Реферат на тему случайные события

Обновлено: 05.07.2024

Невозможным событием — называется событие, которое при данном комплексе условий произойти не может. Если? конечно или счетное множество, то пространство элементарных событий называется дискретной. Принципиальная непредсказуемость результата отдельного вероятностного эксперимента (ВЭ). Описание задач с вероятностью должны быть описаны полностью. Все элементы вероятностного исхода — совместно… Читать ещё >

Лекция 1. Случайные события ( реферат , курсовая , диплом , контрольная )

Комплекс условий (КУ) — совокупность всех условий, при которых проходит эксперимент. Вероятностный эксперимент — эксперимент, дающий различные результат при повторении его при одном комплексе условий.

Эксперимент, результат которого повторяется при одном комплексе условий, называется детерминированным.

  • 1) Принципиальная непредсказуемость результата отдельного вероятностного эксперимента (ВЭ).
  • 2) Статистическая устойчивость — проявление некоторых закономерность в большем числе отдельных вероятностных экспериментах (ВЭ).

Математическая наука, изучающая закономерности случайных явлений независимо от их конкретной природы и дающая методы количественной оценки влияния случайных факторов на различные явления, называется — теория вероятности.

Случайным событием (СС) — теория вероятности называется всякий факт, который может иметь место в результате (исходе) некоторого вероятностного эксперимента. Обозначаются: (A, B, C, …).

Описание задач с вероятностью должны быть описаны полностью.

Достоверным событием (?) — называется событие, которое при данном комплексе условий обязательно происходит.

Невозможным событием — называется событие, которое при данном комплексе условий произойти не может.

Пусть A — некоторое случайное событие. !A — событие состоящее в том, что A не наступает. A и! A несовместное.

Все элементы вероятностного исхода — совместно несовместны.

Совокупность всех элементарных исходов, называется пространством элементарных событий (ПЭС). ПЭС — ?.

Если? конечно или счетное множество, то пространство элементарных событий называется дискретной.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Цель работы: донести до слушателя основные сведения об этой теории, показать, как правильно производить расчёты, как нужно рассуждать при решении задачи.

Задачи работы: рассказать о принципах теории, формулах вычисления вероятностей, интересных фактах и практическом применении.

Проблемные вопросы:

Чем занимается теория вероятностей?

Каковы её основные принципы?

С какими другими разделами математики граничит?

Где она применяется?

Актуальность исследования состоит в том, что теория вероятностей имеет практическое применение, в некоторых случаях может встретиться в обыденных ситуациях, таких как участие в лотерее, розыгрыш призов и пр.

Объект исследования: теория вероятностей как раздел математики.

Методы исследования: просмотр сайтов в Интернете, чтение книги, применение собственных знаний, полученных ранее.

Определение

Теория вероятностей – один из разделов математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр, таких как кости, рулетка и др.

Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Также важный вклад в развитие теории вероятностей внесли Якоб Бернулли, Пьер-Симон Лаплас, Симеон Пуассон и некоторые другие. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

hello_html_m2015dce5.jpg

Якоб Бернулли Пьер-Симон Лаплас Симеон Пуассон

27 декабря 1654 - 16 августа 1705 23 марта 1749 — 5 марта 1827 21 июня 1781, — 25 апреля 1840

Суть этого раздела математики

Теория вероятностей в общем виде показывает, каковы шансы определенного случая (на математическом языке такие случаи называются благоприятными исходами ). Например, у нас есть монета с орлом и решкой. Какова вероятность того, что, подкинув монету, выпадет орёл? Очевидно, что ½. А какова вероятность того, что выпадет решка? Опять же, ½. Как видим, шансы выпадения орла и решки равны. В таком случае говорят, что события равновероятны. В общем виде равновероятными событиями называются такие события, которые могут случиться с одинаковой вероятностью. Вот еще пример: игральная кость. Если она является правильной фигурой, и её грани отличаются лишь количеством очков, то вероятность выпадения любого числа равна 1/6.

hello_html_77baf36e.jpg

Результаты представлены в таблице:

Как мы знаем, ½ = 50%. Из таблицы видно, что с бОльшим числом бросков отношение выпавших решек и орлов к общему количеству бросков стремится к 50%, то есть к ½.

Комбинаторика и формулы

Определение комбинаторики как раздела математики довольно трудное для понимания, поэтому приведу несколько примеров, чтобы стало понятно, чем же она занимается. Также разберём некоторые формулы, которые помогут нам в дальнейшем.

Пример 1. У нас есть 2 книги, назовём их А и В. Сколько существует способов их размещения по порядку вертикально на пустой полке? Очевидно, можно поставить сначала А, потом В. Или же сначала В, потом А. А еще как-то можно? Нет, больше никак. Значит, существует 2 способа их размещения. Идём дальше.

Пример 3. В забеге участвуют 5 спортсменов. Сколько существует вариантов первых пришедших к финишу троек? Будем считать, что никакие 2 и более участников не пришли одновременно, и все дошли до финиша.

Где А – искомое число благоприятных исходов; n 1, n 2, n k – количество возможных отдельных событий (под каждым множителем стоит отдельное событие).

По формуле получаем: А (троек первых мест) = 5*4*3 = 60

В приведённых выше примерах порядок участников на пьедестале имел значение. Нам было важно, кто будет первым, вторым и третьим. Однако существуют ситуации, когда порядок выбора не важен, и на эти ситуации тоже есть своя формула. Снова для начала рассмотрим пример, затем – формулу.

hello_html_m49f0634a.jpg

Сократим числитель и знаменатель, получим 14*13*12*11 / 4*3*2*1

Продолжим преобразование: 7*13*11 = 1001

Как видим, число получилось намного меньше того, которое мы рассчитали вначале. Поэтому, следует различать случаи в комбинаторике, которые называются РАЗМЕЩЕНИЯМИ и СОЧЕТАНИЯМИ. Размещение требует учёта порядка каких-либо предметов (под этим словом будем понимать элементы множества , множество же – совокупность каких-либо предметов, объединённых общим свойством ); сочетание не требует порядка. Как видно из прошлого примера, это очень важно понимать. А чтобы выяснить, какой из этих случаев содержится в задаче, нужно просто немного подумать, логически поразмышлять: нужно ли учитывать порядок или нет ?

А теперь перейдём к формуле. Приводить ещё один пример не стану, остановимся на этом.

В общем виде выражение выглядит так: 14*13*12*…*5 / 10*9*8*…*1

В некоторых случаях удобно использовать факториал – произведение всех натуральных чисел от 1 до n включительно. Записывается факториал с помощью значка восклицательного знака (!). Например, факториал числа 4 пишется так: 4!. Применим это и к нашему выражению: 14*…*5/10!

Итак, чем же занимается комбинаторика? Комбинаторика занимается вычислением (нахождением) возможных исходов события. Это может помочь находить вероятности каких-либо исходов.

Как подсчитать вероятность?

Для того чтобы найти вероятность какого-либо случая, нужно тоже применять некоторые формулы. Но для начала разберём свойства в теории вероятностей, принимаемые как аксиомы.

1) Любая вероятность, принадлежащая данному множеству, больше либо равна 0.

2) Вероятность достоверного события равна 1.

3) Для совокупности несовместных событий из множества исходов случайного эксперимента справедливо следующее равенство:

где P ( S k ) – вероятность какого-либо события, S 1 , S 2 , S n – события какого-либо эксперимента.

Разберём эти аксиомы.

Первая гласит о том, что любая вероятность события либо равна 0, то есть событие невозможно, либо больше 0, т.е. событие может случиться.

Вторая говорит о том, что событие, которое произойдёт в абсолютно всех экспериментах, имеет вероятность, равную 1.

Третья аксиома о том, что вероятность некоторых несовместных событий (т.е. тех, которые не могут случиться в одних и тех же экспериментах одновременно) можно определить как сумму отдельных вероятностей этих событий. Например, вероятность того, что, подбросив игральный кубик, выпадет либо 1 очко, либо 2 очка, равна сумме отдельных вероятностей этих исходов:

P (1 или 2 очка) = P (1 очко) + P (2 очка) = 1/6 + 1/6 = 1/3

Исходя из этих аксиом, можно найти и другие важные свойства:

1) Вероятность какого-либо события равна 1 минус вероятность противоположного ему события:

где S a и S b – противоположные события.

2) Вероятность любого события меньше либо равна 1, так как достоверное событие обладает наибольшей вероятностью по определению, а оно равно 1.

3) Вероятность невозможного события равна 0:

P ( ) = 0,

где - невозможное событие.

4) Для двух произвольных событий определённого множества исходов какого-либо эксперимента справедливо следующее равенство:

где S 1 и S 2 – произвольные события, P ( S 1 ∪ S 2 ) – вероятность того, что произойдёт либо S 1 , либо S 2, P ( S 1 ⋂ S 2 ) – вероятность того, что эти два события произойдут одновременно.

Теперь, зная аксиомы и свойства событий и вероятностей, перейдём к рассмотрению примеров и формул, с помощью которых мы будем находить искомые вероятности.

hello_html_m377de328.jpg

Пример 1. Снова возьмём игральный кубик. Вероятность того, что выпадет 1 очко (равно как и 2 или 3 или 4 и т.д.), равна 1/6. Как мы нашли это число? Разделили число благоприятных исходов (а именно 1) на число всех возможных исходов (их 6). Чтобы понять, почему производились такие расчёты, давайте снова нарисуем чертёж. Мы знаем, что все исходы броска кубика равновероятны. Помним, что вероятность достоверного события равна 1. Получается, нахождение вероятности сводится к решению уравнения: 6х=1, где х – искомая вероятность. Отсюда х = 1/6.

Чтобы не прибегать к составлению уравнения и решению его, выведем формулу для подсчёта вероятности:

где n – число благоприятных исходов

m – число всех возможных исходов.

ак видим, нам нужно найти вероятность выпадения ОДНОЙ из ВСЕХ сторон, т.е. число благоприятных исходов равно 1, всех возможных – 6 (так как сторон в кубике 6). Отсюда получаем ту же самую вероятность, 1/6.

Если мы захотим рассчитать вероятность для выпадения либо 1, либо 2, либо 3 очков, можем сделать это с помощью тех же формул:

2) 1/6 + 1/6 + 1/6 = 1/2

Напомню, формулы из 3-ей аксиомы действует в том случае, если события НЕ могут произойти одновременно.

Итак, мы разобрали основные формулы нахождения общего числа исходов и вероятностей. С их помощью можно решать различные задачи, не забывая при этом, в каком случае мы применяем тут или иную формулу.

Практическое применение

Страхование

hello_html_34846a52.jpg

Как мы знаем, страховые компании выплачивают деньги застрахованному лицу, если произошёл какой-либо несчастный случай. Сумма, которую должен заплатить человек страховой компании и застраховать тем самым что-либо или кого-либо, рассчитывается определённым образом. Основой, на которую опираются страховые компании, является статистика - отрасль знаний, в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических данных. Эти данные несут информацию о том, сколько за прошедшее время произошло несчастных случаев одного вида (например, аварий, ДТП и пр.), вероятность того, что они произойдут и некоторые другие сведения. Таким образом, для подсчёта стоимости страхового полиса и компенсации, выплачиваемой страховой компанией, требуются накопленные ранее знания о случившихся несчастных случаях, о теории вероятностей и т.д.

Также применение теории вероятностей, статистики, различных таблиц используется, как я уже сказал, в медицине, в механике и инженерном деле. Например, таблицы смертности в медицине, срок полезного функционирования детали или механизма в механике, инженерии. Как видим, математика может пригодиться в вышеприведённых сферах государства, промышленности и т.д.

Интересные факты

Парадокс Монти Холла

hello_html_m3f2cdca1.jpg

Вы попали в финал телевизионного конкурса, и перед вами – три закрытые двери. За одной из них – главный приз, автомобиль, за двумя другими – козы. Нужно выбрать одну из трёх дверей. Когда вы указали на одну из дверей, ведущий должен открыть одну из оставшихся дверей, за которой находится коза. Он даёт вам шанс изменить выбор. Вы можете воспользоваться этим, а можете оставить своё решение без изменения. Как нам поступить, чтобы увеличить шансы на выигрыш? Или же они не изменятся, и от нашего решения вероятность не зависит?

Сперва покажется, что вероятность одинакова и равна ½. Рассуждения таковы: так как перед нами 2 закрытых дверей, и за одной из них находится приз, значит, мы можем с одинаковой вероятностью как выиграть, так и проиграть (не будем принимать козу за выигрыш). Но такой ход мыслей неверен. Рассуждения с математической точки зрения следующие: перед нами 3 двери, на каждую приходится вероятность выигрыша по 1/3. Когда мы выбираем дверь, ведущий показывает, за какой дверью приза нет. Значит, если он открыл именно эту дверь, то, скорее всего, приз находится за той, которую он не открыл. На эту невыбранную закрытую дверь приходится вероятность 2/3. Чтобы лучше понять эту ситуацию интуитивно, изменим количество дверей. Пусть их будет не 3, а 1000. Мы выбрали одну из них, вероятность победы – 1/1000. Ведущий убрал 998 дверей. Скорее всего, приз окажется за той дверью, которую он не открыл. Сначала была вероятность выигрыша 1/1000, теперь, изменив выбор, можно увеличить её на 998/1000. Я думаю, это число показывает, что выгоднее изменить выбор, нежели оставить. Напомню, он открывает только ту дверь или те двери, которые выбраны не были, и за которыми находятся коза или несколько коз. Для подтверждения этих рассуждений можно провести подобный опыт со своим напарником: взять, к примеру, 3 коробка от спичек, 2 монеты по 50 копеек и 1 монету в 1 рубль (можно взять и другие, лишь бы 2 были одинаковы, а 1 – либо больше, либо меньше). Один человек играет роль ведущего, другой – участника. Далее правила ясны: ведущий наугад располагает монеты под коробками, участник не знает, где какая монета. Игрок выбирает любой из них. Ведущий убирает тот коробок, под которым меньшая по достоинству монета, и который не был выбран игроком. Далее участник меняет свой выбор. Если он выиграл, на листок записать букву В, если проиграл – букву П. Желательно проводить этот опыт большое число раз (вспомните закон больших чисел: чем больше количество проводимых экспериментов, тем ближе практическая вероятность будет к теоретической). Лично я со своим папой однажды провёл его 50 раз. Получилось так, что выиграл 31 раз, а проиграл – 19. Не стоит забывать, что монеты желательно располагать в случайном порядке под коробками после проведения очередного опыта.

Парадокс о днях рождения

hello_html_5b2752d.jpg

В классе учатся 23 человека. Какова вероятность того, что хотя бы 2 ученика этого класса родились в один и тот же день?

В очередной раз интуиция подсказывает, что вероятность крайне мала. Но на самом деле это не так. Давайте разберёмся.

Примем, что число дней в году равно 365. Рассмотрим общую ситуацию для N человек, N не больше 365.

Возьмём первого человека, он мог родиться в любой из 365 дней, равно как и второй, третий и т.д. до N . Следовательно, число всех возможных вариантов дней рождений равно 365^ N . Из этих случаев найдём такие, в которых нет совпадающих дат рождения. В таких случаях первый человек мог родиться в любой из 365 дней, второй – в любой из 364, третий – в любой из 363 и т.д. до N человека, отмечающего день рождения в любой из 365 – N + 1 дней. Получается, что число случаев с несовпадающими датами рождения равно 365 * 364 * 363 * … * (365 – N + 1) = 365! / (365 – N )!

Напомню, что для нахождения вероятности нужно число благоприятных исходов разделить на число всех возможных исходов. Поэтому, вероятность того, что все ученики будут отмечать дни рождения в разные дни, равна

. Но нас интересует вероятность рождения как минимум 2 учеников в одинаковые дни. Так как найденная нами вероятность противоположна той, которую мы собираемся найти, то нам нужно из 1 вычесть это выражение, подставить вместо N число 23 и произвести расчёты.

При N = 23 вероятность равна 0,507, т.е. 50,7 %. Именно при этом значении вероятность больше 1/2. При N = 30 она становится больше 70 %, а при N = 45 она примерно равна 94 %. Не так уж всё и очевидно на первый взгляд!

Теория вероятностей – довольно интересный, хотя в некоторых случаях и непростой для понимания, раздел математики. Он связан со многими важными для общества отраслями: медициной, страхованием, статистикой и др. Для понимания теории вероятностей нужно владеть азами некоторых других разделов математики, таких как комбинаторика, теория множеств.

Как уже отмечалось в предисловии, теория вероятностей изучает массовые случайные явления. А что же такое случай? Как к нему относиться? Если нам повезло, говорим о счастливом случае, если нет, то это – несчастливый случай. Однако, в целом, к случайностям мы относимся отрицательно, поскольку заранее не знаем, как себя эта случайность проявит. Конечно, случайность портила и портит жизнь человека, но она ему и помогает. Для борьбы со случайностью разработаны эффективные методы. Выясняется, что описание и формализация случайности является одним из самых мощных инструментов научного описания мира.

Содержание

1. Операции над событиями
2. Элементы комбинаторики
3. Вычисление вероятностей событий
3.1. Классический метод вычисления вероятностей
3.2. Геометрический метод вычисления вероятностей
3.3. Статистический метод вычисления вероятностей
3.4. Условная вероятность
4. Формула полной вероятности и формула Байеса
5. Независимые испытания
6. Локальная теорема Муавра-Лапласа
7. Интегральная теорема Муавра-Лапласа
8. Формула Пуассона
9. Что такое задача, оценки, параметров, распределения?
10. Что такое задача проверки гипотез?

11. Список литературы.

Вложенные файлы: 1 файл

matan1.doc

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ им. Р. Е. АЛЕКСЕЕВА

Факультет Экономики менеджмента и Инноваций.

ПОНЯТИЕ СЛУЧАЙНОГО СОБЫТИЯ И ЕГО ВЕРОЯТНОСТИ

1. Операции над событиями

2. Элементы комбинаторики

3. Вычисление вероятностей событий

3.1. Классический метод вычисления вероятностей

3.2. Геометрический метод вычисления вероятностей

3.3. Статистический метод вычисления вероятностей

3.4. Условная вероятность

4. Формула полной вероятности и формула Байеса

5. Независимые испытания

6. Локальная теорема Муавра-Лапласа

7. Интегральная теорема Муавра-Лапласа

8. Формула Пуассона

9. Что такое задача, оценки, параметров, распределения?

10. Что такое задача проверки гипотез?

11. Список литературы.

ПОНЯТИЕ СЛУЧАЙНОГО СОБЫТИЯ И ЕГО ВЕРОЯТНОСТИ

Как уже отмечалось в предисловии, теория вероятностей изучает массовые случайные явления. А что же такое случай? Как к нему относиться? Если нам повезло, говорим о счастливом случае, если нет, то это – несчастливый случай. Однако, в целом, к случайностям мы относимся отрицательно, поскольку заранее не знаем, как себя эта случайность проявит. Конечно, случайность портила и портит жизнь человека, но она ему и помогает. Для борьбы со случайностью разработаны эффективные методы. Выясняется, что описание и формализация случайности является одним из самых мощных инструментов научного описания мира.

Под случаем мы обычно понимаем либо ограниченность необходимой информации, либо неумение её использовать, либо полное отсутствие информации (за исключением той информации, что она отсутствует). Итак, будем считать, что случай, случайность - понятия для нас интуитивно ясные.

Случайные события будем называть просто событиями, а их количественную оценку - вероятностью события, которая является числом из промежутка [0;1]. Прежде всего, мы научимся получать комбинации событий и вычислять соответствующие им вероятности. Это позволит нам адекватно оценить действительность, прогнозировать результаты, вырабатывать оптимальную стратегию поведения.

1. Операции над событиями

Первоначальным и, тем самым, математически неопределяемым понятием для нас, является пространство W случайных событий. Оно состоит из элементарных событий (точек) w1, w2, . wn,… представляющих неразложимый исход теоретического эксперимента. Количество точек из W может быть конечно или счетно. Стандартная запись: W=1, w2, . wn, . >. Любой конечный (или даже счетный) набор элементарных событий, например, Ì W, назовем случайным событием. Случайные события обозначают буквами: А, В, ….

Пусть A = Ì W. Будем говорить, что событие, A произошло, если наступило одно из элементарных событий, .

Объединением (суммой) двух событий А и В называется событие АÈВ, состоящее из элементарных событий, принадлежащих хотя бы одному из событий А или В.

Пересечением (произведением) событий А и В называется событие АÇВ, состоящее из элементарных событий, содержащихся одновременно в событиях А и В.

Дополнением (разностью) событий А и В называется событие А\В, состоящее из элементарных событий события А, не содержащихся в событии В.

Пусть A Ì W, тогда противоположным событию А называется событие Ì W, состоящее из элементарных событий пространства W, не содержащихся в событии А, то есть = W \ А.

Пусть А, В Ì W. Они образуют алгебру событий, если:

Кроме того, если выполнено условие

то имеем поле событий.

Очевидно обобщение на любое конечное число событий .

Событие, которое никогда не происходит (то есть не содержит ни одной точки), называется невозможным, обозначается символом Æ и

Событие А = W всегда происходит и называется достоверным, при этом полагаем `W = Æ.

События А1, А2 Ì W несовместны, если А1 Ç А2 = Æ (то есть события А1 и А2 не имеют общих точек).

События А1, А2, . Аn образуют полную группу, если W Í , а если Аi, i= 1, 2, …, n, попарно несовместные, то есть "i¹j , j = 1, 2, …, n, Аi Ç Аj = Æ, тогда = W.

Если каждое появление события А влечет за собой появление события В, то говорят, что А есть часть В, то есть А Ì В.

Многие задачи теории вероятностей содержат бесконечное число исходов (например, точки на отрезке прямой, поверхности и др.), и мы можем столкнуться с трудностями теоретического характера, если любое подмножество отрезка или поверхности будем считать событием. Чтобы их избежать, мы вводим специальный класс ℱ подмножеств, состоящий из несчетных множеств, где любое его подмножество есть событие. Формально это выглядит следующим образом.

Пусть пространство W - произвольное множество (в том числе, несчетное), а ℱ класс подмножеств из множества W.

ℱ называется s- алгеброй, если

Таким образом, алгебра событий замкнута относительно конечного числа теоретико-множественных операций (объединения, пересечения, отрицания), а s- алгебра замкнута относительно бесконечного числа этих операций.

Мерой или количественной оценкой случайных событий из W служит вероятность р – число, удовлетворяющее следующим аксиомам.

Аксиома 1. Любому событию А Ì W, удовлетворяющему условиям 1) – 3), поставлено в соответствие неотрицательное число p = Р < А >, называемое его вероятностью.

Аксиома 3. Если события А1, А2, . Аn, . попарно несовместны, то

Пространство W, с заданной на нем алгеброй (s - алгеброй) событий и определенной для каждого события вероятностью, которая удовлетворяет аксиомам 1-3, является центральным понятием, определяющим аксиоматический подход к построению теории вероятностей, введенный А.Н. Колмогоровым в 30-х годах прошлого века [2].

Определение. Тройку (W,ℱ,Р) будем называть вероятностным пространством.

Замечание. В данном курсе теории вероятностей мы обсуждаем только такие случаи, для которых любое подмножество W есть событие, а потому введение s- алгебры ℱ излишне. Однако в целях конструктивности изложения мы будем писать (W,ℱ,Р), подразумевая под вероятностным пространством (W, Р).

Следствия из аксиом

В самом деле, имеем W = W È Æ и W Ç Æ = Æ, то есть W и Æ несовместны.

Следовательно, 1 = Р < W >= Р < W È Æ >= < по аксиоме 3 >= Р + Р = 1 + Р < Æ >. Отсюда Р < Æ >= 0.

Если А Ì W, то Р = 1 – Р < A >.

Доказательство сразу следует из условия А È `A = W, А Ç `A = Æ.

Если А Ì W, то 0 £ Р < А >£ 1.

В самом деле, пусть события А и В независимы, тогда , но по условию . Получили противоречие, то есть А и В - зависимы.

Замечание 1. Понятие независимости в теории вероятностей имеет более глубокий смысл, чем независимость обычная. Принято считать события независимыми, если они не связаны причинно. На практике, понятие зависимости и независимости случайных событий относительно. Если события слабо связаны, и эта связь несущественно влияет на конечный результат, то такие события считают независимыми, поскольку в этом случае построение математических моделей реальных ситуаций становится много проще. Наиболее глубоко в теории вероятностей изучены именно независимые события.

Замечание 2. Из аксиоматического построения вероятности события следует, что событие случайно, если оно не достоверно и не невозможно. Это определение через отрицание и из него следует, что имеет смысл говорить о вероятности как о некотором определенном, но неизвестном нам числе. Утверждение, что вероятность события А существует, нуждается в обосновании, а если оно принято в качестве гипотезы, то в последующей проверке. Это следует учитывать при построении математических моделей реальных ситуаций.

Рассматривая вероятность события как число из промежутка [0,1], мы обычно предполагаем в какой его части это число будет находиться. И чем больше мы имеем информации о случайном событии, тем точнее предположение. Это позволяет нам определить вероятность как меру возможности (уверенности) появления случайного события.

Так впервые была формализована связь между случайным событием и числом, его измеряющим, – вероятностью.

2. Элементы комбинаторики

Комбинаторика – раздел математики, занимающийся решением задач, связанных с выбором и расположением элементов из некоторой совокупности.

В классической теории вероятностей комбинаторика, в основном, используется для выбора и подсчета числа комбинаций событий с идентичными свойства ми. Кроме того, первоначально комбинаторика применялась для нахождения вероятностей событий, обладающих различного вида симметриями.

Пример 1. Сколько существует различных k - мерных векторов, координаты которых составлены из чисел множества А = < 1, 2, . n >.

Решение. Будем исходить из того, что два вектора считаются равными, если соответствующие координаты представлены одинаковыми цифрами, иначе - различные.

Например, стрелок стреляет по мишени, разделенной на четыре области. Выстрел – это испытание. Попадание в определенную область мишени – событие.

События называют несовместным, если появление одного из них исключает появление других событий в одном и том же испытании.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

Пример. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу.

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

Пример. Появление того или иного числа очков на брошенной игральной кости – равновозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника и наличие очков не оказывает влияния на выпадение любой грани.

2.2 Определение вероятности

Вероятность – одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них – красные, 3 – синие и 1 – белый. Очевидно, возможность вынуть наудачу из урны цветной (т.е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

Поставим перед собой задачу дать количественную опенку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Элементарные исходы обозначим через w1, w2, w3 и т.д. В нашем примере возможны следующие 6 элементарных исходов: w1 – появился белый шар; w2, w3 – появился красный шар; w4, w5, w6 – появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию А (появлению цветного шара) следующие 5 исходов: w2, w3, w4, w5, w6.

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих А; в нашем примере А наблюдается, если наступит w2, или w3, w4, или w5, или w6. В этом смысле событие А подразделяется на несколько элементарных событий (w2, w3, w4, w5, w6); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (А) = 5/6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой:

Р(А) = m\n, где m – число элементарных исходов, благоприятствующих А, n – число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу.

Из определения вероятности вытекают следующие ее свойства:

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m=n следовательно,

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m\n < 1, следовательно,

Раздел: Математика
Количество знаков с пробелами: 24510
Количество таблиц: 0
Количество изображений: 0

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Теория вероятности — это отрасль математики, в которой исследуются законы случайных явлений: Случайные события, случайные переменные, их свойства и операции над ними.

Появление теории вероятностей как науки относится к средневековью и к первым попыткам математического анализа азартных игр (орлы, кости, рулетка). Первоначально его базовые понятия не имели строго математической формы, их можно было трактовать как некие эмпирические факты, как свойства реальных событий, и они формулировались в визуальных представлениях. Яков Бернулли внес важный вклад в теорию вероятности: он предоставил доказательства закона больших чисел в простейшем случае независимых тестов. В первой половине 19 века теория вероятности начала применяться для анализа ошибок наблюдения; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад в это дело внесли русские ученые П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В то время был доказан закон больших чисел, центральная предельная теорема и теория цепей Маркова. Современный тип теории вероятностей был выигран на основе аксиоматизации, предложенной Колмогоровым Андреем Николаевичем. В результате теория вероятностей приняла строгую математическую форму и в конечном итоге стала восприниматься как один из разделов математики.

Теория вероятности возникла как наука из убеждения, что массовые случайные события основываются на детерминистических законах. Теория вероятности исследует эти законы.

Тест представляет собой выполнение определенного набора условий, которые могут быть воспроизведены неограниченное количество раз. В этом случае набор условий включает случайные факторы, реализация которых приводит к неоднозначности результата теста для каждого теста.

Достоверный (всегда результат теста).

Невозможно (никогда не бывает).

Столь же вероятно (та же вероятность возникновения), менее вероятно и более вероятно.

Случайность (может произойти или не произойти в результате теста).

Например: Когда кубик брошен, невозможное событие — кубик стоит на краю, случайное событие — падение с любого края, случайность — кубик стоит на прямой кромке.

Определенный результат теста называется элементарным событием.

В результате проверки происходят только элементарные события.

Сочетание всех возможных, различных, специфических результатов испытаний называется элементарным пространством событий.

Набор элементарных событий — это пространство элементарных событий.

Сложное событие — это произвольное подмножество пространства элементарных событий.

Сложное тестовое событие возникает тогда и только тогда, когда тест приводит к элементарному событию, принадлежащему сложному событию.

Таким образом, если в результате теста может произойти только одно элементарное событие, то все сложные события, составляющие эти элементарные события, происходят.

Например: Тест — это бросок кубиков.

Введите следующие описания:

  • Р — случайное событие;
  • Рик — событие, заслуживающее доверия;
  • U — невозможное событие.

Классическое определение вероятности

Если пространство элементарных событий состоит из их конечного числа, то все элементарные события равны, т.е. ни одно из них не может быть предпочтительным перед тестом, поэтому их можно считать равными.

Если элементарные события равны и, следовательно, равны, то вероятность наступления произвольного события равна доле, числитель которой равен количеству элементарных событий, содержащихся в спецификации, и знаменателем которой является общее количество элементарных событий. Такое определение вероятности впервые дано в работах французского математика Лапласа и считается классическим.

Вероятное событие находится между нулем и единицей.

2o P(E)=1 Вероятность надежного события равна единице.

3o P(U)=0 Вероятность невозможного события равна нулю.

Рассмотрим случайный эксперимент, который может закончиться одним из возможных исходов, все из которых одинаково вероятны.

Бросаются сразу три монеты.

Определите вероятность этого:

  • 3 орла выпадут;
  • 2 орла и 1 хвост выпадут
  • две балки и выпал орел
  • Три батончика выпадают.

Частота наступления события

Пространство элементарных событий должно естественным образом состоять из m элементарных событий. В этом случае в качестве возможных результатов тестирования рассматриваются многие подмножества пространства элементарных событий и невозможное событие V.

Назовем систему этих событий F. Возьмем случайное событие A F. Выполним серию тестов в количестве n, где n — это количество тестов в каждом из которых произошло событие A.

Частота наступления события A в n экспериментах — это отношение числа наступлений этого события к общему числу проведенных экспериментов.

Разрешите результат теста для случая А. Подводя итог, можно сказать, что в этом тесте произошло событие Аи. Так как все события несовместимы парами, это означает, что никакое другое событие Aj (i j ) не может произойти в этом тесте.

С помощью теории вероятности описываются только те те тесты, для которых сделано следующее предположение: Для каждого события А частота, с которой это событие происходит в бесконечной серии тестов, имеет один и тот же предел, который называется вероятностью наступления события А.

Поэтому, когда мы рассматриваем вероятность возникновения произвольного события, то понимаем это число следующим образом: Это частота возникновения события в бесконечной (достаточно длинной) серии тестов.

К сожалению, попытка определить вероятность как предел частоты не увенчалась успехом, а количество тестов нацелилось на бесконечность. Хотя американский ученый Мизес создал теорию вероятности на основе этого определения, она не была принята из-за большого количества внутренних логических противоречий.

В повседневной жизни мы часто сталкиваемся с проблемами, для которых есть не одно, а несколько различных решений. Для принятия правильных решений очень важно не пропустить ни одного из них. Для этого необходимо просмотреть все возможные варианты или, по крайней мере, рассчитать их количество. Такие задачи называются комбинаторными.

Но прежде чем мы обратимся к задаче, мы должны познакомиться с комбинаторными элементами.

Однако существует единый подход к решению разнообразных комбинаторных задач путем создания специальных правил. Внешне эта схема напоминает дерево, отсюда и название — дерево возможных вариантов. Если дерево построено правильно, то ни один из возможных вариантов решения не теряется.

Рассмотрим это в качестве примера для следующей задачи: Сколько двухзначных чисел я могу сформировать из цифр 1, 4 и 7?

Может существовать огороженная территория G, в которой находится территория g. Точка А спонтанно расположена в области G. Эта точка может войти в область g. В этом случае вероятность того, что точка A войдет в область g, определяется по формуле.

Вероятности, определяемые измерениями, называются геометрическими.

Существует целый ряд задач, где, как говорят математики, определение вероятности случайного события может быть подведено по-разному по геометрическим соображениям.

Операции по событиям

С-событие называется суммой A+B, если оно состоит из всех элементарных событий, которые содержатся как в A, так и в B

В этом случае, если элементарное событие происходит как в A, так и в B, то оно происходит один раз в C. В результате теста возникает событие С, когда событие происходит либо в A, либо в B. Сумма любого количества событий состоит из всех элементарных событий, содержащихся в одном из Ай, i=1, …, m.

Событие С называется растением А и В, если оно состоит из всех элементарных событий, которые содержатся как в А, так и в В. Работа с любым количеством событий — это событие, состоящее из элементарных событий, которые содержатся во всех Ai, i=1, …, m.

Различие событий A-B называется событием C, которое состоит из всех элементарных событий, входящих в A, но не входящих в B.

Событие называется противоположным событию A, если оно соответствует двум характеристикам.

События A и B называются несовместимыми, если они никогда не могут произойти в результате одного и того же теста и если они не имеют одинаковых элементарных событий.

События A и B считаются независимыми, если вероятность наступления одного события не зависит от наступления другого.

Заключение

Теория вероятности применялась не только в математике, но и в таких науках, как физика и статистика.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: