Реферат на тему производство меди

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-Петербурга

Школа БИОТОП Лаборатории непрерывного математического образования

Медь: ее свойства, значение и применение

Краткая характеристика меди стр. 4

Производство меди стр. 4

Применение меди стр. 4

Биологмческое значение меди стр. 5

Заключение стр. 6

Библиография стр. 7

Медь – один из главных и широко распространенных химических элементов. Это металл, который обладает ценными свойствами и благодаря этому активно используется в разных областях. Именно этот элемент одним из первых обнаружили и начали применять для своих целей первобытные люди, так как он встречается в виде самородков, которые можно добыть с помощью примитивных орудий, либо относительно легко выплавить из руды.

Медь также является важной составляющей многих сплавов – бронза, латунь (медь с цинком), мельхиор (медь с никелем). Первой бронзой был сплав меди с мышьяком, но при переплавке ядовитый мышьяк испарялся, что сказывалось на здоровье кузнецов. Даже бог-кузнец Гефест в мифах изображался хромым. В дальнейшем мышьяк заменили на олово.

В древности медь и ее сплавы использовались при производстве оружия, а также некоторых предметов быта. По мере развития человечества из нее стали отливать более сложные предметы – артиллерийские орудия, колокола, статуи. В наше время спектр применения этого металла еще более широк.

Медь также содержится и в живых организмах и является необходимым веществом для протекания многих жизненно-важных процессов и реакций.

В этом реферате я хотела бы рассмотреть подробно вопросы производства и применения меди в современном мире и ее биологического значения.

Краткая характеристика меди

Медь – это элемент 11-й группы периодической системы Менделеева с атомным номером 29. Обозначают символом Cu (Cuprum). Это пластичный металл золотисто-розового цвета, который на воздухе покрывается оксидной пленкой (патиной). Пленка на просвет имеет зеленовато-голубой цвет. Патина бывает естественной, образующейся под воздействием окружающей среды, и искусственной, создаваемой с помощью кислот или других окислителей, с целью придания предметам старинного вида.

Медь образует кубическую решетку. Модель представляет из себя куб из восьми атомов в углах и шести атомов, расположенных в центре шести граней. Медь обладает высокой тепло- и электропроводностью (второе место по электропроводности среди металлов после серебра). Температура плавления меди – 1084 градуса по Цельсию, а кипит она при температуре 2600 градусов по Цельсию.

Производство меди

В наши дни медь получают из медных руд и минералов путем электролиза, а также при помощи пирометаллургии и гидрометаллургии. Электролиз проходит в ваннах, где анод – это медь огневого рафинирования, а катод – тонкие листы чистой меди. Электролит – раствор серной кислоты с медным купоросом. В ходе электролиза происходит повышение концентрации серной кислоты, под воздействием постоянного тока анод растворяется, медь переходит в раствор и осаждается на катодах.

Пирометаллургичесикй способ представляет собой несколько этапов – обогащение, обжиг, плавку и рафинирование. Гидрометталургический способ – это выщелачивание меди слабым раствором серной кислоты и ее выделение из раствора.

Применение меди

Медь является хорошим проводником, поэтому она используется для изготовления проводов и кабелей. Здесь нужна чистая медь, так как примеси резко снижают электрическую проводимость. Благодаря высокой теплопроводности медь используется в разных теплообменниках и теплоотводных устройствах: радиаторах, компьютерных кулерах и пр. Благодаря прочности и пригодности к механической обработке медь и ее сплавы также применяются в производстве труб.

Наряду с чистой медью, широко используются и ее сплавы. Инструменты и детали из этих материалов не создают искр, поэтому применяются на огнеопасных и взрывоопасных производствах.

Медь широко используется в архитектуре (медные крыши, кровли и фасады служат до 100-150 лет) и при производстве памятников; для производства медных духовых инструментов (трубы, валторны, саксофоны, тромбоны и корнеты); для производства бытовой посуды (медные тазы и сковороды), а также столовых приборов – мельхиор, сплав меди и никеля, иногда называют немецким серебром.

Биологическое значение меди

Медь является необходимым элементом для всех высших растений и животных. В организме взрослого человека содержание меди составляет примерно 100-200 мг, при этом около 50% находится в мышцах, а еще 10% - в печени. 1

Медь входит в состав многих ферментов, участвует в метаболизме железа, повышает усвоение белков и углеводов, участвует в образовании гемоглобина и созревании эритроцитов, то есть необходима для снабжения организма кислородом. Медь также поддерживает эластичность стенок кровеносных сосудов и кожи, обладает противовспалительным действием.

Белок гемоцианин, переносящий кислород у членистоногих и моллюсков, также содержит медь. Кровь у моллюсков голубая и благодаря меди, и из-за строения самого белка.

Недавно ученые установили, что в тех водоемах, где имеется медь, карпы вырастают особенно крупными. Там, где ее нет, развивается вредоносный для этих рыб грибок. 2

1 Спектор А.А. Увлекательная наука химия, - Москва, АСТ, 2017 - стр. 73

2 Спектор А.А. Увлекательная наука химия, - Москва, АСТ, 2017 - стр. 73

Несмотря на то, что медь была одним из самых первых открытых человеком металлов, масштабы и способы ее потребления только возрастают. Благодаря развитию науки и прогрессу, ученые открывают все новые свойства металла и, соответственно, новые области его применения.

Мне кажется, что применение этого металла в производственных сферах человечеством изучено подробно, тогда как ее роль в физиологических и биологических процессах, происходящих в организмах, еще только предстоит исследовать в полной мере.

Разделение металлов на черные и цветные является условным. Обычно к черным металлам относят железо, марганец и хром, а остальные металлы к цветным. Термин цветные металлы не следует понимать буквально. Фактически существует лишь два цветных металла: розовая медь и желтое золото, а в

Медь (лат. Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до Р. Хр. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состаянии на поверхности земли, а с другой - сравнительной легкостью получения ее из соединений. Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и название ее Cuprum. Особенно важна медь для электротехники.

По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из алюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.

Таким образом, разделение металлов на черные и цветные является условным. Обычно к черным металлам относят железо, марганец и хром, а остальные металлы к цветным. Термин цветные металлы не следует понимать буквально. Фактически существует лишь два цветных металла: розовая медь и желтое золото, а в отношении же остальных металлов можно говорить не об их цвете, а об их различных оттенках, чаще всего серебристо-серого или красного тонов.

Также условно цветные металлы можно разделить на четыре группы:

1 Тяжелые металлы – Cu, Ni, Pb, Zn, Sn;

2 Легкие металлы – Al, Mg, Ca, K, Na, Ba, Be, Li;

3 Благородные металлы - Au, Ag, Pt и ее природные спутники

4 Редкие металлы:

СВОЙСТВА МЕДИ

Медь - химический элемент I группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546. Температура плавления- 1083° C; температура кипения - 2595° C; плотность - 8,98 г/см 3 . По геохимической классификации В.М. Гольдшмидта, медь относится к халькофильным элементам с высоким сродством к S, Se, Te, занимающим восходящие части на кривой атомных объемов; они сосредоточены в нижней мантии, образуют сульфиднооксидную оболочку.

Вернадским в первой половине 1930 г были проведены исследования изменения изотопного состава воды, входящего в состав разных минералов, и опыты по разделению изотопов под влиянием биогеохимических процессов, что и было подтверждено последующими тщательными исследованиями. Как элемент нечетный состоит из двух нечетных изотопов 63 и 65 На долю изотопа Cu (63) приходится 69,09%, процентное содержание изотопа Cu (65) - 30,91%. В соединениях медь проявляет валентность +1 и +2, известны также немногочисленные соединения трехвалентной меди.

Разделение металлов на черные и цветные является условным. Обычно к черным металлам относят железо, марганец и хром, а остальные металлы к цветным. Термин цветные металлы не следует понимать буквально. Фактически существует лишь два цветных металла: розовая медь и желтое золото, а в

Медь (лат. Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до Р. Хр. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состаянии на поверхности земли, а с другой - сравнительной легкостью получения ее из соединений. Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и название ее Cuprum. Особенно важна медь для электротехники.

По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из алюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.

Таким образом, разделение металлов на черные и цветные является условным. Обычно к черным металлам относят железо, марганец и хром, а остальные металлы к цветным. Термин цветные металлы не следует понимать буквально. Фактически существует лишь два цветных металла: розовая медь и желтое золото, а в отношении же остальных металлов можно говорить не об их цвете, а об их различных оттенках, чаще всего серебристо-серого или красного тонов.

Также условно цветные металлы можно разделить на четыре группы:

1 Тяжелые металлы – Cu, Ni, Pb, Zn, Sn;

2 Легкие металлы – Al, Mg, Ca, K, Na, Ba, Be, Li;

3 Благородные металлы - Au, Ag, Pt и ее природные спутники

4 Редкие металлы:

СВОЙСТВА МЕДИ

Медь - химический элемент I группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546. Температура плавления- 1083° C; температура кипения - 2595° C; плотность - 8,98 г/см 3 . По геохимической классификации В.М. Гольдшмидта, медь относится к халькофильным элементам с высоким сродством к S, Se, Te, занимающим восходящие части на кривой атомных объемов; они сосредоточены в нижней мантии, образуют сульфиднооксидную оболочку.

Вернадским в первой половине 1930 г были проведены исследования изменения изотопного состава воды, входящего в состав разных минералов, и опыты по разделению изотопов под влиянием биогеохимических процессов, что и было подтверждено последующими тщательными исследованиями. Как элемент нечетный состоит из двух нечетных изотопов 63 и 65 На долю изотопа Cu (63) приходится 69,09%, процентное содержание изотопа Cu (65) - 30,91%. В соединениях медь проявляет валентность +1 и +2, известны также немногочисленные соединения трехвалентной меди.

К валентности 1 относятся лишь глубинные соединения, первичные сульфиды и минерал куприт - Cu2O. Все остальные минералы, около сотни отвечают валентности два. Радиус одновалентной меди +0.96, этому отвечает и эк - 0,70. Величина атомного радиуса двухвалентной меди - 1,28; ионного радиуса 0,80.

Очень интересна величена потенциалов ионизации: для одного электрона - 7,69, для двух - 20,2. Обе цифры очень велики, особенно вторая, показывающая большую трудность отрыва наружных электронов. Одновалентная медь является равноквантовой и потому ведет к бесцветным солям и слабо окрашенным комплексам, тогда как разноквантовя двух валентная медь характеризуется окрашенностью солей в соединении с водой.

Медь - металл сравнительно мало активный. В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Она достаточно легко вступает в реакции с галогенами, серой, селеном. А вот с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют.

Электроотрицательность атомов - способность при вступлении в соединения притягивать электроны. Электроотрицательность Cu 2+ - 984 кДЖ/моль, Cu + - 753 кДж/моль. Элементы с резко различной ЭО образуют ионную связь, а элементы с близкой ЭО - ковалентную. Сульфиды тяжелых металлов имеют промежуточную связь, с большей долей ковалентной связи (ЭО у S-1571, Cu-984, Pb-733). Медь является амфотерным элементом - образует в земной коре катионы и анионы.

Медь входит более чем в 198 минералов, из которых для промышленности важны только 17, преимущественно сульфидов, фосфатов, силикатов, карбонатов, сульфатов. Главными рудными минералами являются халькопирит CuFeS2 , ковеллин CuS, борнит Cu5 FeS4 , халькозин Cu2 S.

Окислы: тенорит, куприт. Карбонаты: малахит, азурит. Сульфаты: халькантит, брошантит. Сульфиды: ковеллин, халькозин, халькопирит, борнит.

Чистая медь - тягучий, вязкий металл красного, в изломе розового цвета, в очень тонких слоях на просвет медь выглядит зеленовато-голубой. Эти же цвета, характерны и для многих соединений меди, как в твердом состоянии, так и в растворах.

Понижение окраски при повышении валентности видно из следующих двух примеров:

CuCl - белый, Cu2 O - красный, CuCl2 +H2 O - голубой, CuO - черный

Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем намечается интересный практический признак для поисков.

Практическое значение имеют: самородная медь, сульфиды, сульфосоли и карбонаты (силикаты).

СЫРЬЕ ДЛЯ ПОЛУЧЕНИЯ МЕДИ

Для получения меди применяют медные руды, а также отходы меди и ее сплавов. В рудах содержится 1-6% меди.

В рудах медь обычно находится в виде сернистых соединений (медный колчедан или халькопирит CuFeS2 , халькозин Cu2 S, ковелин CuS), оксидов (куприт Cu2 O, тенорит CuO) или гидрокарбонатов (малахит CuCO3 × Cu(OH2 ), азурит 2CuCO × Cu(OH)2 ).

Пустая порода состоит из пирита FeS, кварца SiO2 , карбонатов магния и кальция (MgCO3 и CaCO3 ), а также из различных силикатов, содержащих Al2 O3 , CaO, MgO и оксиды железа.

В рудах иногда содержится значительное количество других металлов: цинк, олово, никель, золото, серебро, кремний и другие.

Руда делится на сульфидные, окисленные и смешанные. Сульфидные руды бывают обычно первичного происхождения, а окисленные руды образовались в результате окисления металлов сульфидных руд.

В небольших количествах встречаются так называемые самородные руды, в которых медь находится в свободном виде.

ПИРОМЕТАЛЛУРГИЧЕСКИЙ СПОСОБ ПРОИЗВОДСТВА МЕДИ.

Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический.

Первый из них не нашел широкого применения. Его используют при переработке бедных окисленных и самородных руд. Этот способ в отличии от пирометаллургического не позволяет извлечь попутно с медью драгоценные металлы.

Второй способ пригоден для переработки всех руд и особенно эффективен в том случае, когда руды подвергаются обогащению.

Основу этого процесса составляет плавка, при которой расплавленная масса разделяется на два жидких слоя: штейн-сплав сульфидов и шлак-сплав окислов. В плавку поступают либо медная руда, либо обожженные концентраты медных руд. Обжиг концентратов осуществляется с целью снижения содержания серы до оптимальных значений.

Жидкий штейн продувают в конвертерах воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди.

Черновую медь далее подвергают рафинированию – очистке от примесей.

Подготовка руд к плавке.

Концентраты обычно обжигают в окислительной среде с тем, чтобы удалить около 50% серы и получить обожженный концентрат с содержанием серы, необходимым для получения при плавке достаточно богатого штейна.

Температура обжига концентратов применяют многоподовые печи с механическим перегреванием. Такие печи работают непрерывно.

Выплавка медного штейна

Медный штейн, состоящий в основном из сульфидов меди и железа (Cu2 S+FeS=80-90%) и других сульфидов, а также окислов железа, кремния, алюминия и кальция, выплавляют в печах различного типа.

Комплексные руды, содержащие золото, серебро, селен и теллур, целесообразно обогащать так, чтобы в концентрат была переведена не только медь, но и эти металлы. Концентрат переплавляют в штейн в отражательных или электрических печах.

Сернистые, чисто медные руды целесообразно перерабатывать в шахтных печах.

При высоком содержании серы в рудах целесообразно применять так называемый процесс медно-серной плавки в шахтной печи с улавливанием газов и извлечением из них элементарной серы.

В печь загружают медную руду, известняк, кокс и оборотные продукты. Загрузку ведут отдельными порциями сырых материалов и кокса.

В верхних горизонтах шахты создается восстановительная среда, а в нижней части печи – окислительная. Нижние слои шихты плавятся, и она постепенно опускается вниз навстречу потоку горячих газов. Температура у фурм достигается 1500 0 С на верху печи она равна примерно 450 0 С.

Столь высокая температура отходящих газов необходима для того, чтобы обеспечить возможность из очистки от пыли до начала конденсации паров серы.

В нижней части печи, главным образом у фурм, протекают следующие основные процессы:

а) Сжигание углерода кокса

б) Сжигание серы сернистого железа

в) Образование силиката железа

Газы, содержащие CO2 , SO2 , избыток кислорода и азот, проходят вверх через столб шихты. На этом пути газов происходит теплообмен между шихтой и ними, а также взаимодействие CO2 с углеродом шихты. При высоких температурах CO2 и SO2 восстанавливаются углеродом кокса и при этом образуется окись углерода, сероуглерод и сероокись углерода:

SO2 + 2C = COS + CO

В верхних горизонтах печи пирит разлагается по реакции:

При температуре около 1000 0 С плавятся наиболее легкоплавкие эвтектики из FeS и Cu2 S, в результате чего образуется пористая масса.

В порах этой массы расплавленный поток сульфидов встречается с восходящим потоком горячих газов и при этом протекают химические реакции, важнейшие из которых указаны ниже:

а) образование сульфида меди из закиси меди

б) образование силикатов из окислов железа

в) разложение CaCO3 и образование силиката извести

г) восстановление сернистого газа до элементарной серы

Чтобы повысить содержание меди в штейне, его подвергают сократительной плавке. Плавку осуществляют в таких же шахтных печах. Штейн загружают кусками размером 30-100 мм вместе с кварцевым флюсом, известняком и коксом. Расход кокса составляет 7-8% от массы шихты. В результате получают обогащенный медью штейн (25-40% Cu) и шлак (0,4-0,8% Cu).

Температура плавления переплавки концентратов, как уже упоминалось, применяют отражательные и электрические печи. Иногда обжиговые печи располагают непосредственно над площадкой отражательных печей с тем, чтобы не охлаждать обожженные концентраты и использовать их тепло.

По мере нагревания шихты в печи протекают следующие реакции восстановления окиси меди и высших оксидов железа:

6CuO + FeS = 3Cu2 O + SO2 + FeO;

В результате реакции образующейся закиси меди Cu2 O с FeS получается Cu2 S:

Сульфиды меди и железа, сплавляясь между собой, образуют первичный штейн, а расплавленные силикаты железа, стекая по поверхности откосов, растворяют другие оксиды и образуют шлак.

Благородные металлы (золото и серебро) плохо растворяются в шлаке и практически почти полностью переходят в штейн.

Штейн отражательной плавки на 80-90% (по массе) состоит из сульфидов меди и железа. Штейн содержит, %: 15-55 меди; 15-50 железа; 20-30 серы; 0,5-1,5 SiO2 ; 0,5-3,0 Al2 O3 ; 0.5-2.0 (CaO + MgO); около 2% Zn и небольшое количество золота и серебра. Шлак состоит в основном из SiO2 , FeO, CaO, Al2 O3 и содержит 0,1-0,5 % меди. Извлечение меди и благородных металлов в штейн достигает 96-99 %.

Конвертирование медного штейна

В 1866 г. русский инженер Г. С. Семенников предложил применить конвертер типа бессемеровского для продувки штейна. Продувка штейна снизу воздухом обеспечила получение лишь полусернистой меди (около 79% меди) – так называемого белого штейна. Дальнейшая продувка приводила к затвердеванию меди. В 1880 г. русский инженер предложил конвертер для продувки штейна с боковым дутьем, что и позволило получить черновую медь в конвертерах.

Конвертер делают длиной 6-10, с наружным диаметром 3-4 м. Производительность за одну операцию составляет 80-100 т. Футеруют конвертер магнезитовым кирпичом. Заливку расплавленного штейна и слив продуктов осуществляют через горловину конвертера, расположенной в средней части его корпуса. Через ту же горловину удаляют газы. Фурмы для вдувания воздуха расположены по образующей поверхности конвертера. Число фурм обычно составляет 46-52, а диаметр фурмы – 50мм. Расход воздуха достигает 800 м 2 /мин. В конвертер заливают штейн и подают кварцевый флюс, содержащий 70-80% SiO2 , и обычно некоторое количество золота. Его подают во время плавки, пользуясь пневматической загрузкой через круглое отверстие в торцевой стенке конвертеров, или же загружают через горловину конвертера.

Процесс можно разделить на два периода. Первый период (окисление сульфида железа с получением белого штейна) длится около 6-024 часов в зависимости от содержания меди в штейне. Загрузку кварцевого флюса начинают с начала продувки. По мере накопления шлака его частично удаляют и заливают в конвертер новую порцию исходного штейна, поддерживая определенный уровень штейна в конвертере.

В первом периоде протекают следующие реакции окисления сульфидов:

2FeS + 3O2 = 2FeO + 2SO2 + 930360 Дж

Пока существует FeS, закись меди не устойчива и превращается в сульфид:

Закись железа шлакуется добавляемым в конвертер кварцевым флюсом:

При недостатке SiO2 закись железа окисляется до магнетита:

6FeO + O2 = 2Fe3 O4 , который переходит в шлак.

Температура заливаемого штейна в результате протекания этих экзотермических реакций повышается с 1100–1200 до 1250-1350 0 С . Более высокая температура нежелательна, и поэтому при продувке бедных штейнов, содержащих много FeS, добавляют охладители – твердый штейн, сплески меди.

Во втором периоде, называемом реакционным, продолжительность которого составляет 2-3 часа, из белого штейна образуется черновая медь. В этот период окисляется сульфид меди и по обменной реакции выделяется медь:

Таким образом, в результате продувки получают черновую медь, содержащая 98,4-99,4% - меди, 0,01-0,04% железа, 0,02-0,1% серы, и небольшое количество никеля, олова, мышьяка, серебра, золота и конвертерный шлак, содержащий 22-30% SiO2 , 47-70% FeO, около 3% Al2 O3 и 1.5-2.5% меди.

Рафинирование меди

Для получения меди необходимо чистоты черновую медь подвергают огневому и электролитическому рафинированию, и при этом, помимо удаления вредных примесей, можно извлечь также благородные металлы. Огневое рафинирование черновой меди проводят в печах, напоминающие отражательные печи, используемые для выплавки штейна из медных концентратов. Электролиз ведут в ваннах, футурованных внутри свинцом или винипластом.

ЗАКЛЮЧЕНИЕ

Медь имеет широкое применение. Так, например, чистая медь используется электротехнической промышленности.

Важное значение имеют сплавы меди: латунь (сплав меди с цинком), бронза (сплав меди с оловом), алюминиевая бронза (сплав меди с алюминием), мельхиор (сплав меди с железом, никелем и марганцем) и др.

Соли меди используется в сельском хозяйстве для борьбы с вредителями, в качестве микроудобрений, а также в качестве катализаторов в химическом синтезе.

СПИСОК ЛИТЕРАТУРЫ

1. Архипов В. В. Технология металлов и других конструкционных материалов.

2. Воскобойников В. Г. Общая металлургия. М.: - Металлургия, - 1985

ПРИЛОЖЕНИЕ

СХЕМА 1

ПОДГОТОВКА РУД К ПЛАВКЕ




ПЛАВКА НА ШТЕЙН

ШЛАК ШТЕЙН

КОНВЕРТИРОВАНИЕ ШТЕЙНА

( ПРОДУВКА ВОЗДУХОМ)





ЧЕРНОВАЯ МЕДЬКОНВЕРТЕРНЫЙ


ШЛАК

РАФИНИРОВАНИЕ


ОТХОДЫ МЕДЬ

ПЕРЕРАБОТКА ДЛЯ ИЗВЛЕЧЕНИЯ

СХЕМА 2

ПЕРВЫЙ ПЕРИОД

2 FeS + 3O2 = 2FeO + 2SO2 + 930360 Дж

2CuS + 3O2 = 2Cu2 O + 2SO2 + 765600 Дж

Производство меди

Для получения меди применяют медные руды, а также отходы меди и её сплавы. В рудах содержится 1 – 6% меди. Руду, содержащую меньше 0,5% меди, не перерабатывают, так как при современном уровне техники извлечение из неё меди нерентабельно.

В рудах медь находится в виде сернистых соединений (CuFeS2 – халько-пирит, Cu2S – халькозин, CuS – ковелин), оксидов (CuO, CuO) и гидрокарбонатов [CuCO3·Cu(OH)2,2CuCO3·Cu(OH)2]

Пустая порода руд состоит из пирита (FeS2), кварца (SiO2), различных соединений содержащих Al2O3, MgO, CaO, и оксидов железа.

В рудах иногда содержится значительные количества других металлов (цинк, золото, серебро и другие).

Известны два способа получения меди из руд:

  • гидрометаллургический;
  • пирометаллургический.

Гидрометаллургический не нашел своего широкого применения из-за невозможности извлекать попутно с медью драгоценные металлы.

Пирометаллургический способ пригоден для переработки всех руд и включает следующие операции:

  • подготовка руд к плавке;
  • плавка на штейн;
  • конвертирование штейна;
  • рафинирование меди.

Подготовка руд к плавке

Подготовка руд заключается в проведении обогащения и обжига. Обогащение медных руд проводят методом флотации. В результате получают медный концентрат, содержащий до 35% меди и до 50% серы. Концентраты обжигают обычно в печах кипящего слоя с целью снижения содержания серы до оптимальных значений. При обжиге происходит окисление серы при температуре 750 – 800 °С, часть серы удаляется с газами. В результате получают продукт, называемый огарком.

Плавку на штейн

Плавку на штейн ведут в отражательных или электрических печах при температуре 1250 – 1300 °С. В плавку поступают обожженные концентраты медных руд, в ходе нагревания которых протекают реакции восстановления оксида меди и высших оксидов железа

6CuO + FeS = 3Cu2O + FeO + SO2

В результате взаимодействия Cu2O с FeS образуется Cu2S по реакции:

Сульфиды меди и железа, сплавляясь между собой, образуют штейн, а расплавленные силикаты железа, растворяя другие оксиды, образуют шлак. Штейн содержит 15 – 55% Cu; 15 – 50% Fe; 20 – 30% S. Шлак состоит в основном из SiO2, FeO, CaO, Al2O3.

Штейн и шлак выпускают по мере их накопления через специальные отверстия.

Конвертирование штейна

Конвертирование штейна осуществляется в медеплавильных конвертерах (рисунок 44) путем продувки его воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди.

Конвертеры имеют длину 6 – 10 м и наружный диаметр 3 – 4 м. Заливку расплавленного штейна, слив продуктов плавки и удаление газов осуществляют через горловину, расположенную в средней части корпуса конвертера. Для продувки штейна подается сжатый воздух через фурмы, расположенные по образующей конвертера. В одной из торцевых стенок конвертера расположено отверстие, через которое проводится пневматическая загрузка кварцевого флюса, необходимого для удаления железа в шлак.
Процесс продувки ведут в два периода. В первый период в конвертер заливают штейн и подают кварцевый флюс. В этом периоде протекают реакции окисления сульфидов

2FeS + 3O2 = 2Fe + 2SO2,

Образующаяся закись железа взаимодействует с кварцевым флюсом и удаляется в шлак

По мере накопления шлака его частично сливают и заливают в конвертер новую порцию исходного штейна, поддерживая определенный уровень штейна в конвертере. Во втором периоде закись меди взаимодействует с сульфидом меди, образуя металлическую медь

Таким образом, в результате продувки получают черновую медь, содержащую 98,4 – 99,4% Cu. Полученную черновую медь разливают в плоские изложницы на ленточной разливочной машине.

Рафинирование меди.

Для получения меди необходимой чистоты черновую медь подвергают огневому и электролитическому рафинированию. При этом, помимо удаления примесей можно извлекать также благородные металлы.

При огневом рафинировании черновую медь загружают в пламенную печь и расплавляют в окислительной атмосфере. В этих условиях из меди удаляются в шлак те примеси, которые обладают большим сродством к кислороду, чем медь.

Для ускорения процесса рафинирования в ванну с расплавленной медью подают сжатый воздух. Большинство примесей в виде оксидов переходят в шлак (Fe2O3, Al2O3, SiO2), а некоторые примеси при рафинировании удаляются с газами. Благородные металлы при огневом рафинировании полностью остаются в меди. Кроме благородных металлов в меди в небольших количествах присутствуют примеси сурьмы, селена, теллура, мышьяка. После огневого рафинирования получают медь чистотой 99 – 99,5%.
Для удаления этих примесей, а также для извлечения золота и серебра медь подвергают электролитическому рафинированию.

Электролиз ведут в специальных ваннах, футерованных внутри свинцом или другим защитным материалом. Аноды изготовляют из меди огневого рафинирования, а катоды – из тонких листов чистой меди. Электролитом служит раствор сернокислой меди. При пропускании постоянного тока анод растворяется и медь переходит в раствор. На катодах разряжаются ионы меди, осаждаясь на них прочным слоем чистой меди.

Находящиеся в меди примеси благородных металлов выпадают на дно ванны в виде остатка (шлама). После электролитического рафинирования получают медь чистотой 99,95 – 99,99%.

Применение меди в качестве материала для производства орудий труда и оружия известно человечеству многие столетия. Развитие электротехники и электроники явилось дальнейшим стимулом разработки совершенных методов добычи и переработки сырья, в котором присутствует этот металл. Современное производство меди – это хорошо отработанный процесс.Одной из проблем получения этого дефицитного металла является низкий процент содержания меди в добываемой руде. Он не превышает пять процентов от общего числа добываемой породы.

Производство меди

Способы производства меди

В настоящее время разработано несколько способов получения меди. Основными являются:

  • пирометаллургия;
  • гидрометаллургия;
  • электролиз.

Наибольшее количество производится с применением первого способа. С его помощью получают практически 90% всего металла. Он достаточно трудоёмкий и продолжительный. Технология производства меди этим способом включает несколько этапов, которые осуществляют обогащение поступающего материала, последовательное получение готового материала. Каждый из этапов содержит строгую последовательность технологических задач. Обычно завод по производству меди выполняет весь комплекс операций.

Путь производства меди

Для получения так называемой катодной меди используется третий способ. Полностью этот способ называется – электролитическое рафинирование с последующим осаждением готового продукта на поверхности металлических пластин.

Стадии пирометаллургического производства меди

Данный способ эффективно применяется для переработки руды с различным содержанием меди. Он состоит из следующей последовательности действий:

  • подготовки (обогащения)добытого сырья;
  • непосредственной плавки на штейн;
  • конвертирования полученного штейна;
  • окончательного рафинирования.

Каждый технологический процесс осуществляется с применением необходимых методов обработки.Для выделения черновой меди производят так называемую продувку. Далее медь помещают в формы или разливают на плиты. Она остаётся загрязнённой различными примесями и не обладает свойствами чистой меди.

Получение черновой меди

Сущность процесса заключается в подаче под давлением воздуха через жидкий расплав медного штейна. Она производится в специальных конвертерах, которые могут располагаться вертикально или горизонтально. В дальнейшем обогащённые концентраты медных руд поступают на конечную переработку.

Обогащение

Первоначально в добытой руде содержание меди не превышает шести процентов. Для производства меди с наилучшей эффективностью необходимо произвести обогащение добытой руды.Это производство предназначено для получения концентрата, в котором будет содержаться меди более 10%. В отдельных случаях его удаётся довести до 35%.

Основным способом обогащения сульфидных медно-никелевых руд является флотация. Для повышения эффективности обогащения предварительно проводят операцию магнитной сепарации. Она способствует выделению пирротина в самостоятельный концентрат. Возможность проведения магнитной сепарации обусловлена относительно высокой магнитной восприимчивостью пирротина.

Сам процесс включает следующие операции:

  • предварительное дробление и последующий размол на мелкие частицы (он проводится до момента получения зерен не более 0,05÷0,5 мм);
  • флотационное обогащение, которое основано на обработке несмачивающихся частиц руды совместно с пузырьками продуваемого воздуха при подъёме их вверх в виде пены (для эффективности процесса добавляется масло), пустая порода, смачиваясь опускается вниз.

После получения обогащённого материала приступают к следующему этапу.

Обжиг

Пирометаллургия определяет два типа обжигового процесса. Первый заключается в так называемом окислительном обжиге. В нём производят частичное окисление сульфидов медных концентратов. Данный процесс протекает в одном из трёх режимов: кинетическом, диффузионном и промежуточном. Каждый из них характеризуется величиной скорости протекания кристаллохимического превращения и значением коэффициента диффузии.

Правильный выбор этих параметров позволяет значительно понизить содержание серы, получить штейн требуемой концентрации. Такой обжиг производят в специальных агрегатах. Они называются обжиговые печи. С их помощью удаётся понизить содержание влаги до пяти процентов и одновременно уменьшить содержание серы. Современная схема этого процесса предполагает проводить его в кипящем слое или во взвешенном состоянии.

Обжиг меди

Второй способ предполагает проведение нагрева до температуры, активирующей окисление сульфида серы. Высшие фракции проходят стадию диссоциации. Низшие фракции подвергаются окислению незначительно.

Выбор оптимальной температуры для этого процесса зависит от следующих условий:

  • параметров процесса сжигания топлива;
  • характеристик теплообмена;
  • качества изоляционных свойств печи (её стойкость футеровки);
  • характеристик теплообмена самого перерабатываемого материала.

Наиболее популярным считается метод обжига медного концентрата в многоподовых печах. В них одновременно осуществляется механическое перемешивание загруженной смеси. Наибольшая эффективность технологического процесса проявляется в печах десятиподовой конструкции. В таких печах не только наиболее эффективно удаляется сера, но и качественно перемешивается концентрат введёнными добавками и флюсами. В этом случае такая печь исполняет роль смесительного аппарата. В печи поддерживается температура в интервале от 450 до 500 градусов. Состав загружаемой смеси и качество обжига (десульфуризации) зависит от оптимальности выбранных параметров.

Многоподовая печь

Кроме этого метода существует обжиг готовых концентратов в кипящем слое. Для его реализации используются специальные агрегаты способные создавать такие условия. Их сложная и дорогостоящая конструкция существенно ограничивает их применение.

Плавка на штейн

Основными составляющими в сырье для получения штейна являются сульфиды двух металлов: железа и меди. В его составе присутствуют оксиды различных металлов, например, алюминия, кальция. Проведение процесса плавки позволяет получить два продукта в жидком виде. Одним является штейн, в котором концентрируется медь. Она переходит туда из оксидов шихты. Вторым получается шлак. В нём сохраняются остальные соединения.

Сырьём для выплавки служит подготовленный концентрат. Его смешивают с флюсом. Они должны стимулировать протекание этого процесса. Такими добавками служат известняк или кварц. Сплав штейн получают несколькими способами. Для этого используют отражательные, шахтные и электродуговые печи.

Отражательная печь для плавки на штейн

Наибольшую популярность получил технологический процесс плавки в отражательных печах.Они имеют следующие геометрические размеры: длиной до сорока метров, ширина не превышает десяти метров и максимальная высота от пода до свода должна быть не более четырёх с половиной метров. Под печи, опирается на оборудованный фундамент. Его изготавливают несколькими способами. Может применяться специальный динасовый кирпич, или наваривают из кварцевого песка. Наиболее оптимальной толщиной пода считается размер от 0,6 метра до 1,5 метров. Стены изнутри выкладывают магнезитохромитовым кирпичом. Свод изготавливают арочным распорно-трапециевидной формы. Для извлечения готового штейна готовят специальные шпуры. После завершения операции выгрузки они закрываются глиняной пробкой. В некоторых конструкциях для выгрузки устанавливают специальные сифонные устройства.

Рафинирование с использованием катодной меди

Процесс рафинирования предназначен для выделения чистой меди из различных добавок и примесей. В современной промышленности экономически целесообразным считается проведение этого процесса в два этапа. Первый заключается в температурном рафинировании, второй в электролитическом. Второй способ осуществляется с применением катодной меди.

Электролитическое рафинирование

Проведение электролитического рафинирования позволяет решить две задачи:

  1. Глубокую очистку от примесей.
  2. Обеспечение высокой электропроводности.

В зависимости от состава сырья в отдельных случаях удаётся получить сопутствующие металлы (серебро, селен и даже золото). Сам технологический процесс протекает в специальных ваннах длиной до 5 метров и глубиной до 1,5 метров. Стенки таких ванн обработаны кислотостойкими материалами. Над ванной создаётся система крепления, к которой закрепляют катоды. В качестве катодов используют плоские пластины, изготовленные из чистой меди. Одна пластина исполняет роль катода, вторая – анода. Ванна заполняется электролитом. В качестве электролита применяется серная кислота (H2SO4)в которой растворён сульфат меди(CuSO4). К этим катодам подаётся невысокое напряжение величиной 0,4 В. После замыкания цепи начинается процесс электролитического растворения анода. Под воздействием разности потенциалов ионы меди с анода переходят на катод, оседая на нём в виде чистой меди. Электролит периодически обновляют. Это необходимо, так как в его составе образуются растворы металлов, замедляющие процесс электролиза. Кроме этого на дне ванны накапливается осадок называемый шлам. Его также периодически выгружают. На современных предприятиях полное растворение анода происходит в течение 30 суток.

Последовательность выгрузки производится с интервалом от шести до двенадцати суток. Процесс электролиза достаточно электрозатратен. Для получения одной тонны чистой меди необходимо обеспечить мощность до 350 кВт.

Полученные катоды направляются для дальнейшей переработки. В итоге получают отдельные слитки или заготовки заданной формы. Плавка катодов производится в отражательных или печах шахтного типа. Создание температуры при которой плавятся катоды осуществляется сжиганием природного газа, с использованием электродуговых или индукционных установок. Полученная медь разливается по готовым формам. Для получения проволоки её помещают в так называемые вайербасы. Весь процесс происходит на установках непрерывной или полунепрерывной разливки.

Производство меди в России и мире

Производство меди

Мировое производство меди достаточно консолидировано. Почти 35% этого металла производиться пятью крупнейшими компаниями. К ним относятся:

  • Codelco (Чили).
  • Freeport-McMoRan (США).
  • Glencore (Швейцария).
  • BHP Billiton (Австралия).
  • Southern Copper (Мексика).

Эти компании почти 80% меди получают из первичного сырья (то есть осуществляют полный цикл переработки) и 20% производят в результате переработки поступающего лома. В Европе наиболее крупными производителями меди являются: Польша, Португалия и Болгария. Каждый завод способен осуществлять выпуск широкого ассортимента медной продукции. Несмотря на современный кризис, медь по-прежнему остаётся востребованным металлом. Одним из серьёзных недостатков, присущих этому производству являются экологические проблемы. Оценка выбросов на медеплавильных заводах показали высокий уровень загрязнения окружающего воздуха. В его составе присутствует большое количество вредных для здоровья химических соединений (кадмия, ртути, мышьяка, свинца, оксидов азота и углерода).

Читайте также: