурации.

Вольфрам

Этот металл открыли в далёком 1781 г. Его температура плавления равна 3380 °С. Поэтому он на сегодняшний день является самым тугоплавким металлом. Получают вольфрам из специального порошка, подвергая его химической обработке. Этот процесс основан на прессовании с последующим спеканием при высоких температурах. Далее его подвергают ковке и волочению на станках. Это связано с его наибольшей тугоплавкостью. Так получают волокнистую структуру (проволоку). Она достаточно прочная и практически не ломается. На конечном этапе его раскатывают в виде тонких нитей или гибкой ленты. Для проведения механической обработки необходимо создать защитную среду из инертного газа. В этой среде температура должна превышать 400 °С. При температуре окружающей среды он приобретает свойства парамагнетика. Ему присущи следующие недостатки:

  • сложность в создании условий для механической обработки;
  • быстрое образование на поверхности оксидных плёнок. Если в контакте имеются серосодержащие вещества, образуются сульфидные плёнки;
  • создание хорошего электрического контакта между несколькими деталями возможно только при создании большого давление.

Вольфрам

Для улучшения свойств вольфрама (тугоплавкости, устойчивости к коррозии, износостойкости) в него добавляют легирующие металлы. Например, рений и торий.

Металл используется для производства нитей накаливания для осветительных и сушильных ламп. Его добавляют в сварочные электроды, элементы электронных ламп и рентгеновских трубок. Также применяется при производстве элементов ракет, в реактивных двигателях, артиллерийских снарядах.

Молибден

По внешнему виду и характеристикам очень похож на вольфрам. Главным отличием является то, что его удельный вес почти в два раза меньше. Его получают аналогичным образом. Он широко применяется в радиоэлектронной промышленности, для изготовления различных испарителей в вакуумной технике, разрывных электрических контактов. Как и вольфрам, он является парамагнетиком. Для изготовления электродов стекловаренных (стеклоплавильных) печей он просто незаменим.

Ниобий

Температура плавления ниобия составляет 2741 °С. По своим химическим, физическим и механическим свойствам очень напоминает тантал. Он достаточно пластичен. Обладает хорошей свариваемостью и высокой теплопроводностью даже без дополнительного нагрева. Как и все остальные металлы его получают из порошка. Конечные заготовки из ниобия – проволока, лента, труба.

Ниобий

Сам металл и его сплавы демонстрируют эффект сверхпроводимости. Его широко применяют для изготовления анодов, экранных и антидинатронных сеток в электровакуумных приборах. Благодаря хорошей пористости, его успешно применяют в качестве газопоглотителей. В микроэлектронике он идёт на изготовление резисторов в микросхемах.

Ниобий хорошо себя проявил в качестве легирующей добавки. Используется при создании различных жаростойких конструкций, агрегатов работающих в агрессивных и радиоактивных средах. Из сплава стали и ниобия изготавливают некоторые элементы реактивных двигателей. Благодаря его свойству не взаимодействовать с радиоактивными веществами при высоких температурах, например, с ураном, применяется при изготовлении оболочек для урановых элементов, отводящих тепло в реакторах.

Тантал

Внешне имеет светло-серый цвет с небольшим голубоватым оттенком. Температура плавления близка к 3000 °С. Хорошо поддается основным видам обработки. Его можно ковать, прокатывать, производить волочение для изготовления проволоки. Эти операции не требуют значительного нагрева. Для удобства дальнейшего использования тантал изготавливают в форме фольги и тонких листов. Повышение температуры вызывает активное взаимодействие со всеми газами, кроме инертных – с ними никаких реакций не наблюдается.

Тантал

Из тантала производят внутренние элементы генераторных ламп (магнетронов и клистронов). Он активно используется при производстве пластин в электролитических конденсаторах. Очень удобен для изготовления пленочных резисторов. Активно применяется для изготовления так называемых лодочек в испарителях, в которых осуществляется термическое напыление различных материалов на тонкие пленки.

Ввиду ряда своих уникальных качеств, считается незаменимым в ядерной, аэрокосмической и радиоэлектронной промышленности.

Рений

Хром — уникальный металл. Широко применяется в промышленности благодаря своим замечательным свойствам: прочности, устойчивости к внешним воздействиям (нагреву и коррозии), пластичности. Достаточно твердый, но хрупкий металл. Имеет серо-стальной цвет. Весь необходимый хром извлекают из руды двух видов хромита железа или окиси хрома.

Основными его свойствами являются:

  • Даже при нормальной температуре обладает почти идеальным антиферромагнитным упорядочением. Это придаёт ему отличные магнитные свойства.
  • По-разному реагирует на воздействие водорода и азота. В первом случае сохраняет свою прочность. Во втором, становится хрупким и полностью теряет все свои пластические свойства.
  • Обладает высокой устойчивостью против коррозии. Это происходит благодаря тому, что при взаимодействии с кислородом на поверхности образуется тонкая защитная плёнка. Она служит для защиты от дальнейшей коррозии.

Кристаллы хрома

Он используется в металлургической, химической, строительной индустриях. Хром, как легирующая добавка, обязательно используется для производства различных марок нержавеющей стали. Особое место занимает при изготовлении такого материала как нихром. Этот материал способен выдерживать очень высокие температуры. Поэтому его используют в различных нагревательных элементах. Хромом активно покрывают поверхности различных деталей (металла, дерева, кожи). Это процесс осуществляется с помощью гальваники.

Токсичность некоторых солей хрома используют для сохранения древесины от повреждения, вредного воздействия грибков и плесени. Они также хорошо отпугивают муравьёв, термитов, насекомых разрушителей деревянных конструкций. Солями хрома обрабатывают кожу. Хром применяется при изготовлении различных красителей.

Благодаря высокой теплостойкости его используют как огнеупорный материал для доменных печей. Каталитические свойства соединений хрома успешно используют при переработке углеводородов. Его добавляют при производстве магнитных лент наивысшего качества. Именно он обеспечивает низкий коэффициент шума и широкую полосу пропускания.

Читайте также: