Реферат на тему шероховатость поверхности

Обновлено: 05.07.2024

При конструировании машины одновременно должны решаться две основные задачи:
1. Создание машины, в полной мере отвечающей эксплуатационным требованиям.
2. Создание машины, наиболее экономичной в изготовлении и эксплуатации.
При конструировании изделия конструктор должен предусматривать возможный метод получения заготовки каждой детали. В ряде случаев конструктор принимает во внимание специфические требования технологии термической обработки, а также требования технологии окраски деталей. При конструировании изделия и его деталей учитывают также особенности механической обработки деталей и сборки.

Содержание

1 Технологический раздел…………………………………………………………………
1.1 Назначение и конструкция обрабатываемой детали………………
1.2 Определение типа производства……………………………………………………………
1.3 Анализ технологичности конструкции детали……………………………
1.4 Выбор и технико-экономическое обоснование
метода получения заготовки……………………………………………………………………………
1.5 Анализ базового и технико-экономическое
обоснование предлагаемого вариантов технологического
процесса обработки детали………………………………………………………………………………
1.6 Расчет припусков на механическую обработку…………………………
1.7 Расчет режимов резания………………………………………………………………………………
1.8 Техническое нормирование…………………………………………………………………………
1.9 Выбор оборудования и расчет его количества…………………………
1.10 Обоснование выбора транспортных средств цеха…………………
1.11 Уточнение типа производства и установление
его организационной формы…………………………………………………………………………………
2 Конструкторский раздел………………………………………………………………………
2.1 Кондуктор поворотный……………………………………………………………………………………
2.1.1 Назначение и описание работы приспособления………………
2.1.2 Расчет приспособления на точность…………………………………………
2.1.3 Расчет необходимого усилия зажима…………………………………………
2.1.4 Расчет элементов приспособления на прочность……………
2.2 Приспособление для контроля биения ступицы шкива…………
2.2.1 Назначение и описание работы приспособления………………
2.2.2 Расчет приспособления на точность…………………………………………
3 Исследовательский раздел…………………………………………………………………
3.1 Основные факторы, влияющие на точность обработки…………
3.2 Методы получения размеров…………………………………………………………………………
3.3 Технологические факторы, влияющие на точность обработки…………………………………………………………………………………………………………………………………………………
3.4 Технологическая точность при различных способах обработки…………………………………………………………………………………………………………………………………………
3.5Шероховатость поверхностей………………………………………………………………………… 3.6 Шероховатость как геометрическое состояние поверхности……………………………………………………………………………………………………………………………………………
3.7 Параметры для нормирования шероховатости поверхности………………………………………………………………………………………………………………………………………
Выводы…………………………………………………………………………………………………………………
Литература………………………………………………………………………………………………………………

Прикрепленные файлы: 1 файл

пояснительная записка.DOC

1.1 Назначение и конструкция обрабатываемой детали………………

1.2 Определение типа производства………………………………… …………………………

1.3 Анализ технологичности конструкции детали……………………………

1.4 Выбор и технико-экономическое обоснование

1.5 Анализ базового и технико- экономическое

обоснование предлагаемого вариантов технологического

1.6 Расчет припусков на механическую обработку…………………………

1.9 Выбор оборудования и расчет его количества…………………………

1.10 Обоснование выбора транспортных средств цеха…………………

1.11 Уточнение типа производства и установление

2.1.1 Назначение и описание работы приспособления………………

2.1.2 Расчет приспособления на точность…………………………………………

2.1.3 Расчет необходимого усилия зажима…………………………………………

2.1.4 Расчет элементов приспособления на прочность……………

2.2 Приспособление для контроля биения ступицы шкива…………

2.2.1 Назначение и описание работы приспособления………………

2.2.2 Расчет приспособления на точность…………………………………………

3.1 Основные факторы, влияющие на точность обработки…………

3.4 Технологическая точность при различных способах обработки……………………………………………………… ……………………………………………………………………………… …

3.5Шероховатость поверхностей… ……………………………………………………………………… 3.6 Шероховатость как геометрическое состояние поверхности………………………………………………… ……………………………………………………………………………… …………

3.7 Параметры для нормирования шероховатости поверхности………………………………………………… ……………………………………………………………………………… ……

Приложение Б (обязательное) – Приспособление для притупления острых кромок отверстий ступицы шкива (спецификация)……………… ……………………………………………………………………………… ………………………………………

Приложение В (обязательное) – Приспособление для контроля биения ступицы шкива (спецификация)……………………………………….

Конструирование машин независимо от того, выполняется оно студентом или опытным инженером, — процесс творческий. Каждая конструкторская задача, как правило, имеет много решений. Опираясь на имеющиеся теоретические знания и практический опыт, конструктор должен выбрать из многих возможных решений одно, наилучшее. При этом ему приходится принимать во внимание часто противоречивые технологические и эксплуатационные требования, предъявляемые к проектируемому изданию. Нередко правильное решение может быть принято только после проведения сравнительных технико-экономических расчетов по конкурирующим конструктивным вариантам.

При конструировании машины одновременно должны решаться две основные задачи:

1. Создание машины, в полной мере отвечающей эксплуатационным требованиям.

2. Создание машины, наиболее экономичной в изготовлении и эксплуатации.

При конструировании изделия конструктор должен предусматривать возможный метод получения заготовки каждой детали. В ряде случаев конструктор принимает во внимание специфические требования технологии термической обработки, а также требования технологии окраски деталей. При конструировании изделия и его деталей учитывают также особенности механической обработки деталей и сборки.

Все перечисленные и другие требования технологии оказывают вполне определенное влияние на конструкцию изделия и его деталей. Поэтому общепризнанной является связь между конструкцией изделия и технологией его изготовления.

С другой стороны, известно, что технологический процесс любого вида (получение заготовок, механическая обработка, сборка и др.) зависит не только от конструкции изделия, но и от предполагаемого количественного выпуска изделий в единицу времени, т. е. от объема выпуска изделий. При единичном и мелкосерийном выпуске экономически оправдано определенное число пригоночных операций на сборке: подрубка, припиловка, шабрение и т. п. В крупносерийном и массовом производстве пригоночные операции нежелательны.

При единичном производстве широкое применение находят сварные детали простой формы и поковки, полученные ковкой. При массовом производстве широко применяют различные виды точного литья (кокильное, центробежное, по выплавляемым моделям, литье в оболочковые формы и др.), а также горячая и холодная штамповка, высадка, чеканка, штампосварка и др.

Механическую обработку деталей изделия единичного производства выполняют на универсальном оборудовании простейшим инструментом и (за редким исключением) без специальных приспособлений.

При крупносерийном и массовом производстве широкое применение находят специальное оборудование, а также специальные приспособления и инструмент, которые предъявляют свои специфические требования к конструкции изделия. Поэтому изделия единичного или мелкосерийного выпуска конструктивно отличаются от изделий массового выпуска. Следовательно, объем выпуска, технология и конструкция изделия находятся в тесной взаимосвязи.

Очевидно, что в современных условиях для создания технически грамотной конструкции изделия необходимо при его конструировании одновременно обеспечивать высокие эксплуатационные показатели и высокую степень технологичности его конструкции. Таким образом, готовый проект должен отвечать вполне определенным техническим требованиям, основные из которых можно сформулировать следующим образом:

1. Обоснование применения каждого механизма, каждой детали механизма, каждого элемента конструируемой детали.

2. Учет основных требований технологии сборки и разборки:

а) удобство сборки и регулировки;

б) удобство разборки;

в) уменьшение объема ручных пригоночных операций на сборке;

г) уменьшение цикла сборки.

3. Соответствие конструктивных форм детали условиям технологии получения заготовки и технологии механической ее обработки при заданном объеме выпуска. Основными видами заготовок являются:

а) отливки из чугуна, стали, цветных металлов;

в) поковки из стали, получаемые ковкой и штамповкой;

г) сварные заготовки.

4. Экономное расходование материалов и особенно металла. Требуемой прочности и жесткости деталей следует достигать введением ребер жесткости и рациональным распределением металла в детали, а не увеличением толщины стенок. В ненагруженной или малонагруженной зоне детали нужно делать окна и выемки для более равномерного нагружения материала. Следует вместо металла применять, где возможно, пластмассу и другие неметаллические материалы. Везде, где это целесообразно, следует вместо стали использовать чугун, вместо дорогих высококачественных сталей - простые углеродистые, применять сборные конструкции деталей (центр из чугуна, зубчатый венец из стали, бронзы и т. п.).

5. Широкое использование стандартных узлов и деталей. Изготовление специальной детали и узла обходится в несколько раз дороже стандартной. Поэтому, где возможно, следует применять стандартные муфты, тормоза, подшипники, смазочную аппаратуру (насосы, фильтры, масленки, ниппели), крепежные детали, детали управления (рукоятки, маховички) и др.

6. Надежность смазки всех трущихся поверхностей деталей. При конструировании следует предусматривать возможность подвода смазки ко всем трущимся поверхностям.

7. Обеспечение достаточных расстояний между деталями. Слишком малые расстояния недопустимы из-за опасности задевания деталей друг за друга, слишком большие нежелательны из-за увеличения размеров и массы узла.

Весьма актуальна проблема повышения и технологического обеспечения точности в машиностроении. Точность в машиностроении имеет большое значение для повышения эксплуатационных качеств машины и технологии их производства. Решение вопросов точности должно решаться комплексно. Так повышение точности механической обработки снижает трудоемкость сборки в результате устранения пригоночных работ и обеспечения взаимозаменяемости деталей изделия.

Содержание

1. Введение
2. Определения и основные понятия.
3. Параметры оценки и измерение шероховатости поверхности.
4. Влияние качества поверхности на эксплуатационные свойства деталей машин.
5. Методы и средства оценки шероховатости.
6. Зависимость шероховатости поверхностей и точности от видов обработки.
7. Список литературы.

Работа содержит 1 файл

Шероховатость поверхностей.doc

2. Определения и основные понятия.

3. Параметры оценки и измерение шероховатости поверхности.

4. Влияние качества поверхности на эксплуатационные свойства деталей машин.

5. Методы и средства оценки шероховатости.

6. Зависимость шероховатости поверхностей и точности от видов обработки.

7. Список литературы.

Машиностроение - важнейшая отрасль промышленности Его продукция - машины различного назначения поставлятся всем отраслям народного хозяйства

Весьма актуальна проблема повышения и технологического обеспечения точности в машиностроении. Точность в машиностроении имеет большое значение для повышения эксплуатационных качеств машины и технологии их производства. Решение вопросов точности должно решаться комплексно. Так повышение точности механической обработки снижает трудоемкость сборки в результате устранения пригоночных работ и обеспечения взаимозаменяемости деталей изделия. Особое значение имеет точность при автоматизации производства. С развитием автоматизации производства проблема получения продукции высокого качества становится все более актуальной. Ее решение должно базироваться на глубоком исследовании технологических факторов.

Из изложенного выше следует, что установление заданной точности - от-ветственная задача конструктора. Точность должна назначаться на основе анализа условий работы машины с учетом экономики ее изготовления и последующей эксплуатации.

2 Определения и основные понятия

Эксплуатационные свойства деталей машин и долговечность их работы в значительной степени зависят от состояния их поверхности.

В отличие от теоретической поверхности деталей, изображаемых на чертеже, реальная поверхность всегда имеет неровности различной формы и высоты, образующиеся в процессе обработки.

Высота, форма, характер расположения и направление неровностей поверхностей обрабатываемых заготовок зависят от ряда причин:

режима обработки, условий охлаждения и смазки режущего инстру­мента, химического состава и микроструктуры обрабатываемого ма­териала, конструкции, геометрии и режущей способности инстру­мента, типа и состояния оборудования, вспомогательного инструмента и приспособлений.

Различают следующие отклонения от теоретической поверхности:

макрогеометрические, волнистость и микрогеометрические.

Макрогеометрические отклонения — единич­ные, не повторяющиеся регулярно отклонения от теоретической формы поверхности, характеризующиеся большим отношением протяженно­сти поверхности L к величине отклонения h, которое больше 1000.

Макрогеометрические отклонения характеризуют овальность, конусообразность и другие отклонения от правильной геометрической формы.

Волнистость поверхности представляет собой сово­купность периодически чередующихся возвышений и впадин с отно­шением шага волны L/h =50…1000. Волнистость является следствием вибрации системы СПИД, а также неравномерности процесса резания.

Микрогеометрические отклонения, или микро­неровности, образуются при обработке заготовок в результате воздей­ствия режущей кромки инструмента на обрабатываемую поверхность, а также вследствие пластической деформации обрабатываемого мате­риала в процессе резания.

Микронеровности определяют шероховатость (негладкость) обра­ботанной поверхности.

Микрогеометрические отклонения характеризуются небольшим зна­чением отношения шага микронеровностей S к их высоте h

Характер и расположение микронеровностей зависят от направле­ния главного движения при резании и направления движения подачи.

Поперечная шероховатость образуется в направлении, перпендику­лярном движению режущего инструмента, а продольная — в парал­лельном направлении. По ГОСТ 2789—59 шероховатость измеряется в направлении, дающем наибольшее значение шероховатости. Как правило, этим условиям соответствует поперечная шероховатость.

Этим же ГОСТом установлены следующие определения, относя­щиеся к шероховатости поверхностей (рисунок 1):

- реальная поверхность — поверхность, ограничиваю­щая тело и отделяющая его от окружающей среды;

- неровности — выступы и впадины реальной поверхности;

- геометрическая поверхность 1 — по­верхность заданной геометри­ческой формы, не имеющая неровностей и отклонений формы;

- измеренная поверхность 2 — поверх­ность, воспроизведенная в ре­зультате измерения реальной поверхности;

- реальный про­филь — сечение реальной поверхности плоскостью, ори­ентированной в заданном направлении по отношению к геометрической поверхности;

- геометрический профиль 3 — сечение геометриче­ской поверхности плоскостью, ориентированной в заданном направ­лении по отношению к этой поверхности;

- измеренный профиль 4 — сечение измеренной поверх­ности плоскостью, ориентированной в заданном направлении по от­ношению к геометрической поверхности.

Графическое изображение измеренного профиля называется профилограммой.

3 Параметры оценки и измерение шероховатости поверхности

Для оценки шероховатости поверхности ГОСТ 2789—59 установ­лены следующие два параметра: среднее арифметическое отклонение профиля -Ra и высота неровностей -R z.

Среднее арифметическое отклонение про­филя Ra есть среднее значение расстояний (у1, у2, . уn ) точек изме­ренного профиля до его средней линии (рисунок 2):

где уi - абсолютные (без учета алгебраического знака) расстояния до средней линии;

n — число измеренных отклонений.

Средняя линия профиля делит измеряемый профиль таким об­разом, что в пределах длины участка поверхности, выбираемого для измерения шероховатости, сумма квадратов расстояний (у1, у2, . уn ) точек профиля для этой линии минимальна.

При определении положения средней линии на профилограмме можно использовать следующее условие: средняя линия должна иметь направление измеренного профиля и делить его таким образом, чтобы в пределах базовой длины l площади F по обеим сторонам от этой ли­

нии до линии профиля были равны между собой

Длина участка поверхности, выбираемая для измерения шерохо­ватости, называется базовой длиной и обозначается l.

Высота неровностей R z характеризует среднее расстоя­ние между находящимися в пределах базовой длины пятью высшими точками выступов и пятью низшими точками впадин, измеренное от линии, параллельной средней линии (см. рисунок 2),

R z =((h1+h3+…+h9) - (h2+h4+…+h10))/5 (4)

где h1, h3, …, h9—расстояние от высших точек выступов до линии, параллельной средней линии;

h2,h4,…,h10— расстояние от низших точек впадин до линии,параллельной средней линии.

По ГОСТ 2789—59 шероховатость поверхности — это совокупность неровностей с относительно малыми шагами (расстоянием между вершинами характерных неровностей измеренного профиля), образую­щих рельеф поверхности и рассматриваемых в пределах участка, длина которого выбирается в зависимости от характера поверхности и равна базовой длине.

Шероховатость поверхности появляется в результате обработки независимо от метода и представляет собой сочетание наложенных друг на друга неровностей с различными шагами.

ГОСТ 2789—59 установлены следующие значения базовых длин:0,08; 0,25; 0,8; 2,5; 8 и 25 мм, а также 14 классов чистоты поверхности.

Шероховатость поверхности следует измерять в направлении, которое дает наибольшее значение Ra или R z ,если заранее не указано какое-либо другое определенное направление измерения шерохова­тости.

Различные дефекты поверхности (царапины, раковины и т. п.) при измерении шероховатости не учитывают.

4 Влияние качества поверхности на

Как указывалось выше, на эксплуатационные свойства деталей машин существенно влияет шероховатость обработанной поверхности, но не во всех случаях чисто обработанная поверхность является наи­более износоустойчивой, так как удержание смазки на поверхности деталей при различных условиях трения (в зависимости от нагрузки, скорости, материала сопрягаемых деталей и др.) зависит от микро­неровностей поверхностей. Поэтому в зависимости от конкретных усло­вий трения устанавливают оптимальную шероховатость поверхности.

На износоустойчивость поверхности влияют сопротивляемость поверхностного слоя разрушению и макрогеометрические отклонения, т. е. отклонения от геометрической формы, которые приводят к нерав­номерному износу отдельных участков.

Волнистость приводит к увеличению удельного давления, так как трущиеся поверхности соприкасаются с выступами волн; то же проис­ходит и при микронеровностях поверхностей, причем выступы микро­неровностей могут деформироваться — сминаться или даже срезаться при движении одной трущейся поверхности относительно другой.Вершины микронеровностей могут вызывать разрывы масляной пленки, вследствие чего в местах разрывов создается сухое трение.

Во многих случаях прочность деталей машин зависит также от чистоты обработки. Установлено, что наличие рисок, глубоких и ост­рых царапин создает очаги концентрации внутренних напряжений, которые в дальнейшем приводят к разрушению детали. Такими оча­гами могут являться также впадины между гребешками микронеров­ностей. Это не относится к деталям, изготовляемым из чугунов и цвет­ных сплавов, в которых концентрация напряжений возможна в мень­шей степени.

Прочность прессовых соединений также зависит от шероховатости и особенно от высоты микронеровностей; при запрессовке одной детали в другую фактическая величина натяга зависит от шероховатости поверхности и отличается от величины натяга при запрессовке деталей с гладкими поверхностями для тех же диаметров.

От шероховатости поверхности зависит также устойчивость поверх­ности против коррозии. Чем выше класс чистоты поверхности, тем меньше площадь соприкосновения с коррелирующей средой, тем меньше влияние среды. Чем глубже впадины микронеровностей и чем резче они очерчены, тем больше разрушающее действие коррозии, направленное в глубь металла.

5 Методы и средства оценки шероховатости

Шероховатость поверхности оценивают двумя основными методами: качественным и количественным.

Качественный метод оценки основан на сравнении обработанной поверхности с эталоном (образцом) поверхности посред­ством визуального сопоставления, сопоставления ощущений при ощупывании рукой (пальцем, ладонью, ногтем) и сопоставления результа­тов наблюдений под микроскопом.

Визуальным способом можно достаточно точно определять класс чистоты поверхности, за исключением весьма тонко обработанных поверхностей.

Эталоны, применяемые для оценки визуальным способом шерохо­ватости поверхности, должны быть изготовлены из тех же материа­лов, с такой же формой поверхности и тем же методом, что и деталь.

Качественную оценку весьма тонко обработанных поверхностей следует производить с помощью микроскопа; можно пользоваться лупой с пятикратным и большим увеличением.

Количественный метод оценки заключается в из­мерении микронеровностей поверхности с помощью приборов: профилографа К. М. Аммона, профилографа Б. М. Левина (модели ИЗП-17 и ИЗП-5), двойного микроскопа и микроинтерферо­метра В. П. Лннника, профилометра В. М. Киселева и др.

Схема профилографа Б-M. Ле­вина (модель ИЗП-17) приведе­на на рисунке 3.

Луч света от лампы 1 падает на зеркало 8 и 7, проходя через линзу 2, щель 3 и оптическую систему 5.

Зеркало 8 связано с ощупы­вающей иглой. Луч света, отра­женный от зеркала 7 и затем

от зеркала 8, проходит оптическую систему 6, попадая на зеркало 4 и далее на цилиндрическую линзу 14, проектирует изображение щели 3 на светочувтвительную пленку 13, расположенную на барабане 12. Изображение щели проектируется в виде световой точки.

Деталь 10, поверхность которой подвергается измерению, распо­лагается на верхнем диске стола 11, которому придается поступатель­ное движение относительно иглы 9 с одновременным вращением барабана 12.

Скорость снятия профилограммы может меняться изменением ско­рости вращения барабана. Скорость перемещения стола 11 не зависит от скорости вращения барабана 12, что обеспечивает получение трех горизонтальных масштабов с увеличением 25 и 50.

Размеров вертикального увеличения в пределах 250 — 5000 дости­гают сменой объектива 6 и установкой иглы 9 в различные отверстия рычага.

От вертикального увеличения зависит максимальная высота мик­ронеровностей, записываемая на барабане 12; от горизонтального уве­личения зависит длина профилируемого участка (1,75 — 7 мм) иссле­дуемой поверхности.

Для измерения микронеровностей в пределах от 4-го до14-го клас­сов чистоты поверхности применяют профилометр конструкции В. М. Киселева, принцип действия которого заключается в возбужде­нии электродвижущей силы в результате коле­бательных движений ощупывающей иглы.

Шероховатость является следствием пластической деформации поверхностного слоя детали. Режущие кромки инструмента оставляют на поверхности следы в виде неровностей, близко расположенные друг к другу. Совокупность этих неровностей называется шероховатостью.

Шероховатость поверхности в значительной степени влияет на эксплуатационные свойства изделий.

Шероховатость поверхности определяет продолжительность нормальной работы деталей и машин. От степени шероховатости поверхности зависят износостойкость поверхностей трущихся пар, антикоррозионная стойкость деталей машин, стабильность посадок.

Чем грубее обработана деталь, тем меньше ее износостойкость. Наличие микронеровностей вызывает концентрацию напряжений во впадинах гребешков, что приводит к появлению трещин и снижает прочность деталей (особенно работающих при знакопеременных нагрузках). Начальный износ при неправильно выбранной шероховатости может достичь 65-75% высоты неровностей шероховатости.

Шероховатость на деталях после обработки оказывает значительное влияние на коррозионную стойкость. Очаги коррозии образуются в первую очередь во впадинах. Чем чище обработана поверхность, тем выше ее коррозионная стойкость.

Шероховатость оказывает влияние на стабильность подвижных и неподвижных посадок. Значительная шероховатость изменяет расчетную величину зазора или натяга.

2. Волнистость поверхности

Волнистость поверхности – это совокупность периодически повторяющихся неровностей, у которых расстояния между смежными выступами или впадинами превышает базовую длину .

Волнистость занимает промежуточное положение между отклонениями:

при отклонения относят к шероховатости поверхности,

при – к волнистости,

при – к отклонениям формы.

Здесь – шаг неровностей; высота неровностей.

Волнистость поверхности, как и шероховатость, отрицательно влияет на эксплуатационные свойства деталей:

- увеличивается скорость изнашивания и, следовательно, снижается долговечность трущихся поверхностей;

- уменьшается площадь контакта сопряженных поверхностей и контактная жесткость;

- снижается герметичность соединения;

- снижается к.п.д. передачи из-за увеличения силы трения;

- ослабляется натяг в соединениях и, следовательно, их прочность;

- ухудшается внешний вид.

Волнистость поверхности оценивают высотой волнистости, наибольшей высотой волнистости и средним шагом волнистости.



Рис. 1. Параметры оценки волнистости поверхности: а) высота волнистости; б) средний шаг волнистости.
Высота волнистости – среднее арифметическое из пяти ее значений, определенных на длине участка измерения , равной не менее пяти действительным наибольшим шагам волнистости

Предельные числовые значения следует выбирать из ряда: 0,1; 0,2; 0,4; 0,8; 1,6; 3,2; 6,3; 12,5; 25; 50; 100; 200 мкм.

Наибольшая высота волнистости – расстояние между высшей и низшей точками измеренного профиля в пределах длины , измеренное на одной полной волне.

Средний шаг волнистости – среднее арифметическое значение длин отрезков средней линии , ограниченных точками их пересечения с соседними участками профиля волнистости

3. Методы и средства измерения и контроля параметров

Для выделения неровностей, характеризующих шероховатость, вводится понятие базовая длина.

Базовая длина ( ) – длина базовой линии, используемой для выделения неровностей, характеризующих шероховатость поверхности. Числовые значения базовой длины выбирают из ряда: 0,01; 0,03; 0,08; 0,25; 0,80; 2,5; 8 и 25 мм. Если для определения шероховатости выбран участок поверхности длиной , другие неровности (например, волнистость), имеющие шаг больше , не учитываются.

Базовая линия – линия заданной геометрической формы, проведенная определенным образом относительно профиля и служащая для оценки геометрических параметров поверхности. За базу при оценке волнистости и шероховатости поверхности принята средняя линия профиля ( ). Средняя линия профиля – базовая линия, имеющая форму номинального профиля и проведенная так, что в пределах базовой длины среднее квадратическое отклонение профиля от этой линии минимально. Систему отсчета шероховатости от средней линии профиля называют системой средней линии.

Величина шероховатости измеряется в сечении, нормальном к номинальной поверхности данного элемента детали, в направлении, при котором она имеет наибольшее значение, то есть поперек следов обработки. Для повышения достоверности измерения сами измерения рекомендуется производить неоднократно и принимать за результат среднее значение.


Рисунок 2 – Профилограмма и основные параметры шероховатости поверхности

Профилографы - это приборы, позволяющие получатть изображение микронеровностей профиля в увеличенном масшттабе на каком-либо носителе (фотоплёнке, фотобумаге).

Профилометры - минуя этап получения изображения, производят необходимые измерения профиля микронеровностей.
Рисунок 3 - Схема профилографа Б. М. Левина

Схема профилографа Б. М. Левина приведена на рис. 3. Луч света от лампы 1, проходя через линзу 2, щель 3 и оптическую систему 5, падает на зеркала 8 и 7. Зеркало 8 связано с ощупывающей иглой 9. Луч света, отраженный от зеркала 7 и затем от зеркала 8, проходит оптическую систему 6 и, попадая на зеркала 4 и далее на цилиндрическую линзу 14, проецирует изображение щели 3 на светочувствительную пленку 13,расположенную на барабане 12. Изображение щели проецируется в виде световой точки. Деталь 10, на поверхности которой измеряют шероховатость, располагается на верхнем диске предметного стола 11. При вращении синхронного двигателя стол вместе с деталью движется поступательно относительно иглы 9, а барабан 12 вращается. Таким образом, на светочувствительной фотоплёнке получается изображение пути светового луча, повторяющего профиль обработанной поверхности испытуемой детали.

Принцип действия профилометра конструкции В. М. Киселева заключается в возбуждении колебаний напряжения в результате движений ощупывающей иглы. На рис. 4 приведена схема этого профилометра (модель КВ-7). Игла 1 с алмазным наконечником, радиус закругления которого 12 мкм, подвешена на пружинах 2. Нижний конец ее ощупывает неровности поверхности детали, а верхний связан с индукционной катушкой 3, которая перемещается в магнитном поле полюсов 4 и 6 магнита 5. Возбуждаемый этим перемещением ток подают на усилитель и затем на гальванометр. Перемещение иглы по поверхности осуществляют с помощью электропривода со скоростью 10. 20 мм/с. Давление иглы на поверхность проверяемой детали составляет 5. 25 кПа. При подключении к профилометру осциллографа можно получить профилограмму исследуемой поверхности.
Рисунок 5 - Двойной микроскоп В. П. Линника

Для измерения шероховатости предназначен также двойной микроскоп В. П. Линника (рис. 5). Прибор состоит из двух частей: микроскопа А для освещения исследуемой поверхности, микроскопа Б для наблюдения и измерения профиля поверхности. Оси обеих частей микроскопа, наклоненные под углом 45° к исследуемой поверхности, пересекаются между собой в предметной точке объективов.

В плоскости изображения объектива 3 микроскопа А перпендикулярно плоскости оси микроскопа расположена щель 2, освещаемая источником света 1. Объектив 3 дает уменьшенное изображение а щели 2 на проверяемой плоскости Р в виде узкой светящейся линии. При отсутствии на участке поверхности Р микронеровностей объектив 4 микроскопа Б в плоскости сетки окуляра 5 даст изображение а 2 той же узкой светящейся линии, а также изображение близлежащего участка исследуемой поверхности.

При том же расположении микроскопов А и Б при наличии микронеровностей h часть пучка света, отраженная от участка поверхности P 1 при наблюдении будет казаться выходящей из точки a 1 или из точки а 1 поверхности Р 1, расположенной на расстоянии 2h ниже поверхности Р. Тогда изображение точки из на сетке окуляра 5 будет на расстоянии h от оси микроскопа Б, равном h = 2xh sin 45°, где х — увеличение объектива 4.

Для измерений высоты неровностей в микроскопе Б установлен окулярный микрометр. Двойной микроскоп В. П. Линника позволяет также фотографировать исследуемую поверхность с высотой неровностей 0,9. 60 мкм.

Шероховатость поверхности, как правило, измеряют:

- профилометрами методом ощупывания поверхности алмазной иглой с определением только величины Ra по шкале прибора;

- профилографами путем записи микропрофиля на профилограмме с определением всех основных параметров (применяется для лабораторных исследований);

- с помощью двойных микроскопов по измерению параметров проекции светового сечения исследуемой поверхности с помощью наклонно направленного к ней светового луча;

- микроинтерферометрами в лабораторных условиях и при контроле прецизионных деталей. Используется явление интерференции света, отраженного от образцовой и исследуемой поверхностей;

- методом сравнения с аттестованными эталонами. Применяется в цеховых условиях. Эталоны должны быть изготовлены из одинакового с измеряемой деталью материала и обработаны одинаковыми методами.

- с помощью интегральных методов: по расходу воздуха, проходящего по соплу через впадины микропрофиля детали; по количеству отражаемого света; по износу графитовой палочки, прижимаемой к поверхности с определенной силой; по электропроводности и теплопроводности и другими методами.

Шероховатость поверхностей обозначают на чертеже для всех выполняемых по данному чертежу поверхностей, независимо от методов из образования, кроме поверхностей, шероховатость которых не обусловлена требованиями конструкции.

Структура обозначения шероховатости поверхности и виды знаков для ее указания приведены на рисунке 5.



Рисунок 5 – Структура обозначения шероховатости поверхности
В обозначении шероховатости поверхности применяют один из знаков, изображенных на рисунке 6.

Рисунок 6 –Знаки обозначения шероховатости
В обозначении шероховатости поверхности, способ обработки которой конструктором не устанавливается, применяют знак, указанный на рисунке 6, а. В обозначении шероховатости поверхности, которая должна быть образована только удалением слоя материала, например, точением, фрезерованием, сверлением и др., применяют знак, указанный на рисунке 6, б. В обозначении шероховатости поверхности, которая должна быть образована без удаления слоя материала, например, литьем, штамповкой, ковкой и др., применяют знак (рисунок 6, в) с указанием значения параметра шероховатости. Поверхности детали, изготовляемой из материала определенного профиля и размера, не подлежащие по данному чертежу дополнительной обработке, должны быть отмечены этим же знаком без указания параметра шероховатости.

Числовые значения параметров шероховатости указываются после соответствующего символа, например, ; , , . В примере указана относительная опорная длина профиля =70% при уровне сечения профиля %.


При указании наибольшего значения параметра шероховатости в обозначении приводят значение параметра, соответствующее наибольшей допустимой шероховатости, например, .

При указании диапазона значений параметра шероховатости поверхности в обозначении шероховатости приводят пределы значений параметра, размещая их в две строки, например, , . В верхней строке приводят значение параметра, соответствующее более грубой шероховатости.

При указании номинального значения параметра шероховатости поверхности в обозначении приводят это значение с предельными отклонениями, например, 1 20%; 80-10%; 0,63 +20% ; t50 70 40% и т.п.

При указании двух и более параметров шероховатости поверхности в обозначении их значения записывают сверху вниз в следующем порядке: параметр высоты неровностей профиля, параметр шага неровностей профиля, относительная опорная длина профиля, рисунок 7.


Рисунок 7 – Пример обозначения параметра шероховатости
В обозначении, приведенном на рисунке 7, указано:

- среднее арифметическое отклонение профиля на базовой длине l=0,25 мм (в обозначении длина не указана, так как соответствует значению, определенному стандартом для данной высоты неровностей);

- средний шаг неровностей профиля должен находиться в пределах от 0,063 мм до 0,04 мм на базовой длине l=0,8 мм.

- относительная опорная длина профиля на 5-% уровне сечения должна находиться в пределах 80±10% на базовой длине l=0,25 мм.

При нормировании требований к шероховатости поверхности параметрами , базовую длину в обозначении шероховатости не приводят, если значение базовой длины совпадает со значениями, приведенными в таблице ГОСТ 2789-73.

ГОСТ 2789-73 полностью соответствует международной рекомендации по стандартизации ИСО Р 468. Он устанавливает перечень параметров и типов направлений неровностей, которые должны применяться при установлении требований и контроле шероховатостей поверхности, числовые значения параметров и общие указания.

1. Требования к шероховатости поверхности должны устанавливаться исходя из функционального назначения поверхности для обеспечения заданного качества изделий. Если в этом нет необходимости, то требования к шероховатости поверхности не устанавливаются и шероховатость этой поверхности контролироваться не должна.

2. Требования к шероховатости поверхности должны устанавливаться путем указания параметра шероховатости (одного или нескольких) из перечня значений выбранных параметров и базовых длин, на которых происходит определение параметров.

В технической документации, разработанной до 1975 г. использовали классы шероховатости по ГОСТ 2789-59; для их перевода можно пользоваться данными таблицы.

Требования к шероховатости поверхности в зависимости от допусков размера и формы
Таблица соответствия классов шероховатости


При необходимости дополнительно к параметрам шероховатости поверхности устанавливаются требования к направлению неровностей поверхности, к способу или последовательности способов получения (обработки) поверхности.


Для номинальных числовых значений параметров шероховатости должны устанавливаться допустимые предельные отклонения.

Допустимые предельные отклонения средних значений параметров шероховатости в процентах от номинальных следует выбирать из ряда 10; 20; 40. Отклонения могут быть односторонними и симметричными.

3. Требования к шероховатости поверхности не включают требований к дефектам поверхности, поэтому при контроле шероховатости поверхности влияние дефектов поверхности должно быть исключено. При необходимости требования к дефектам поверхности должны быть установлены отдельно.

Допускается устанавливать требования к шероховатости отдельных участков поверхности (например, к участкам поверхности, заключенным между порами крупнопористого материала, к участкам поверхности срезов, имеющим существенно отличающиеся неровности).

Требования к шероховатости поверхности отдельных участков одной поверхности могут быть различными.

4. Параметры шероховатости (один или несколько) выбирают из приведенной номенклатуры:

Ra - среднеарифметическое отклонение профиля;

Rz - высота неровностей профиля по десяти точкам;

Rmax - наибольшая высота профиля;

Sm - средний шаг неровностей;

tp - относительная опорная длина профиля, где р - значение уровня сечений профиля.

Параметр Ra является предпочтительным.

5. Числовые значения параметров шероховатости (наибольшие, номинальные или диапазоны значений) выбирают из таблицы

Волнистость поверхности приводит, например, к вибрации и разрыву масляного слоя между контактирующими поверхностями деталей в сборке. Используется также характеристика неровностей поверхности — волнистость —представляющая собой совокупность периодически повторяю; В конструкторской практике используют следующие параметры шероховатости: Sm — средний шаг неровностей: где п — число измерений. Rz… Читать ещё >

Шероховатость и волнистость поверхностей ( реферат , курсовая , диплом , контрольная )

Шероховатость — это совокупность микронеровностей с относительно малыми шагами, образующих реальный рельеф поверхности. Шероховатость измеряют в пределах базовой длины /, чтобы исключить влияние погрешностей формы и волнистости (рис. 23.6).

Шероховатость поверхности.

Рис. 23.6. Шероховатость поверхности.

В конструкторской практике используют следующие параметры шероховатости:

Rz высота неровностей профиля (по десяти точкам):

Шероховатость и волнистость поверхностей.

Ra среднее арифметическое отклонение профиля:

Шероховатость и волнистость поверхностей.

Шероховатость и волнистость поверхностей.

Sm средний шаг неровностей: где п — число измерений.

Величина шероховатости в отличие от допуска на размер не зависит от величины номинального размера. Числовые значения Rri и R2 назначают в зависимости от условий работы, точности размера (квалитета) и способа обработки поверхности. На чертеже шероховатость обозначают знаком / с указанием под ним числового значения параметра в микрометрах. Значение среднего арифметического отклонения профиля Ra, средней высоты неровностей R2 указывают с обозначением символа, например ДД5, JR, ю (рис. 23.7). На поверхности без обработки или после обработки без снятия стружки (см. рис. 23.7, 6) ставят V, при обработке со снятием стружки (см. рис. 23.7, а) ставят знак VВид требуемой обработки указывается над полкой знака.

Шероховатость и волнистость поверхностей.

Используется также характеристика неровностей поверхности — волнистость —представляющая собой совокупность периодически повторяю;

Примеры обозначений.

Рис. 23.7. Примеры обозначений.

щихся неровностей, шаг которых превышает базовую длину. Волнистость характеризуется наибольшей высотой неровности Wmax, шагом Sw и длиной измерения L > 5Sw. Она занимает промежуточное положение между отклонениями формы и шероховатости 50 Показать весь текст Стоимость уникальной работы

Читайте также: