Реферат на тему правильные многоугольники

Обновлено: 02.07.2024

Среди всех многоугольников выделяют особую группу правильных многоугольников. Они обладают рядом замечательных свойств.

План урока:

Понятие правильного многоугольника

У выпуклого многоугольника могут быть одинаковы одновременно и все стороны, и все углы. В таком случае он именуется правильным многоугольником.

Нам уже известны некоторые правильные многоуг-ки. Например, правильным является равносторонний треугольник. У него все стороны одинаковы по его определению, а все углы составляют по 60°. Поэтому иногда его так и называют – правильный треугольник. Среди четырехугольников правильной фигурой является квадрат, у которого также по определению одинаковы стороны, а углы составляют уже по 90°.

Заметим, что бывают фигуры, у которых одинаковы все стороны, а углы различны. Примером такой фигуры является ромб. Возможна и обратная ситуация – все углы у фигуры одинаковы, но стороны отличаются своей длиной. Таковым является прямоугольник. Важно понимать, такие фигуры (в частности, ромб и прямоугольник) НЕ являются правильными.

Для любого заданного числа n, начиная от n = 3, можно построить правильный n-угольник. На рисунке ниже показано несколько примеров таких n-угольников:

Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Мы уже знаем, что в любом выпуклом n-угольнике сумма углов равна величине 180°(n– 2). Обозначим угол правильного многоуг-ка буквой α. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство:

Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Для треугольника n = 3, поэтому мы получаем 60°:

Задание. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике?

Решение. Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника:

Задание. Сколько сторон должно быть у правильного многоуг-ка, чтобы каждый угол в нем был равен 179°?

Решение. В формулу

Задание. Может ли существовать правильный многоуг-к, угол которого равен 145°?

Решение. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон:

Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может.

Описанная и вписанная окружности правильного многоугольника

Докажем важную теорему о правильном многоуг-ке.

Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.

∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:

Из этого факта вытекает два равенства:

Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):

Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:

Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.

Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.

Так как высоты проведены в равных треуг-ках, то и сами они равны:

Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:

Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.

Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.

Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.

Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?

Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.

Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:

Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:

С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Найдем периметр шестиугольника:

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

Далее вычисляется радиус описанной около треугольника окружности:

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:

Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:

В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:

Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

AH = AC/2 = 17/2 = 8,5 мм

Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:

Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.

Построение правильных многоугольников

При использовании транспортира или иного прибора, позволяющего откладывать заранее заданные углы, построение правильного многоуг-ка проблем не вызывает. Например, пусть надо построить пятиугольник со стороной, равной 5 см. Сначала по известной формуле вычисляем величину его угла:

Однако напомним, что в геометрии большой интерес вызывают задачи, связанные с построением с помощью всего двух инструментов – циркуля и линейки, то есть без использования транспортира. В таком случае построение многоугольников правильной формы становится значительно более сложной задачей. Если речь идет не о таких простых фигурах, как квадрат и равносторонний треугольник, то при построении обычно приходится использовать описанную окружность.

Сначала рассмотрим построение правильного шестиугольника по заранее заданной стороне. Ранее мы уже узнали, что его сторона имеет такую же длину, как и радиус описанной окружности:

На основе этого факта предложен следующий метод построения шестиугольника. Сначала строится описанная окружность, причем в качестве ее радиуса берется заданная сторона а6. Далее на окружности отмечается произвольная точка А, которая будет первой вершиной шестиугольника. Из нее проводится ещё одна окружность радиусом а6. Точки, где она пересечет описанную окружность (В и F), будут двумя другими вершинами шестиугольника. Наконец, и из точек B и F проводим ещё две окружности, которые пересекутся с исходной окружностью в точках С и F. Наконец, из С (можно и из F)провести последнюю окружность и получить точку D. Осталось лишь соединить все точки на окружности (А, В, С, D, Еи F):

Данное построение довольно просто. Однако для пятиугольника построение несколько более сложное, а для семиугольника и девятиугольника вообще невозможно осуществить точное построение. Этот факт был доказан только в 1836 г. Пьером Ванцелем.

Если удалось возможно построить правильный n-угольник, вписанный в окружность, то несложно на его основе построить многоуг-к, у которого будет в два раза больше сторон (его можно назвать 2n-угольником) и который будет вписан в ту же окружность. Рассмотрим это построение на примере квадрата и восьмиугольника.

Изначально дан квадрат, вписанный в окружность. Надо построить восьмиугольник, вписанный в ту же окружность. Обозначим любые две вершины квадрата буквами А и В. Для начала нам надо разбить дугу ⋃АВ на две равные дуги. Для этого мы проводим из А и В окружности радиусом АВ. Они пересекутся в некоторых точках С и D. Соединяем их отрезком, который в свою очередь пересечется с исходной окружностью в точке Е.

Е – это середина дуги ⋃АВ. Точки А, В и Е как раз являются тремя первыми точками восьмиугольника. Для получения остальных точек необходимо из вершин квадрата строить окружности радиусом АЕ. Точки, где эти окружности пересекутся с исходной окружностью, и будут вершинами восьмиугольника. Также его вершинами являются вершины самого квадрата:

Аналогичным образом можно из шестиугольника получить 12-угольник, из восьмиугольника – 16-угольник, из 16-угольника – 32-угольник. То есть можно удвоить число сторон многоуг-ка.

Древние греки умели строить правильные многоуг-ки с 3, 4, 5, 6 и 15 сторонами, а также умели на их основе строить многоуг-ки с вдвое большим числом сторон. Лишь в 1796 г. Карл Гаусс смог построить 17-угольник. Также удалось найти способ построения 257-угольника и 65537-угольника, причем описание построения 65537-угольника занимает более 200 страниц.

В этом уроке мы узнали о правильных многоуг-ках и их свойствах. Особенно важно то, что для каждого такого многоуг-ка можно построить описанную и вписанную окружность, причем их центры совпадают. Это позволяет использовать правильные многоуг-ки для более глубокого исследования свойств окружности.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное бюджетное общеобразовательное учреждение

Научное общество учащихся

Работу выполнила: Зизелева Эльвира

Научный руководитель: Литвинова С.Г.

учитель математики первой категории

Нижний Новгород 2020 год.

Глава I. Вводные понятия и свойства…………………….…………. 5

1.1 Понятия выпуклого многоугольника, правильного многоугольника, правильного многогранника………………………………………….…..5

1.2 Теоремы о вписанных и описанных окружностях………………. 6

1.3 Основные формулы связи элементов окружностей и многоугольников

Глава II. Применения правильных многоугольников в практических задачах.

Глава III. Альтернативные способы применения правильных многоугольников…………………………………………………………….10

Актуальность исследования ( Заключение)………………………………. 1 1

В нашем мире много необычного и прекрасного. Нас окружают предметы, формы которых нас удивляют. Таковыми, например, являются правильные многоугольники и правильные многогранники. Эти фигуры обладают красотой, совершенством форм, притягательностью. С раннего детства мы встречаемся с ними, играя в кубики и развивающие конструкторы, решая магические квадраты и головоломки Кубика-Рубика и его разновидностей. Архитекторы, строители и дизайнеры воплощают свои оригинальные идеи, используя эти фигуры. На уроках математики изучаются различные геометрические фигуры и их свойства. Но возникает вопрос: почему именно правильным многоугольникам и многогранникам уделяется особое внимание? В настоящее время никто не станет отрицать необходимости популяризации математических знаний. Одним из способов популяризации является применение правильных многоугольников и правильных многогранников.

Цель исследования : Целью исследования является сбор и систематизация типов задач, где применяются свойства правильных многоугольников и показать актуальность этой темы.

Задачи :
1. Сгруппировать блок простейших понятий и теорем, используемых при решении.

2. Показать применение этих теорем при решении задач.

3. Найти способы более простого и красивого решения.

Исторические сведения.

Правильные многоугольники известны с древнейших времен. История их изучения уходит в Древнюю Грецию.

рис. Космического кубка Кеплера

1.1 Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины (рис.1)

Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны. (рис.2)

Примеров правильного многоугольника много-треугольник,квадрат,пятиугольник,шестиугольник,восьмиугольник и т.д.


рис.1

pravilnie-mnogougolniki

рис.2

Правильный многогранник- это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией. (рис.3)

Описание: https://ds04.infourok.ru/uploads/ex/1013/0007769a-89fed8d5/hello_html_248e5e5.jpg

рис.3


Правильных многогранников всего пять: тетраэдр, куб (гексаэдр), октаэдр, додекаэдр, икосаэдр.

Тетраэдр составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников

Куб (гексаэдр) составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов

Октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников


Додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников


Икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников


1.2. Теорема №1: Около любого правильного многоугольника можно вписать окружность, и притом только одну.( рис.1)

Теорема № 2: В любой правильный многоугольник можно вписать окружность , и притом только одну .( рис .2)

рис.1 рис.2

1.3 Для правильных многоугольников существуют следующие формулы связи: >Pr" width="32" height="31" />
>Pr" width="32" height="32" />


Sn= ∙ P ∙ r


an=2R ∙ sin ∙


r = R ∙ cos ∙


Правильные многоугольники

Наглядная геометрия 9 класс. Опорный конспект 4. Правильные многоугольники


Правильный многоугольник — это такой многоугольник, у которого все стороны и все углы равны. Равносторонний треугольник и квадрат — правильные многоугольники. Если разделить окружность на п равных частей и соединить соседние точки отрезками, то получим правильный многоугольник. Вокруг всякого правильного многоугольника можно описать окружность, в него также можно вписать окружность, и центры этих окружностей совпадают.

Мы научимся строить правильный треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник при помощи циркуля и линейки и выведем формулы, связывающие радиусы вписанной и описанной окружностей с длиной стороны правильного многоугольника.

Если число сторон вписанного правильного многоугольника увеличивать, то его периметр будет стремиться к длине окружности, а площадь — к площади круга. Отсюда можно получить формулы длины окружности и площади круга: С = 2πR и S = πR 2 .

Вы знаете, что углы измеряются в градусах. Градус, как известно, равен 1/180 части развернутого угла. Мы познакомимся еще с одной очень важной единицей измерения углов, которая связана с окружностью, — 1 радианом. 1 рад = 57°.


1. Правильный многоугольник. Теорема об описанной и вписанной окружностях.

Правильным называется многоугольник, у которого все стороны и углы равны.

Теорема. Вокруг всякого правильного многоугольника можно описать окружность. Во всякий правильный многоугольник можно вписать окружность. Центры этих окружностей совпадают.

Доказательство. Проведем биссектрисы двух углов правильного многоугольника. Получим равнобедренный треугольник (углы при основании равны как половины равных углов). Соединив точку пересечения биссектрис с третьей вершиной многоугольника, получим треугольник, равный 1-му (по двум сторонам и углу между ними). Продолжая соединять эту точку с остальными вершинами, получим множество равных равнобедренных треугольников. Тогда полученная точка равноудалена от всех вершин правильного многоугольника. Значит, она — центр описанной окружности. Так как высоты этих треугольников, опущенные на их основания, равны, то данная точка равноудалена и от сторон правильного многоугольника. Значит, она — центр вписанной окружности.

2. Выражение стороны а через R и r для правильного n-угольника.

Соединим центр правильного многоугольника с двумя соседними вершинами. Получим равнобедренный треугольник с углом при вершине, равным 360°/n. Половина его равна 180°/n, где n — число сторон. Из прямоугольного треугольника находим:

Козлова Наталья Борисовна

В своей деятельности человеку повсюду приходится сталкиваться с изучением формы, размеров и взаимного расположения пространственных фигур. Подобные задачи решают и астрономы, имеющие дело с самыми большими масштабами, и физики, исследующие структуру атомов и молекул, и строители, рассчитывающие постройку или разрушение зданий, и малыш в детском саду, строящий пирамидку из кубиков. Таким образом устроен окружающий нас мир, что ни один человек в своей жизни не обойдется без пространственного представления предметов.

В стереометрии появляется новый вид взаимного расположения прямых:

скрещивающиеся прямые (например дорога на мосту и под мостом, то есть они не пересекаются).

Ни одни геометрические тела не обладают таким совершенством и

красотой, как правильные многогранники и сложностью своих форм, как полуправильные многогранники. Они открыли нам попытки

ученых приблизиться к тайне мировой гармонии и показали неотразимую

Мной был изучен необходимый непрограммный материал, и захотелось расширить свои знания и представления по данной теме.

Предложенная тема предположила цель работы:

- ознакомиться с понятием правильного многогранника и полуправильного многогранника, с их видами;

- развитие пространственного мышления, умения обобщать и анализировать новый материал;

- выяснение значимости понятий правильных и полуправильных многогранников в различных сферах деятельности человека.

В связи с поставленной перед собой целью необходимо было решить ряд

1) организовать поиск, изучение различных источников информации

(печатные, электронные, интернет) и отбор материала, представляющего

интерес по обозначенной теме;

2) обобщить, систематизировать, классифицировать изученный материал;

3.) оценить результат проделанной работы.

Практическая значимость реферата:

Представить ценность данного материала в обычной жизни каждого человека.

1. Основные понятия.

Стереометрия - часть геометрии, в которой изучаются фигуры в пространстве. Стереометрия включает изучение плоскостей, объемных геометрических тел, их всевозможных сечений и комбинаций, а также измерение объемов и площадей тел.

Многогранник – поверхность, составленная из многоугольников, а также тело ограниченное такой поверхностью.

Правильным многогранником называется выпуклый многогранник, грани которого – равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой. Доказано, что в каждой из вершин правильного многогранника сходится одно и то же число граней и одно и то же число ребер. Кроме того правильный многогранник, или Платоново тело — это выпуклый многогранник с максимально возможной симметрией.

Иоганн Кеплер называл куб "родителем" всех правильных многогранников. На основе куба он смог построить все другие виды правильных многогранников.

Если провести в противоположных гранях куба скрещивающиеся диагонали, то их концы окажутся вершинами тетраэдра, а вершины октаэдра – это центры граней куба. Полученные многоугольники действительно правильные, так как их грани – правильные треугольники. Равенство же двугранных углов следует из того, что при повороте куба ребро многогранника можно перевести в любое другое.

Для того, чтобы построить икосаэдр, на каждой грани куба нужно построить отрезок длиной x (пока что это – любая длина) так, чтобы он был параллелен двум сторонам своей грани и перпендикулярен таким же отрезкам на соседних гранях. Середина его должна совпадать с центром грани. Соединим концы этих отрезков между собой, и мы получим двадцатигранник, грани которого – треугольники, и при каждой вершине их пять.

Можно доказать, что отношение ребра куба к ребру вписанного в него икосаэдра – не что иное, как золотое сечение.

Теперь докажем равенство двугранных углов. Рассмотрим 5 ребер, выходящих из точки A. Концы их всех равноудалены и от точки A, и от центра куба O. Отсюда следует, что они лежат на пересечении двух сфер с центрами A и O, а значит – на окружности, причем ребра, соединяющие их с точкой A, равны. Значит, эти пять точек и точка a – вершины правильной пирамиды, а ее двугранные углы при вершине равны.

Додекаэдр из икосаэдра можно получить так же, как и октаэдр из куба. соединяя середины смежных граней икосаэдра, мы получаем правильнгый пятиугольни. Всего таких пятиугольников будет 12. Двугранные углы многоугольника будут равны, так как трехгранные углы при его вершинах имеют равные плоские углы.

Тела Платона - это выпуклые многогранники , все грани которых правильные многоугольники.

Существует всего пять правильных многогранников:

2.1. История названия правильных многогранников.

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.

Итак, тетраэдр имеет 4 грани, в переводе с греческого "тетра" - четыре, "эдрон" - грань.

Гексаэдр (куб) имеет 6 граней, "гекса" – шесть.

Октаэдр - восьмигранник, "окто" – восемь.

Додекаэдр - двенадцатигранник, "додека" - двенадцать;

Икосаэдр имеет 20 граней, "икоси" - двадцать.

2.2 Почему их только пять?

Доказательство того, что существует ровно пять правильных выпуклых многогранников, очень простое. Рассмотрим развертку вершины такого многогранника. Каждая вершина может принадлежать трем и более граням.

Сначала рассмотрим случай, когда грани многогранника - равносторонние треугольники. Поскольку внутренний угол равностороннего треугольника равен 60°, три таких угла дадут в развертке 180°. Если теперь склеить развертку в многогранный угол, получится тетраэдр - многогранник, в каждой вершине которого встречаются три правильные треугольные грани. Если добавить к развертке вершины еще один треугольник, в сумме получится 240°. Это развертка вершины октаэдра. Добавление пятого треугольника даст угол 300° - мы получаем развертку вершины икосаэдра. Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° - эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику.

  • Теперь перейдем к квадратным граням. Развертка из трех квадратных граней имеет угол 3x90°=270° - получается вершина куба, который также называют гексаэдром. Добавление еще одного квадрата увеличит угол до 360° - этой развертке уже не соответствует никакой выпуклый многогранник.
  • Три пятиугольные грани дают угол развертки 3*108°=324° - вершина додекаэдра. Если добавить еще один пятиугольник, получим больше 360°.
  • Для шестиугольников уже три грани дают угол развертки 3*120°=360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует.

Таким образом, мы убедились, что существует лишь пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями.

3. Полуправильные многогранники

Наряду с правильными многогранниками существуют еще многогранники, у которых все многогранные углы равны, а грани – правильные многоугольники нескольких видов. Они не могут быть отнесены к правильным – их называют полуправильными многогранниками.

В полуправильных многогранниках равны одноименные многоугольники; причем в каждой вершине сходится одно и тоже число одинаковых граней; в одинаковом порядке каждый из этих многогранников может быть вписан в сферу.

Конечно, возникает вопрос: сколько всего существует полуправильных многогранников? Более двух тысяч лет думали, что только тринадцать (их называют телами Архимеда, т.к. именно ему принадлежит их открытие), не считая двух бесконечных серий, составленных из призм и антипризм.

3.1. Тела Архимеда .

Многогранники, у которых все многогранные углы равны, а грани - правильные, но разноименные правильные многоугольники.

Многогранники такого типа называются равноугольно полуправильными многогранниками. Первую группу составляют пять многогранников, которые получаются из пяти платоновых тел в результате их усечения.

Вторую группу составляют два тела, называемых квазиправильными многогранниками. Это название означает, что гранями этого многогранника являются правильные многоугольники всего двух типов, причем каждая грань одного типа окружена гранями другого типа. Эти два тела называются: кубооктаэдр и икосододекаэдр. (приложение 1).

3.2 Тела Кеплера-Пуансо.

Кеплер открыл малый додекаэдр, названный им колючим или ежом, и большой додекаэдр. Пуансо открыл два других правильных звездчатых многогранника, двойственных соответственно первым двум: большой звездчатый додекаэдр и большой икосаэдр.

3.3. Тела Федорова.

Федоров Евграф Степанович (22.12.1853 –

21.05.1919) - русский кристаллограф, один из

основоположников структурной кристаллографии и

минерологи, геометр, петрограф и геолог, стал

основоположником теории строения кристаллов. Его тела это выпуклые многогранники (параллелоэдры), параллельными переносами которых можно заполнить пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой (т.е. являются параллелоэдрами). Существует 5 типов Федоровых тел, найденных им в 1881г.

3.4. Каталановы тела

Архимедовы тела являются полуправильными многогранниками в том смысле, что их грани - правильные многоугольники, но они не одинаковы, а каталановы - в том смысле, что их грани одинаковы, но не являются правильными многоугольниками; при этом для тех и других сохраняется условие пространственной симметрии.

4. Биография Платона.

(428 или 427до н. э., —347 до н. э.,) —

Платон родился в семье, имевшей аристократическое происхождение. Первым учителем Платона был Кратил. Около 407 года познакомился с Сократом и стал одним из его учеников.

После смерти Сократа в 399 до н.э. уехал в Мегару.

В 389 году отправился в Южную Италию и Сицилию, где общался с пифагорейцами.

В 387 году Платон возвращается в Афины, где сновывает собственную школу — Платоновскую Академию. По древним преданиям Платон умер в

день своего рождения в 347 году. По свидетельству

Олимпиодора, Платон был не только философом, но и олимпийским чемпионом. Дважды он выигрывал соревнования по панкратиону — смесь бокса и борьбы.

4.1 Деятельность в цитатах.

Космос. Об отношении идеи к вещам.

Политико-правовое учение Платона.

"Человек существо бескрылое, двуногое, с плоскими ногтями, восприимчивое к знанию, основанному на рассуждениях".

Правильные многогранники или тела Платона Платону принадлежит разработка некоторых важных методологических проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания.

4.2. Философия Платона

Огонь – наиболее подвижная стихия, он обладает разрушительным действием, проникая в другие тела (сжигая или расплавляя, или испаряя их); при соприкосновении с ним мы испытываем чувство боли, как если бы мы укололись или порезались. Какие частицы могли бы обусловить все эти свойства и действия? Очевидно, наиболее подвижные и легкие частицы, и притом обладающие режущими гранями и колющими углами. Из четырех многогранников, о которых может идти речь, в наибольшей степени удовлетворяет тетраэдр. Поэтому, говорит Платон, образ пирамиды (т.е. тетраэдра) и должен быть в согласии с правильным рассуждением и с правдоподобием, первоначалом и семенем огня. Наоборот, земля выступает как самая неподвижная и устойчивая из всех стихий. Поэтому частицы, из которых она состоит, должны иметь самые устойчивые основания. Из всех четырех тел этим свойством в максимальной мере обладает куб. Аналогичным образом с двумя прочими стихиями мы соотнесем частицы, обладающие промежуточными свойствами. Икосаэдр, как самый обтекаемый, представляет частичку воды, октаэдр – частицу воздуха.

ПРОНИКНОВЕНИЕ ПРАВИЛЬНЫХ И ПОЛУПРАВИЛЬНЫХ МНОГОГРАННИКОВ В ОКРУЖАЮЩИЙ МИР

2.Многогранники в искусстве

Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Изящный пример звездчатого додекаэдра можно найти в работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором.

Надгробный памятник в кафедральном соборе Солсбери.

Великая пирамида была построена как гробница Хуфу, известного грекам как Хеопс. Он был одним из фараонов, или царей древнего Египта, а его гробница была завершена в 2580 году до н.э. Позднее в Гизе было построено еще две пирамиды, для сына и внука Хуфу, а также меньшие по размерам пирамиды для их цариц. Пирамида Хуфу, самая дальняя на рисунке, является самой большой. Пирамида его сына находится в середине и смотрится выше, потому что стоит на более высоком месте.

В III веке до н.э. был построен маяк, чтобы корабли могли благополучно миновать рифы на пути в александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днем - столб дыма. Это был первый в мире маяк, и простоял он 1500 лет.

Наш мир исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к правильным многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

В моих приложениях (приложение 4) можно увидеть некоторые культурные ценности на которых изображены правильные многогранники.

Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов. Взять хотя бы поваренную соль, без которой мы не можем обойтись. Известно, что она хорошо растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли (NaCl) имеют форму куба.

  • При производстве алюминия пользуются алюминиево-калиевыми квасцами (K[Al(SO4)2]·12H2O), монокристалл которых имеет форму правильного октаэдра.
  • Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра (см.рис.).
  • В разных химических реакциях применяется сурьменистый сернокислый натрий (Na5(SbO4(SO4)) – вещество, синтезированное учеными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра.
  • Последний правильный многогранник – икосаэдр передает форму кристаллов бора (B). В свое время бор использовался для создания полупроводников первого поколения.
  • Итак, благодаря правильным многогранникам, открываются не только удивительные свойства геометрических фигур, но и пути познания природной гармонии.

На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, по которым построена вся жизнь. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру. Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия : за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК.

Вирусы, построенные только из нуклеиновой кислоты и белка, могут походить на жесткую палочкообразную или гибкую нитевидную спираль, точнее на правильный двадцатигранник, или икосаэдр. Есть вирусы, размножающиеся в клетках животных (позвоночных и беспозвоночных), другие облюбова-ли растения, третьи (их называют бактериофагами или просто фагами) паразитируют в микробах, но икосаэдрическая форма вирусов сохраняется во всех трех типах вирусов.

Математики говорили, что пчелы строили шестиугольные соты задолго до появления человека. Почему пчелы строят соты именно так?

Пчелы – удивительные создания. Если разрезать пчелиные соты плоскостью, то станет видна сеть равных друг другу правильных шестиугольников. Из правильных многоугольников с одинаковой площадью наименьший периметр именно у правильных шестиугольниковСтало быть, мудрые пчелы экономят воск (≈2% ) и время для постройки сот. На рисунке 1 изображена пчелиная ячейка в общем виде. На рисунке 2 можно увидеть, как соприкасаются ячейки в улье: их общая часть является ромбом.

4. Мифические существа - духи.

Народное творчество, фантазия средневековых алхимиков и воображение поэтов населили 4 земные стихии мифическими существами – духами (приложение 5):

  • воздуха (октаэдр) – эльфы,
  • земли (куб) – гномы, тролли,
  • огня (тетраэдр) – саламандры, фениксы,
  • воды (икосаэдр) – русалки, водяные.
  • Духи земли - подземные человечки - гномы, или кобольды, помогали людям находить
  • подземные богатства;
  • Духи воды – златокудрые русалки, или ундины, с рыбьим хвостом вместо ног, пели

вечерами обворожительные песни;

Духи огня – пляшущие в огне человечки в виде ящериц – саламандры.

  • Светлые эльфы в средневековой демонологии духи воздуха , — красивые, маленькие человечки (ростом с дюйм) в шапочках из цветков, беззаботно кружились в своем вечном танце.

5. Планета Земля и многогранники.

Читайте также: