Реферат на тему редуктор станка качалки

Обновлено: 04.07.2024

Редуктор станка-качалки применяется в приводах станков-качалок штанговых скважинных установок. Редуктор содержит корпус (1), в котором на подшипниковых опорах установлены ведущий (2), промежуточный (3) и ведомый (4) валы. На ведущем валу выполнены две шестерни (5, 6) с одинаковым числом зубьев, на промежуточном валу закреплены два зубчатых колеса (7, 8) с одинаковым числом зубьев, находящихся в зацеплении с шестернями ведущего вала, и выполнены две шестерни (9, 10) с одинаковым числом зубьев. На ведомом валу закреплены два зубчатых колеса (11, 12) с одинаковым числом зубьев, находящихся в зацеплении с шестернями промежуточного вала. Полезная модель направлена на увеличение срока службы редуктора. Для решения этой задачи, зубья зубчатых колес и шестерней выполнены арочными по их длине. 2 з.п. ф-лы, 3 ил.

Полезная модель применяется в приводах станков-качалок штанговых скважинных установок, используемых для добычи нефти из скважин при помощи штанговых глубинных насосов.

Редуктор станка-качалки предназначен для уменьшения частоты вращения, передаваемой от электродвигателя кривошипам. Зубчатые передачи редуктора испытывают воздействие больших знакопеременных нагрузок, вызванных вращением больших масс кривошипа и противовеса, насаженных на ведомый вал редуктора. В известном редукторе используются шевронные зубчатые колеса с зацеплением Новикова. Венец шевронного колеса представляет собой два соединенных вместе косозубых колеса с противоположными по направлению линиями зубьев. Косозубые колеса лучше, чем прямозубые противостоят действующим на них изгибающим моментам. Однако, при расчете на прочность косые зубья, как и прямые, в тангенциальном сечении представляют собой прямые брусья, которые плохо противодействуют поперечным силам и изгибающим моментам. Поэтому способность косозубых колес противостоять знакопеременным изгибающим моментам ограничена.

Передачи Новикова, благодаря большой площади контакта, обладают повышенной контактной прочностью по сравнению с эвольвентными передачами. Однако прочность на изгиб у передач Новикова ниже, чем у эвольвентных зубчатых передач.

Кроме того, передачи Новикова очень чувствительны к перекосам осей и изменениям межосевого расстояния. Поэтому они требуют высокой точности изготовления корпусов, подшипниковых опор и валов, а также высокой жесткости опор и валов. Следствием этого является высокая трудоемкость изготовления и стоимость редуктора. А перекосы осей и отклонения межосевого расстояния, вызванные неточностью изготовления, износом деталей, температурными деформациями и деформациями от воздействия нагрузок, приводят к нарушению условий работы передачи Новикова и, как следствие, - к снижению срока ее работы.

Все вместе, указанные недостатки приводят к тому, что, несмотря на высокую трудоемкость его изготовления, известный редуктор имеет незначительный срок службы.

Предлагаемая полезная модель направлена на увеличение срока службы редуктора. Для решения этой задачи в редукторе, содержащем корпус, в котором на подшипниковых опорах установлены ведущий, промежуточный и ведомый валы, при этом на ведущем валу выполнены две шестерни с одинаковым числом зубьев, на промежуточном валу закреплены два зубчатых колеса с одинаковым числом зубьев, находящихся в зацеплении с шестернями ведущего вала, и выполнены две шестерни с одинаковым числом зубьев, на ведомом валу закреплены два зубчатых колеса с одинаковым числом зубьев, находящихся в зацеплении с шестернями промежуточного вала, согласно полезной модели, зубья зубчатых колес, закрепленных на ведомом валу, и зубья находящихся с ними в зацеплении шестерней промежуточного вала выполнены арочными по их длине.

Кроме того, зубья зубчатых колес, закрепленных на промежуточном валу, и зубья находящихся с ними в зацеплении шестерней ведущего вала также выполнены арочными по их длине.

При этом шестерни выполнены, а зубчатые колеса закреплены на своих валах симметрично относительно общей плоскости симметрии, расположенной перпендикулярно к осям валов и проходящей по середине их длины.

Сущность полезной модели поясняется чертежами. На фиг.1 изображен конструкция редуктор станка-качалки, вид спереди; на фиг.2 - разрез А-А по фиг.1; на фиг.3 - вид Б по фиг.1.

Редуктор содержит корпус 1, в котором на подшипниковых опорах установлены ведущий 2, промежуточный 3 и ведомый 4 валы. На ведущем валу выполнены две шестерни 5, 6 с одинаковым числом зубьев. На промежуточном валу закреплены два зубчатых колеса 7, 8 с одинаковым числом зубьев, которые находятся в зацеплении с шестернями 5, 6 ведущего вала. Кроме того, на промежуточном валу выполнены две шестерни 9, 10 с одинаковым числом зубьев. На ведомом валу закреплены два зубчатых колеса 11, 12 с одинаковым числом зубьев, которые находятся в зацеплении с шестернями 9, 10 промежуточного вала. Зубья всех зубчатых колес и шестерней выполнены арочными по их длине (по ширине венца).

Ведущий вал через насаженный на него шкив (не показан) соединен с валом электродвигателя. Вращение от ведущего вала через зубчатые передачи 5-7 и 6-8 передается на промежуточный вал, а с последнего через зубчатые передачи 9-11 и 10-12 - на ведомый вал. На ведомом валу закреплен кривошип (не показан), который через шатун качает балансир станка-качалки.

Зубчатые колеса с арочными зубьями, благодаря тому, что их зубья в тангенциальном сечении имеют форму арки, обладают значительно большей нагрузочной способностью, чем косозубые и шевронные колеса. Арочные зубья входят в зацепление плавно, без ударных нагрузок, что особенно важно при знакопеременных нагрузках. Это значительно повышает долговечность работы зубчатой передачи. Вследствие того, что зуб имеет эвольвентный поперечный профиль, снижаются требования к точности изготовления и жесткости валов и опор редуктора. Это позволяет снизить трудоемкость изготовления и стоимость редуктора.

Таким образом, предлагаемая полезная модель позволяет увеличить срок службы редуктора и снизить трудоемкость его изготовления и стоимость. Предлагаемый редуктор по габаритным и присоединительным размерам полностью унифицирован с редуктором Ц2НШ и может быть установлен вместо него без какой-либо переделки привода станка-качалки.

1. Редуктор станка-качалки, содержащий корпус, в котором на подшипниковых опорах установлены ведущий, промежуточный и ведомый валы, при этом на ведущем валу выполнены две шестерни с одинаковым числом зубьев, на промежуточном валу закреплены два зубчатых колеса с одинаковым числом зубьев, находящихся в зацеплении с шестернями ведущего вала, и выполнены две шестерни с одинаковым числом зубьев, на ведомом валу закреплены два зубчатых колеса с одинаковым числом зубьев, находящихся в зацеплении с шестернями промежуточного вала, отличающийся тем, что зубья зубчатых колес, закрепленных на ведомом валу, и зубья находящихся с ними в зацеплении шестерней промежуточного вала выполнены арочными по их длине.

2. Редуктор по п.1, отличающийся тем, что зубья зубчатых колес, закрепленных на промежуточном валу, и зубья находящихся с ними в зацеплении шестерней ведущего вала выполнены арочными по их длине.

3. Редуктор по п.1, отличающийся тем, что шестерни выполнены, а зубчатые колеса закреплены на своих валах симметрично относительно общей плоскости симметрии, расположенной перпендикулярно к осям валов и проходящей посередине их длины.

Станок-качалка - агрегат для приведения в действие глубинного насоса при механизированной эксплуатации нефтяных скважин. Балансирные индивидуальные станки-качалки с механическим, пневматическим и гидравлическим приводом. Конструкция и принцип действия.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 14.10.2011
Размер файла 1,5 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

    Введение
  • Назначение станка качалки
  • Конструкция
  • Принцип действия
  • Эксплуатация скважин бесштанговыми насосами
  • Список использованной литературы

Введение

СТАНОК-КАЧАЛКА (а. reversing machine; н. Pumpenbock, Tiefpumpenanlage, Gestдn - getiefpumpe; ф. pompe а balancier; и. bomba de balancнn) - агрегат для приведения в действие глубинного насоса при механизированной эксплуатации нефтяных скважин. Возвратно-поступательное движение плунжеру глубинного насоса передаётся через штанги и шток.

Станок-качалка устанавливается на фундаменте над устьем скважины. В зависимости от количества одновременно обслуживаемых скважин станки-качалки бывают индивидуальные, спаренные и групповые. На практике чаще всего применяются индивидуальные станки-качалки.

В зависимости от характера передачи движения к штоку индивидуальные станки-качалки бывают балансирного и безбалансирного типа. Наиболее распространены балансирные индивидуальные станки-качалки, которые отличаются от безбалансирных принципом действия и конструкцией механизма, преобразующего вращательное движение вала двигателя в возвратно-поступательное движение штока и колонны штанг.

Несмотря на многообразие типов и конструкций безбалансирных индивидуальных станков-качалок, они не нашли достаточного распространения в нефтедобывающей промышленности вследствие ряда существенных недостатков. Основным типом приводов глубинных плунжерных насосов в современной практике глубинно-насосной нефтедобычи являются балансирные индивидуальные станки-качалки с механическим, пневматическим и гидравлическим приводом.

Назначение станка качалки

Станомк-качамлка - один из элементов эксплуатации нефтедобывающих скважин штанговым насосом. Операторы по добыче нефти и газа определяют это оборудование как: "Индивидуальный балансирный механический привод штангового насоса".

Станок-качалка является важным видом нефтегазового оборудования и используется для механического привода к нефтяным скважинным штанговым (плунжерным) насосам. Конструкция станка-качалки представляет собой балансирный привод штанговых насосов, состоящий из редуктора и сдвоенного четырехзвенного шарнирного механизма.

Станок-качалка предназначен для индивидуального механического привода к нефтяным скважинным штанговым насосам. Станок-качалка конструктивно представляет собой индивидуальный балансирный привод штанговых насосов, состоящий из редуктора и сдвоенного четырехзвенного шарнирного механизма, с роторным и роторно-балансирным уравновешиванием, преобразующим вращательное движение кривошипов в вертикальное движение канатной подвески устьевого штока с прикрепленной к нему колонной насосных штанг.

Конструкция

Cтанок-качалка CK-7: 1 - рама; 2 - стойка; 3 - кривошипы; 4 - балансир; 5 - шатуны; 6 - редуктор; 7 - электродвигатель; 8 - противовесы; 9 - тормоз.

Станок-качалка устанавливается на специально подготовленном фундаменте (обычно бетонном), на котором устанавливаются: платформа, стойка и станция управления.

После первичного монтажа на стойку помещается балансир, который уравновешивают т. н. головкой балансира. К ней же крепится канатная подвеска (последняя соединяет балансир с полированым сальниковым штоком).

На платформу устанавливается редуктор и электродвигатель. Иногда электродвигатель расположен под платформой. Последний вариант имеет повышенную опасность, поэтому встречается редко. Электродвигатель соединяется с маслонаполненным понижающим редуктором через клино-ременную передачу. Редуктор же, в свою очередь, соединяется с балансиром через кривошипно-шатунный механизм. Этот механизм преобразует вращательное движение вала редуктора в возвратно-поступательное движение балансира.

Станция управления представляет собой коробочный блок, в котором расположена электрика. Вблизи станции управления (или прямо на ней) выведен ручной тормоз станка-качалки. На самой станции управления расположен ключ (для замыкания электросети) и амперметр. Последний - очень важный элемент, особенно в работе оператора ДНГ. Нулевая отметка у амперметра поставлена в середину шкалы, а стрелка-указатель движется то в отрицательную, то в положительную область. Именно по отклонению влево-вправо оператор определяет нагрузку на станок - отклонения в обе стороны должны быть примерно равные. Если же условие равенства не выполняется, значит, станок работает вхолостую.

станок качалка насос скважина

Рис.10.9. Схема балансирного станка-качалки:

1 - канатная подвеска; 2 - балансир с поворотной головкой; 3 - опора балансира; 4 - стойка; 5 - шатун; 6 - кривошип; 7 - редуктор; 8 - ведомый шкив; 9 - клиноременная передача; 10 - электромотор; 11 - ведущий шкив; 12 - ограждения; 13 - салазки поворотные для электромотора; 14 - рама, 15 - противовес, 16 - траверса, 17 - тормозной шкив.

Предусмотрено механизированное плавное перемещение кривошипных противовесов, при котором достигается лучшее уравновешивание СК.

Качалки оборудованы двухколодочным тормозом с ручным приводом. Тормозной барабан закреплен на трансмиссионном валу редуктора. С помощью тормоза балансир и противовесы качалки могут быть зафиксированы в любом положении. Электродвигатель устанавливается на салазках, наклон которых регулируется для достижения необходимого натяжения тиксотропных ремней трансмиссионной передачи. Изменение длины хода балансира достигается перестановкой пальца шатуна на кривошипе, а изменение числа качаний достигается сменой шкива на валу электродвигателя на другой размер.

Основные узлы станка-качалки - рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска. Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока-7 на) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Принцип действия

Схема обвязки скважины. Схема спуска хвостовика. Параметры работы станка-качалки изменялись в пределах: S - от 300 до 240 см и и - от 7 до 12 кач / мин.

При работе станка-качалки потребная мощность в течение одного цикла (одного оборота) претерпевает значительные изменения по величине.

При работе станка-качалки динамограф перемещается вместе с полированным штоком. При ходе вверх при помощи прикрепленной к сальнику нити 9 приводится во вращение ролик и вместе с ним ходовой винт 11, по которому ходовая гайка вместе со столиком 8 движется по направляющим 12 вверх. В это время возвратная пружина заводится. При ходе вниз возвратная пружина раскручивается и возвращает столик в первоначальное положение. Так измеряются усилия при ходе вверх и вниз.

При работе станка-качалки каждый насос отбирает продукцию из разных пластов и подает ее на поверхность.

При работе станка-качалки палец головки балансира контактирует с втулками 2 и 1 тела балансира только у их внешних торцов, что определяет выбор точек приложения реакций этих втулок, действующих на палец. Не внося существенной погрешности, можно принять br hr / 2 и считать, что при горизонтальном положении балансира средняя точка втулки находится на горизонтальной линии, проходящей через центр его качания.

При работе станка-качалки без компрессора или с компрессором на заднем плече шатун постоянно растянут при ходе головки балансира как вверх, так и вниз.

При работе станка-качалки месс-доза, включенная в втулочно-роликовую цепь, попеременно испытывает растягивающие усилия от веса штанг, погруженных в жидкость, и столба жидкости в подъемных трубах. В состоянии покоя на нее действует только вес штанг, погруженных в жидкость.

За работой станка-качалки, состоянием устьевого оборудования и подачей жидкости бригада по добыче нефти ведет круглосуточное наблюдение.

Во время работы станка-качалки не допускается производство ремонта или крепления каких-либо частей станка, запрещается чистить и смазывать движущиеся части вручную, снимать предохранительные ограждения, а также направлять сбрасывать, натягивать или ослаблять ременную передачу.

Во время работы станка-качалки нагрузка на головку балансира и на все узлы механизма меняется в зависимости от направления движения плунжера.

По мере работы станка-качалки уровень жидкости в подъемных трубах повышается до тех пор, пока она не дойдет до устья скважины. Затем жидкость через тройник отводится в выкидную линию и далее по трубопроводу - в групповую замерную установку.

Механическая теория работы станка-качалки при мягкой характеристике двигателя до настоящего момента не разработана. Поэтому ряд вопросов, относящихся к природе отмеченного выше явления, не вполне ясен. Однако, судя по опытным наблюдениям, смягчение характеристики двигателя может представить собой весьма эффективный способ облегчения условий работы редуктора станка-качалки.

Во время работы станка-качалки при подъеме головки балансира электродвигатель привода воспринимает нагрузку, состоящую из веса поднимаемой жидкости и веса колонны штанг, а при опускании головки балансира на двигатель ложится нагрузка от одного веса колонны штанг. Таким путем нагрузка двигателя получается неравномерной и знакопеременной.

Долговечность и безаварийность работы станка-качалки во многом зависит от его уравновешенности. В неуравновешенном станке-качалке при ходе плунжера вверх на установку действует вес столба жидкости в трубах и вес штанг. При ходе плунжера вниз электродвигатель разгружается и не производит работы, так как плунжер перемещается вниз под собственным весом штанг.

Эксплуатация скважин бесштанговыми насосами

Для отбора из скважин больших объёмов жидкости применяется лопастный насос с рабочими колесами центробежного типа, обеспечивающий высокий напор при заданных подачах жидкости и габаритах насоса. Наряду с этим, в нефтяных скважинах некоторых районов с вязкой нефтью необходима большая мощность привода относительно подачи. В общем случае эти установки носят название погружные электронасосы. В первом случае - это установки центробежных электронасосов (УЗЦН), во втором - установки погружных винтовых электронасосов (УЗВНТ).

Скважинные центробежные и винтовые насосы приводятся в действие погружными электродвигателями. Электроэнергия подводится к двигателю по специальному кабелю. Установки ЭЦН и ЭВН довольно просты в обслуживании, так как на поверхности имеются станция управления и трансформатор, не требующие постоянного ухода.

При больших подачах УЭЦН имеют достаточный КПД, позволяющий конкурировать этим установкам со штанговыми установками и газлифтом.

При этом способе эксплуатации борьба с отложениями парафина проводится достаточно эффективно с помощью автоматизированных проволочных скребков, а также путем нанесения покрытия на внутреннюю поверхность НКТ.

Межремонтный период работы УЭЦН в скважинах достаточно высок и достигает 600 суток.

Скважинный насос имеет 80-400 ступеней. Жидкость поступает через сетку в нижней части насоса. Погружной электродвигатель маслозаполненный, герметизированный. Во избежание попадания в него пластовой жидкости устанавливается узел гидрозащиты. Электроэнергия с поверхности подается по круглому кабелю, а около насоса - по плоскому. При частоте тока 50 Гц частота вращения вала двигателя синхронная и составляет 3000 мин (-1).

Трансформатор (автотрансформатор) используют для повышения напряжения тока от 380 (напряжение промысловой сети) до 400 - 2000 В.

Станция управления имеет приборы, показывающие силу тока и напряжение, что позволяет отключать установку вручную или автоматически.

Колонна НКТ оборудуется обратным и сливным клапанами. Обратный клапан удерживает жидкость в НКТ при остановках насоса, что облегчает запуск установки, а сливной освобождает НКТ от жидкости перед подъемом агрегата при установленном обратном клапане.

Для повышения эффективности работы для извлечения вязких жидкостей используется скважинные винтовые насосы с погружным электродвигателем. Установка скважинного винтового насоса, подобно установке ЭЦН, имеет погружной электродвигатель с компенсатором и гидрозащитой, винтовой насос, кабель, обратный и сливной клапаны (встроенные в НКТ), оборудование устья, трансформатор и станцию управления. За исключением насоса, другие части установки идентичны.

Станция управления представляет собой коробочный блок, в котором расположена электрика. Вблизи станции управления (или прямо на ней) выведен ручной тормоз станка-качалки. На самой станции управления расположен ключ (для замыкания электросети) и амперметр. Последний — очень важный элемент, особенно в работе оператора ДНГ. Нулевая отметка у амперметра поставлена в середину шкалы… Читать ещё >

Конструкция, принцип действия и назначение станка-качалки ( реферат , курсовая , диплом , контрольная )

  • Введение
  • Назначение станка качалки
  • Конструкция
  • Принцип действия
  • Эксплуатация скважин бесштанговыми насосами
  • Список использованной литературы

СТАНОК-КАЧАЛКА (а. reversing machine; н. Pumpenbock, Tiefpumpenanlage, Gestдn — getiefpumpe; ф. pompe, а balancier; и. bomba de balancнn) — агрегат для приведения в действие глубинного насоса при механизированной эксплуатации нефтяных скважин. Возвратно-поступательное движение плунжеру глубинного насоса передаётся через штанги и шток.

Станок-качалка устанавливается на фундаменте над устьем скважины. В зависимости от количества одновременно обслуживаемых скважин станки-качалки бывают индивидуальные, спаренные и групповые. На практике чаще всего применяются индивидуальные станки-качалки.

В зависимости от характера передачи движения к штоку индивидуальные станки-качалки бывают балансирного и безбалансирного типа. Наиболее распространены балансирные индивидуальные станки-качалки, которые отличаются от безбалансирных принципом действия и конструкцией механизма, преобразующего вращательное движение вала двигателя в возвратно-поступательное движение штока и колонны штанг.

Несмотря на многообразие типов и конструкций безбалансирных индивидуальных станков-качалок, они не нашли достаточного распространения в нефтедобывающей промышленности вследствие ряда существенных недостатков. Основным типом приводов глубинных плунжерных насосов в современной практике глубинно-насосной нефтедобычи являются балансирные индивидуальные станки-качалки с механическим, пневматическим и гидравлическим приводом.

Назначение станка качалки

Станок-качалка является важным видом нефтегазового оборудования и используется для механического привода к нефтяным скважинным штанговым (плунжерным) насосам. Конструкция станка-качалки представляет собой балансирный привод штанговых насосов, состоящий из редуктора и сдвоенного четырехзвенного шарнирного механизма.

Станок-качалка предназначен для индивидуального механического привода к нефтяным скважинным штанговым насосам. Станок-качалка конструктивно представляет собой индивидуальный балансирный привод штанговых насосов, состоящий из редуктора и сдвоенного четырехзвенного шарнирного механизма, с роторным и роторно-балансирным уравновешиванием, преобразующим вращательное движение кривошипов в вертикальное движение канатной подвески устьевого штока с прикрепленной к нему колонной насосных штанг.

Конструкция

Cтанок-качалка CK-7: 1 — рама; 2 — стойка; 3 — кривошипы; 4 — балансир; 5 — шатуны; 6 — редуктор; 7 — электродвигатель; 8 — противовесы; 9 — тормоз.

Станок-качалка устанавливается на специально подготовленном фундаменте (обычно бетонном), на котором устанавливаются: платформа, стойка и станция управления.

После первичного монтажа на стойку помещается балансир, который уравновешивают т. н. головкой балансира. К ней же крепится канатная подвеска (последняя соединяет балансир с полированым сальниковым штоком).

На платформу устанавливается редуктор и электродвигатель. Иногда электродвигатель расположен под платформой. Последний вариант имеет повышенную опасность, поэтому встречается редко. Электродвигатель соединяется с маслонаполненным понижающим редуктором через клино-ременную передачу. Редуктор же, в свою очередь, соединяется с балансиром через кривошипно-шатунный механизм. Этот механизм преобразует вращательное движение вала редуктора в возвратно-поступательное движение балансира.

Станция управления представляет собой коробочный блок, в котором расположена электрика. Вблизи станции управления (или прямо на ней) выведен ручной тормоз станка-качалки. На самой станции управления расположен ключ (для замыкания электросети) и амперметр. Последний — очень важный элемент, особенно в работе оператора ДНГ. Нулевая отметка у амперметра поставлена в середину шкалы, а стрелка-указатель движется то в отрицательную, то в положительную область. Именно по отклонению влево-вправо оператор определяет нагрузку на станок — отклонения в обе стороны должны быть примерно равные. Если же условие равенства не выполняется, значит, станок работает вхолостую.

станок качалка насос скважина Рис. 10.9. Схема балансирного станка-качалки:

1 — канатная подвеска; 2 — балансир с поворотной головкой; 3 — опора балансира; 4 — стойка; 5 — шатун; 6 — кривошип; 7 — редуктор; 8 — ведомый шкив; 9 — клиноременная передача; 10 — электромотор; 11 — ведущий шкив; 12 — ограждения; 13 — салазки поворотные для электромотора; 14 — рама, 15 — противовес, 16 — траверса, 17 — тормозной шкив.

Предусмотрено механизированное плавное перемещение кривошипных противовесов, при котором достигается лучшее уравновешивание СК.

Качалки оборудованы двухколодочным тормозом с ручным приводом. Тормозной барабан закреплен на трансмиссионном валу редуктора. С помощью тормоза балансир и противовесы качалки могут быть зафиксированы в любом положении. Электродвигатель устанавливается на салазках, наклон которых регулируется для достижения необходимого натяжения тиксотропных ремней трансмиссионной передачи. Изменение длины хода балансира достигается перестановкой пальца шатуна на кривошипе, а изменение числа качаний достигается сменой шкива на валу электродвигателя на другой размер.

Основные узлы станка-качалки — рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т. е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска. Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока-7 на) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т. д. ), а также самозапуск СК после перерыва в подаче электроэнергии.

Принцип действия

Работа станка-качалки в неуравновешенном состоянии не разрешается.

Схема обвязки скважины. Схема спуска хвостовика. Параметры работы станка-качалки изменялись в пределах: S — от 300 до 240 см и и — от 7 до 12 кач / мин.

При работе станка-качалки потребная мощность в течение одного цикла (одного оборота) претерпевает значительные изменения по величине.

При работе станка-качалки динамограф перемещается вместе с полированным штоком. При ходе вверх при помощи прикрепленной к сальнику нити 9 приводится во вращение ролик и вместе с ним ходовой винт 11, по которому ходовая гайка вместе со столиком 8 движется по направляющим 12 вверх. В это время возвратная пружина заводится. При ходе вниз возвратная пружина раскручивается и возвращает столик в первоначальное положение. Так измеряются усилия при ходе вверх и вниз.

При работе станка-качалки каждый насос отбирает продукцию из разных пластов и подает ее на поверхность.

При работе станка-качалки без компрессора или с компрессором на заднем плече шатун постоянно растянут при ходе головки балансира как вверх, так и вниз.

При работе станка-качалки месс-доза, включенная в втулочно-роликовую цепь, попеременно испытывает растягивающие усилия от веса штанг, погруженных в жидкость, и столба жидкости в подъемных трубах. В состоянии покоя на нее действует только вес штанг, погруженных в жидкость.

За работой станка-качалки, состоянием устьевого оборудования и подачей жидкости бригада по добыче нефти ведет круглосуточное наблюдение.

Во время работы станка-качалки не допускается производство ремонта или крепления каких-либо частей станка, запрещается чистить и смазывать движущиеся части вручную, снимать предохранительные ограждения, а также направлять сбрасывать, натягивать или ослаблять ременную передачу.

Во время работы станка-качалки нагрузка на головку балансира и на все узлы механизма меняется в зависимости от направления движения плунжера.

По мере работы станка-качалки уровень жидкости в подъемных трубах повышается до тех пор, пока она не дойдет до устья скважины. Затем жидкость через тройник отводится в выкидную линию и далее по трубопроводу — в групповую замерную установку.

Механическая теория работы станка-качалки при мягкой характеристике двигателя до настоящего момента не разработана. Поэтому ряд вопросов, относящихся к природе отмеченного выше явления, не вполне ясен. Однако, судя по опытным наблюдениям, смягчение характеристики двигателя может представить собой весьма эффективный способ облегчения условий работы редуктора станка-качалки.

Во время работы станка-качалки при подъеме головки балансира электродвигатель привода воспринимает нагрузку, состоящую из веса поднимаемой жидкости и веса колонны штанг, а при опускании головки балансира на двигатель ложится нагрузка от одного веса колонны штанг. Таким путем нагрузка двигателя получается неравномерной и знакопеременной.

Долговечность и безаварийность работы станка-качалки во многом зависит от его уравновешенности. В неуравновешенном станке-качалке при ходе плунжера вверх на установку действует вес столба жидкости в трубах и вес штанг. При ходе плунжера вниз электродвигатель разгружается и не производит работы, так как плунжер перемещается вниз под собственным весом штанг.

Эксплуатация скважин бесштанговыми насосами

Для отбора из скважин больших объёмов жидкости применяется лопастный насос с рабочими колесами центробежного типа, обеспечивающий высокий напор при заданных подачах жидкости и габаритах насоса. Наряду с этим, в нефтяных скважинах некоторых районов с вязкой нефтью необходима большая мощность привода относительно подачи. В общем случае эти установки носят название погружные электронасосы. В первом случае — это установки центробежных электронасосов (УЗЦН), во втором — установки погружных винтовых электронасосов (УЗВНТ).

Скважинные центробежные и винтовые насосы приводятся в действие погружными электродвигателями. Электроэнергия подводится к двигателю по специальному кабелю. Установки ЭЦН и ЭВН довольно просты в обслуживании, так как на поверхности имеются станция управления и трансформатор, не требующие постоянного ухода.

При больших подачах УЭЦН имеют достаточный КПД, позволяющий конкурировать этим установкам со штанговыми установками и газлифтом.

При этом способе эксплуатации борьба с отложениями парафина проводится достаточно эффективно с помощью автоматизированных проволочных скребков, а также путем нанесения покрытия на внутреннюю поверхность НКТ.

Межремонтный период работы УЭЦН в скважинах достаточно высок и достигает 600 суток.

Скважинный насос имеет 80−400 ступеней. Жидкость поступает через сетку в нижней части насоса. Погружной электродвигатель маслозаполненный, герметизированный. Во избежание попадания в него пластовой жидкости устанавливается узел гидрозащиты. Электроэнергия с поверхности подается по круглому кабелю, а около насоса — по плоскому. При частоте тока 50 Гц частота вращения вала двигателя синхронная и составляет 3000 мин (-1).

Трансформатор (автотрансформатор) используют для повышения напряжения тока от 380 (напряжение промысловой сети) до 400 — 2000 В.

Станция управления имеет приборы, показывающие силу тока и напряжение, что позволяет отключать установку вручную или автоматически.

Колонна НКТ оборудуется обратным и сливным клапанами. Обратный клапан удерживает жидкость в НКТ при остановках насоса, что облегчает запуск установки, а сливной освобождает НКТ от жидкости перед подъемом агрегата при установленном обратном клапане.

Для повышения эффективности работы для извлечения вязких жидкостей используется скважинные винтовые насосы с погружным электродвигателем. Установка скважинного винтового насоса, подобно установке ЭЦН, имеет погружной электродвигатель с компенсатором и гидрозащитой, винтовой насос, кабель, обратный и сливной клапаны (встроенные в НКТ), оборудование устья, трансформатор и станцию управления. За исключением насоса, другие части установки идентичны.

Параметры и технические характеристики


Нефтяная качалка - один из распространенных типов оборудования для нефтяных месторождений. Данная техника используется для добычи ценного ресурса с разной глубины методом вращательно-поступательного движения рабочих органов. Производительность, глубина проникновения, долговечность работы качалки зависит от качества и технических характеристик установленного на нее редуктора.

Последний применяется для снижения вращательной скорости подвижных элементов техники при одновременном наращивании мощности, которая передается от электрического мотора станковым кривошипам. В соответствии с назначением, механизм получил название редуктора нефтяной качалки. Выполняется он на зубчатой передаче.

Сфера применения редуктора станка-качалки

Использование редукторов для добычи нефти

Редуктор станка-качалки (еще одно название) устанавливают на металлическую раму в привод скважинных установок штангового типа. Подключение к балансировке осуществляется посредством кривошипно-шатунного механизма. Его плюсы:

  • простая конструкция (зубчатая передача);
  • надежность зацепления, которая обеспечивает высокую производительность и удобство поднятия нефти на поверхность.

Наиболее распространенный класс редукторов станка-качалки нефти - цилиндрические 2-ступенчатые механизмы с зацеплением по принципу Новикова. Такие конструкции используют в работе 2 типа шеврона:

  • раздвоенный (быстроходная ступень);
  • с канавкой (тихоходный).

Редуктор нефтяной качалки данной серии выдает оптимальную вращательную скорость элементов, обеспечивая мягкую быструю работу приводного механизма.

Устройство редуктора нефтяной качалки

Конструкция редукторов для добычи нефти

Устройство редуктора нефтяной качалки включает серию из 2 пар зубчатых цилиндрических передач, сцепленных по оригинальной системе Новикова. Линейка типоразмеров включает 8 типов конструкций. Класс, к которому отнесен цилиндрический механизм, - Ц2НШ. Особенности конструкции:

  • ведущий вал монтирован в роликовом подшипнике с короткими роликами цилиндрической формы;
  • ведомый вал - в 2-рядных подшипниках сферической формы (с двух концов "закрыт" кривошипом);
  • промежуточный вал - вместе с основным;
  • шкивы тормоза и клиновидной ременной передачи - на ведущем валу зубчатой колесной передачи.

Смазка цилиндрического редуктора нефтяной качалки осуществляется комбинированным способом. Зубчатые колеса смазываются из емкости корпуса (картерная смазка). Валовые подшипники - в режиме принудительной картерной смазки. Узлы станка-качалки обрабатываются пластичной смазкой.

Особенности работы редуктора станка-качалки нефти

Работа редуктора при добыче нефти

Ось цилиндрического редуктора станка-качалки укомплектована 2-мя якорями. Шатуны с одного конца закреплены к кривошипу (валу), с другого - соединяются с балансиром при помощи шарнирного крепления. К головке балансира прикреплены штанги с плунжером нефтяного насоса. Принцип работы редуктора нефтяной качалки сводится к следующему:

  • При вращении приводного вала запускается движение кривошипа, соединенного с ним зубчатыми колесами.
  • Кривошипный вал двигает шатуны, а те - запускают балансировку.
  • Раскачиваясь, балансирная головка качает и штанги, и насосный плунжер.
  • Раскачиваясь, плунжер глубинного насоса перемещается вверх-вниз в темпе, заданном балансиром.

Отметка крайних положений штока выполняется через линию связи. Последняя получает импульс напряжения при замыкании цепочки датчика положений. Другое название последнего - трансформатор. Он работает от 2-х якорей, закрепленных на оси редуктора станка-качалки. Каждые ее пол-оборота один из якорей замыкает цепочку трансформатора. Система настроена так, чтобы момент фиксации (замыкания) приходился строго на верхнее крайнее и нижнее крайнее положение штока.

Ремонт редуктора нефтяной качалки

Обслуживание редуктора станка-качалки

Как и любой сложный механизм, редуктор станка-качалки нефти требует регулярного технического обслуживания. Одним из пунктов программы такого обслуживания является плановый ремонт с заданной периодичностью (зависит от типа оборудования, интенсивности работы, возраста и т. д.). Система действий при плановом ремонте включает серию обязательных операций. Что сюда входит:

  • Частичная разборка приводного механизма нефтяной качалки с целью мониторинга износа деталей.
  • Проверка состояния:
    • валов (ведущего/ведомого/промежуточного);
    • шкивов;
    • подшипников (+ их крышек).

    После остановки на ремонт и прежде чем запустить систему в работу, необходимо соблюсти базовые требования программы безопасности. То есть убедиться в том, что зона установки редуктора нефтяной качалки огорожена специальными конструкциями, поблизости нет людей, а сам он полностью отключен (перед разборкой) или не заторможен (перед запуском).

    Смазка редуктора нефтяной качалки

    Для смазки редуктора станка-качалки нефти применяется машинное масло. Оно заливается в картер, куда по мере вращения окунаются подвижные элементы сборки. Выбор смазки осуществляется, согласно сезону (лето-зима). Масло должно быть залито до верхнего крана. Контролировать уровень смазки можно через специальные пробки, предусмотренные на корпусе.

    Купить редуктор нефтяной качалки

    Купить редуктор для станка-качалки

    Конкретные характеристики и область эксплуатации редуктора станка-качалки определяют условия добычи нефти. Здесь выбор устройства прямо зависит от глубины залегания "черного золота", площади месторождения, графика работ по извлечению ресурса.

    Если вы планируете купить редуктор нефтяной качалки, обращайтесь к профессионалам. ООО ПТЦ "Привод" занимается производством данной техники и ее доставкой в любой город России или страны СНГ.

    Мы предлагаем приводное оборудование для станков-качалок нефти по выгодным ценам с заводской гарантией качества. Осуществляем гарантийной и постгарантийное обслуживание своих приводных устройств, консультируем заказчика по любым вопросам, связанным с выбором и эксплуатацией изделий. Чтобы заказать редукторный механизм или получить консультацию, свяжитесь с нами удобным способом (все данные для связи вы найдете на сайте в блоке "Контакты").

    Читайте также: