Реферат на тему p элементы

Обновлено: 05.07.2024

Общая электронная формула p-элементов ns 2 np 1 ¸6 , где n – главное квантовое число. Большинство p-элементов относятся к неметаллам. Такие элементы, как Al, Ga, In, Tl, Sn, Pb, Sb, Bi, Po условно рассматриваются как металлические, хотя они сохраняют многие свойства неметаллов. Все валентные электроны p-элементов находятся на внешнем уровне, поэтому они относятся к главным подгруппам.

Атомы p-элементов способны проявлять как положительные, так и отрицательные степени окисления. Как правило, атомы p-элементов проявляют переменную валентность, причем, в четных группах она четная, а в нечетных – нечетная.

В периоде, по мере увеличения числа p-электронов на внешнем уровне в атомах элементов, уменьшается радиус атомов, возрастает энергия ионизации и энергия сродства к электрону, т.е. усиливаются окислительные свойства (способность принимать электроны) атома. p-элементы, являясь окислителями, могут проявлять и восстановительные свойства, поэтому большинство p-элементов способны к реакциям диспропорционирования. Например:

CaO + 3C = CaC2 + CO

В пределах подгруппы сверху вниз по мере роста порядкового номера элемента неметаллические свойства p-элементов ослабляются и усиливаются металлические, поэтому наиболее характерная положительная степень окисления уменьшается. Например, характерная степень окисления элементов:

в III периоде Al 3+ , Si 4+ , Р 5+ , S 6+

в VI периоде Tl 1+ , Pb 2+ , Bi 3+ , Po 4+

отсюда можно сделать вывод, что соединения Tl 3+ , Pb 4+ , Bi 5+ – сильные окислители, а соединения Ga 1+ , Ge 2+ , As 3+ – восстановители.

Прочность водородных соединений в главных подгруппах сверху вниз уменьшается вследствие увеличения радиуса атома. Например:

Почти все p-элементы – кислотообразователи, причем, устойчивость и сила кислородсодержащих кислот растет по мере увеличения степени окисления p-элемента. Например, сила кислот увеличивается в рядах:

Окислительно-восстановительные свойства соединений p-элементов зависят, как правило, от степени окисления их атомов, входящих в состав данных соединений. Соединения, в которых атом p-элемента находится в промежуточной степени окисления, могут проявлять как окислительные, так и восстановительные свойства (H2O2, N2H4, NH2OH, HNO2, H3PO2, H2SO3 и т.п.).

К p-элементов периодической системы относятся элементы с валентным p-подуровнем. Эти элементы расположены в III, IV, V, VI, VII, VIII группах, главных подгруппах периодической системы Д.И.Менделеева. В периоде орбитальные радиусы атомов с увеличением атомного номера уменьшаются, а энергия ионизации в целом растет. В подгруппах элементов с увеличением номера элемента, размеры атомов в общем увеличиваются, а энергия ионизации уменьшается.

p-Элементы III группы К p-элементов III группе относятся бор B, алюминий Al, галлий Ga, индий In и таллий Tl. По характеру этих элементов бор является типичным неметаллом, остальные - металлы. В пределах подгруппы прослеживаются резкий переход от неметаллу к металлам. Свойствами и поведением бор подобный кремния, что является результатом диагональной сродства элементов в периодической системе, согласно которой смещение в периоде вправо вызывает усиление неметаллического характера, а вниз по группе - металлического, поэтому аналогичные по свойствам элементы оказываются расположенными диагонально рядом, например Li и Mg, Ber и Al, B и Si.

Электронное строение валентных подуровней атомов p-элементов III группы в основном состоянии имеет вид ns 2 np 1 . В соединениях бор и трехвалентные алюминий, галлий и индий, кроме того, могут образовывать соединения со степенью окисления +1, а для таллия последний является довольно характерным.

Алюминий является одним из самых распространенных элементов природы, бор - достаточно распространенный, галлий, индий а таллий распространены мало и очень рассеяны, поэтому относятся к редким.

p-Элементы IV группы К p-элементов IV группы относятся углерод C, кремний Si, германий Ge, олово Sn и свинец Pb. Общая электронная конфигурация валентных подуровней атомов p-элементов в основном состоянии ns 2 np 2 . Вследствие наличия 2-х неспаренных p-электронов в соединениях они могут проявлять степень окисления +2, причем эта тенденция усиливается в направлении к свинцу. Атомы могут переходить в возбужденное состояние с образованием четырех валентных электронов, что обусловливает возникновение соединений со степенью окисления +4. Это состояние является характерным для углерода и кремния, способность к выявлению степени окисления +4 ослабляется в направлении к свинцу.

Характер изменения физических свойств элементов и соответствующих простых веществ свидетельствует о закономерное ослабление неметаллических и усиление металлических свойств в ряду C - Si - Ge - Pb.

Углерод и кремний - типичные неметаллы, образующие атомные кристаллические решетки с ковалентной связью. Их простые вещества характеризуются высокими твердостью, температурами плавления и кипения. Для германия эти параметры остаются относительно большими, что вместе с хрупкостью характеризует его как алмазоподобный кристалл с ковалентным типом связи. В то же время в германию уже обнаружено некоторое взнос металлической связи. На это указывает заметное уменьшение ширины запрещенной зоны и росту электропроводности. Для олова полупроводниковые свойства сохраняются лишь до температуры 13,2°С, при дальнейшем нагревании олово переходит в металлический состояние. Свинец - металл, который не проявляет полупроводниковых свойств. Возрастание металлических свойств сопровождается постепенным уменьшением энергии ионизации элементов, их электроотрицательности и усилением восстановительной способности простых веществ.

p-Элементы V группы К p-элементов V группы относятся азот N, фосфор P, мышьяк As, стибий Sb и висмут Bi, при чем азот и фосфор являются типичными элементами, а остальные элементы образуют подгруппу мышьяка. Электронная конфигурация валентных подуровней элементов в основном состоянии ns 2 np 3 .

На последнем энергетическом уровне атомы элементов этой подгруппы имеют по три одноэлектронные орбита ли, которые могут образовывать три ковалентные связи. В то же время в связывании могут принимать участие двухэлектронная орбиталь, а в случае элементов, размещенных после азота, - также свободные nd-орбитали. Так, азот способен образовывать четвертая ковалентная связь по донорно-акцепторным механизмом с использованием своей неподеленной пары электронов. Примером может служить ион аммония NH4 + и его многочисленные производные. Максимально возможная валентность азота в его соединениях равна 4, и каждая пара электронов четырех ковалентных связей занимает одну из четырех орбиталей.

В отличие от азота остальное атомов p-элементов V группы имеют nd-подуровень, вакантные орбитали которого способны участвовать в образовании дополнительных ковалентных связей, за счет чего их ковалентность может расти до 5.

Факторы увеличения радиусов атомов и уменьшение электроотрицательности в ряду N - P - As - Sb - Bi влияют на свойства простых веществ и соединений элементов: постепенно уменьшается стойкость неметаллических форм простых веществ и увеличивается устойчивость металоподобных (азот — типичный неметал с большой электронегативностью, а висмут — типичный металл, электроотрицательности которого лишь 1,70), ослабляются кислотные и усиливаются основные свойства бинарных соединений элементов, их гидроксидов и тому подобное.

p-Элементы VI группы К p-элементов VI группы относятся кислород O, сера S, селен Se, теллур Te и полоний Po. На валентных подуровням атомов p-Элементы VI группы размещено 6 электронов: электронная конфигурация валентных подуровней атомов в основном состоянии ns 2 np 4 .

За счет использования неспаренных электронов элементы в своих соединениях обнаруживают характерную для них валентность 2. Она может расти в случае образования донорно-акцепторных связей, в которых принимают участие двухэлектронные орбитали. Например, в кислых водных растворах существуют ионы гидроксонию H3O + , в которых атом кислорода соединен с тремя атомами водорода ковалентными связями. В отличие от кислорода атомы остальных p-элементов VI группы имеют свободный nd-подуровень, орбитали которого также способны принимать участие в образовании химических связей, в результате чего валентность серы, селена, теллура и полония может возрастать до 6.

Для атомов p-элементов VI группы характерно присоединение электронов для завершения np-подуровня и образования устойчивой электронной конфигурации следующего благородного газа ns 2 np 6 . Это определяет характерный для них степень окисления -2 в соединениях с менее электронегативными элементами.

С переходом к полонию наблюдается характерное для групп p-элементов уменьшение устойчивости высшей степени окисления. Для полония соединения со степенью окисления +6 очень неустойчивы. Это обусловлено сильным ростом энергетической разницы между ns-и np-подуровнями, что затрудняет участие ns-электронов в образовании химических связей.

В ряду O - S - Se - Te - Po возрастают радиусы атомов, что характерно для групп p-элементов, уменьшение энергии их ионизации и электроотрицательности. Ослабление неметаллических свойств элементов проявляется также в уменьшении стойкости неметаллических форм простых веществ и в росте устойчивости металлических. Это приводит к тому, что в отличие от предыдущих элементов подгруппы полоний уже имеет металлическую кристаллическую решетку и относится к металлам.

p-Элементы VII группы - галогены К p-элементов VII группы относятся фтор F, хлор Cl, бром Br, йод I и астату At. Элементы имеют общее название галогены. Электронная конфигурация валентных подуровней атомов p-элементов VII группы соответствует формуле ns 2 np 5 .

На последнем энергетическом уровне атомы элементов имеют по семь электронов, один из которых является неспаренным. Этим объясняется сходство их свойств. Наличие одноэлектронной орбитали определяет характерную для всех элементов валентность 1. Одновременно галогены (кроме фтора) имеют вакантный nd-подуровень, орбитали которого также могут участвовать в образовании химических связей и увеличивать валентность атомов элементов до 7.

Молекулы галогенов двухатомные, неполярные. Все галогены являются неметаллами. В ряду F - Cl - Br - I - At ослабляются признаки неметаличности: фтор — самый типичный элемент-неметала, а астату обнаруживает некоторые свойства элемента-металла.

В пределах своих периодов галогены характеризуются малыми атомными радиусами, что обуславливает их высокие электроотрицательности и сродство к электрону, поэтому для них в сложных веществах самым стойким является степень окисления -1.

p-Элементы VIII группы К p-элементов VIII группы относятся гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радон Rh, которые составляют главную подгруппу. Атомы этих элементов имеют завершенные внешние электронные слои, поэтому электронная конфигурация валентных подуровней их атомов в основном состоянии имеет вид 1s 2 (Не) и ns 2 np 6 (остальные элементы). Благодаря очень высокой устойчивости электронных конфигураций они в целом характеризуются большими значениями энергий ионизации и химической инертностью, поэтому их называют благородными (инертными) газами. В свободном состоянии они существуют в виде атомов (одноатомных молекул). Атомы гелия (1s 2 ), неона (2s 2 2p 6 ) и аргона (3s 2 3p 6 ) имеют особо устойчивую электронную структуру, поэтому соединения валентного типа для них неизвестны.

Криптон (4s 2 4p 6 ), ксенон (5s 2 5p 6 ) и радон (6s 2 6p 6 ) отличаются от предыдущих благородных газов большими размерами атомов и, соответственно, меньшими энергиями ионизации. Они способны образовывать соединения, которые зачастую имеют низкую стойкость.

P-ЭЛЕМЕНТЫ
4.1 ОБЩАЯ ХАРАКТЕРИСТИКА. К элементам 3А группы относят бор,
алюминий, галлий, индий, таллий. На внешнем уровне их атомы содержат 3
электрона (s2p1). В невозбужденном состоянии имеется1 неспаренный р-электрон,
в возбужденном - 3 неспаренных электрона. Элементы этой группы образуют
чаще три связи. Типичная степень окисления +3, и только таллий проявляет
степень окисления +1 и +3.1. У атома бора преобладают неметаллические свойства,
поскольку у него небольшой атомный радиус и относительно
высокая электроотрицательность. По мере увеличения
атомных радиусов усиливаютсяметаллические свойства.
Алюминий, галлий, индий, таллий - амфотерные металлы. У
последних двух элементов преобладают металлические
свойства.
2. Элементы 3А группы образуют оксиды и гидроксиды с общейформулой Э2О3 и
Э(ОН)3. B2O3 - кислотный оксид, гидроксид бора - B(OH)3 известен как борная
кислота (Н3ВО3), Al2O3, Ga2O3, In2O3, Tl2O3 - амфотерные оксиды, Al(OH)3, Ga(0H)3,
In(OH)3, Tl(OH)3 - амфотерныегидроксиды. Tl2O - основной оксид, TlOH - основной
гидроксид.
3. Все оксиды (кроме В2О3), гидроксиды (кроме Н3ВО3) плохо растворимы в воде.
Соли алюминия, галлия, индия, таллия подвержены гидролизу.
БОР.Основной минерал - бура - Na2B4O7. Бор неметалл, типичные степени
окисления +3 и -3, получают восcтановлением его оксида магнием:
B2O3 + 3Mg = 2B + 3MgO
Бор неметалл, характерные степени окисления+3 и -3. Растворяется в
кислотах-окислителях, но солей подобно Al, Ga, In, Tl не образует, а превращается
в борную кислоту.
2В + 3H2SO4конц. = 2H3BO3 + 3SO2 B + 3HNO3конц. = H3BO3 + 3NO2
Принагревании бор реагирует с кислородом, галогенами, серой, азотом,
образуя соответственно B2O3, BCl3, B2S3, BN, а с водородом - бороводороды В2Н6 -
диборан, В4Н10 - тетраборан. Оксид бора - В2О3 - кислотныйоксид, растворяясь в
воде дает слабую борную кислоту - Н3ВО3. Борная кислота это твердое белое
вещество, при нагревании утрачивает воду, превращаясь в тетраборную кислоту,
а.

Чтобы читать весь документ, зарегистрируйся.

Связанные рефераты

P-элементы

. Химия p-элементов III группы Общая.

Общие свойства p элементов

. прикосновении человека к фазному проводу единственным элементом, ограничивающим силу тока.

13 Стр. 57 Просмотры

]-=[olol;p;p;p

. БИОХИМИЯ НЕРВНОЙ ТКАНИ Содержание. 1.Введение 2.ФУНКЦИИ НЕРВНОЙ ТКАНИ 3.ОСОБЕННОСТИ ХИМИЧЕСКОГО.

5 Стр. 88 Просмотры

. АВТОРИТЕТ РОДИТЕЛЕЙ И ЕГО ВЛИЯНИЕ НА РАЗВИТИЕ ЛИЧНОСТИ РЕБЕНКА Ц е л и: – познакомить родителей с.

P[p[[[ykuykuykukykyuymuymmuumyyum

. Уильямсон) малый и средний бизнес рассматривается как важный элемент социально-экономической.

Элементы в периодической системе Менделеева делятся на s-, p-, d-элементы. Это подразделение осуществляется на основе того, сколько уровней имеет электронная оболочка атома элемента и каким уровнем заканчивается заполнение оболочки электронами.

К s-элементамотносят элементы IA-группы – щелочные металлы. Электронная формула валентной оболочки атомов щелочных металлов ns1. Устойчивая степень окисления равна +1. Элементы IА-группыобладают сходными свойствами из-за сходного строения электронной оболочки. При увеличении радиуса в группе Li-Fr связь валентного электрона с ядром слабеет и уменьшается энергия ионизации. Атомы щелочных элементов легко отдают свой валентный электрон, что характеризуют их как сильные восстановители.

Восстановительные свойства усиливаются с возрастанием порядкового номера.

К p-элементамотносятся 30 элементов IIIA-VIIIA-групппериодической системы; p-элементы расположены во втором и третьем малых периодах, а также в четвертом—шестом больших периодах. Элементы IIIА-группыимеют один электрон на p-орбитали. В IVА-VIIIА-группахнаблюдается заполнение p-подуровня до 6 электронов. Общая электронная формула p-элементов ns2np6. В периодах при увеличении заряда ядра атомные радиусы и ионные радиусы p-элементов уменьшаются, энергия ионизации и сродство к электрону возрастают, электроотрицательность увеличивается, окислительная активность соединений и неметаллические свойства элементов усиливаются. В группах радиусы атомов увеличиваются. От 2p-элементов к 6p-элементам энергия ионизации уменьшается. Усиливаются металлические свойства p-элемента в группе с увеличением порядкового номера.

К d-элементамотносятся 32 элемента периодической системы IV–VII больших периодов. В IIIБ-группеу атомов появляется первый электрон на d-орбитали, в последующих Б-группах d-подуровень заполняется до 10 электронов. Общая формула внешней электронной оболочки (n-1)dansb, где a=1?10, b=1?2. С увеличением порядкового N св-ва d-элементов изменяются незначительно. У d-элементов медленно происходит возрастание атомного радиуса, также они имеют переменную валентность, связанную с незавершенностью предвнешнего d-электрон.подуровня. В низших степенях окисления d-элементы обнаруживают металлич. св-ва, при увеличении порядк. N в группах Б они уменьшаются. В растворах d-элементы с высшей степенью окисл.обнаруживают кислотные и окислит.св-ва, при низших степенях окисления – наоборот. Элементы с промежут. степ. окисления проявляют амфотерн.св-ва.

Ковалентная связь.

Хим.связь, осуществляемая общими электрон.парами, возникающих в оболочках связываемых атомов, имеющих антипараллельные спины, называется атомной, или ковалентной связью.Ковалент.связь двухэлектронная и двуцентровая (удерживает ядра). Атом на внешнем энергетическом уровне способен содержать от одного до восьми электронов. Валентные электроны– электроны предвнешнего, внешнего электронных слоев, участвующие в химической связи. Валентность– свойство атомов элемента образовывать химическую связь.

Читайте также: