Реферат на тему основы термодинамики

Обновлено: 05.07.2024

Оглавление
Введение…………………………………………………………………………. 3
1. Основные законы термодинамики…………………………………………….4
1.1. Первый закон термодинамики…………………………………………….4
1.2. Второй закон термодинамики……………………………………………..6
1.3. Третий закон термодинамики……………………………………………. 9
2. Применение в теплофизике…………………………………………………..11
Заключение……………………………………………………………………….12
Список литературы………….………………………………………………. 13

Введение
Термодинамика — раздел физики, изучающий наиболее общие свойства макроскопических систем [1] и способы передачи и превращения энергии в таких системах. Данный раздел занимается изучением состояний и процессов, которые определены разнообразными связями с температурой. Термодинамика во многом опирается на обобщение опытных фактов, то есть она является феноменологической наукой. Все термодинамические процессы описываются макроскопическими величинами. Основными из них являются следующие величины: температура, давление, концентрация компонентов. Они вводятся для описания систем, состоящих из большого количества частиц, при этом не применяются к отдельным составляющим вещества.
В данное время термодинамика относится к строгой теории, развивающейся на основе нескольких постулатов, которые имеют определенную связь со свойствами частиц и законами их взаимодействия. Это обусловлено не только процессами самой термодинамики, но и статической физикой. Именно статическая физика занимается выяснением границ применимости термодинамики [3].
Все законы термодинамики имеют общий характер и не зависят от определенных деталей строения вещества на молекулярном уровне, поэтому они применяются довольно-таки широком круге науки и техники, затрагивая самые разные области: энергетика, химия, теплотехника, машиностроение, материаловедение, инженерия и т.д. Для каждой области термодинамика имеет большое значение и находит свое применение в ней [2].
1. Основные законы термодинамики
1.1. Первый закон термодинамики
Закон о сохранении и превращении энергии для термодинамической системы является первым законом термодинамики. По его определению работа может совершаться за счет какого-либо существующего вида энергии, например теплоты. Поэтому работу и количество теплоты, как и энергию измеряют в одних единицах – Джоулях.
Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.
Первый закон термодинамики формулируется так: изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
ΔU = A + Q, где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.
Из (ΔU = A + Q) следует закон сохранения внутренней энергии. Если систему изолировать от внешних воздействий, то A = 0 и Q = 0, а, следовательно, и ΔU = 0.
При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.
Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:
Q = ΔU + Á, где A' — работа, совершаемая системой (A' = -A).
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.
Первый закон определяет собой невозможность существования вечного двигателя, который мог бы совершать работу исключительно за счет своей внутренней энергии, не используя сторонней.
Действительно, если к телу не поступает теплота (Q - 0), то работа A', согласно уравнению первый закон термодинамики, совершается только за счет убыли внутренней энергии А' = -ΔU. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.
Следует помнить, что как работа, так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится определенное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.
1.2. Второй закон термодинамики
Второй закон термодинамики указывает на существование энтропии [4] как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры. То есть второе начало определяет начало об энтропии, а также её свойствах и признаках. Важно отметить, что энтропия, находясь в изолированной системе, остается либо неизменной, либо возрастает (в условиях неравновесных процессов). Энтропия достигает своего максимума при установлении термодинамического равновесия. Это определено законом возрастания энтропии. Частым образом в литературных источниках встречаются разнообразные формулировки второго закона термодинамики, являясь следствиями закона возрастания энтропии.
Второй закон тесно связан с понятием энтропии (S). Она порождается буквально всеми процессами и связана с потерей способности системы совершать работу. Рост энтропии является стихийным процессом. Изменения в системе увеличения энтропии происходят в том случае, если объем и энергия системы не являются постоянными. В обратном случае (если объем и энергия непостоянны) энтропия подвержена уменьшению.
Чтобы можно было использовать энергию, необходимо иметь в системе области с высоким и низким уровнем энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.
Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:
где S – энтропия; L – путь, по которому система переходит из одного состояния в другое.
В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.
Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:
где k – постоянная Больцмана; w – термодинамическая вероятность (она определяет количество способов реализации макросостояния системы). Таким образом, второе начало термодинамики определяется статическим законом, непосредственно связанным с описанием закономерностей теплового движения молекул (при этом движение является хаотическим). Данное движение молекул и составляет систему термодинамики.
Второй закон термодинамики имеет другие формулировки. Из них можно выделить две основных – формулировка Кельвина и формулировка Клаузнуса.
Формулировка Кельвина звучит следующим образом: невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Данная формулировка позволяет сделать вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:
где Tn – температура нагревателя; Th — температура холодильника; (T_n > T_h).
Формулировка Клаузиуса имеет следующий вид: невозможно создать круговой процесс, в результате которого будет происходить исключительно передача тепла от тела с меньшей температурой к телу с большей температурой.
Таким образом, второй закон термодинамики обуславливает огромное различие между двумя формами передачи энергии, а именно между работой и теплотой [5]. Данный закон позволяет сделать вывод о том, что переход упорядоченного перемещения тела является необратимым процессом. Притом такое перемещение может переходить в хаотическое движение без каких-либо дополнительных процессов.
1.3. Третий закон термодинамики
Третий закон термодинамики носит и другое название – теорема Нернста. Она основана на физическом принципе, который определяет энтропию при приближении температуры к абсолютному нулю. Закон определен обобщением значительного количества экспериментальных данных по термодинамике гальванических элементов [6]. Теорема сформулирована Вальтером Нернстом в 1906 году. Современная формулировка теоремы принадлежит Максу Планку.
Теорема Нернста утверждает, что всякий термодинамический процесс, протекающий при фиксированной температуре T в сколь угодно близкой к нулю не должен сопровождаться изменением энтропии S, то есть изотерма T=0 совпадает с предельной адиабатой S0.
Данная теорема имеет несколько эквивалентных между собой формулировок:
- энтропия любой системы при температуре, значение которой приближено к абсолютному нулю, является универсальной постоянной и не зависящей от различных переменных параметров;
- при приближении к абсолютному нулю энтропия стремится к конкретному пределу, который не зависит от конечного состояния системы;
- приращение энтропии при приближении к абсолютному нулю не может зависеть от различных значений параметров термодинамики, всегда стремится к конечному определенному пределу;
- при процессах, происходящих при абсолютном нуле, система способна переходить из одного состояния равновесия в другое, при этом энтропия совершенно не изменяется [7].
Данный закон позволяет находить абсолютное значение энтропии. Этого нельзя сделать в рамках первого и второго закона термодинамики, поскольку в них энтропия определяется с точностью до произвольной аддитивной постоянной S0. Это не мешает исследованию и изучению термодинамических процессов, разность энтропий измеряется в различных состояниях.
Третий закон термодинамики имеет определенные следствия:
- абсолютный нуль температур не может достигаться ни в каких конечных процессах, связанных с изменением энтропии. К нулю можно приближаться лишь асимптотически;
- стремление теплоемкости к нулю при постоянном давлении и объеме. К нулю стремятся также коэффициенты теплого расширения и другие аналогичные величины [8].
Справедливость третьего начала термодинамики одно время подвергалась сомнению, но позже было выяснено, что все кажущиеся противоречия (ненулевое значение энтропии у ряда веществ при T=0) связаны с метастабильными состояниями вещества, которые нельзя считать термодинамически равновесными.
2. Применение в теплофизике
Каждый закон термодинамики имеет своё применение в теплофизике. Первый закон имеет практическое применение к различным процессам в физике. К примеру, благодаря ему можно вычислить идеальные параметры газа при самых разнообразных процессах, как тепловых, так и механических.
Применение второго закона имеет достаточно обширную область, поскольку относится ко всем процессам естествознания. Там, где встречается превращение нестройных видов энергии молекул и атомов в более стройную форму механической или электрической энергии, второй закон термодинамики проводит свою линию. Именно на его основах стоит физическая и теоретическая химия, а вместе с этим спектральный анализ и большая часть астрофизики.
Третий закон термодинамики иначе называется постулатом Нернста. В свою очередь его формулировка звучит следующим образом: с помощью конечного числа процессов нельзя достигнуть абсолютного нуля. Это говорит о том, что никаким способом невозможно остановить молекулы и атомы веществ. Этот процесс обусловлен постоянным теплообменом с окружающей средой. Рассмотрев закон, можно сказать, что уменьшение энтропии заключается в движении к абсолютному нулю. Данный вывод можно использовать в различных областях, применяя его во многих ситуациях. К примеру, для перевода парамагнетиков в ферромагнитное состояние при охлаждении.
Таким образом, применение трех законов термодинамики распространено во многих областях науки и жизни человека в целом. Во многом термодинамика упрощает жизнь, позволяет совершать новые открытия.
Заключение
Термодинамика в физике обусловлена существованием трех законов, каждый из которых имеет свою определенную формулировку. Она во многом имеет общую связь с процессами энтропии и её основными свойствами. Термодинамика играет большую роль в различных областях и сферах жизни человека. Её правила и закономерности оставляют след в следующих областях: теплотехника, энергетика, биология, машиностроение и другие. Кроме того термодинамика позволяет совершать новые открытия человечества. Это было бы невозможно без основных законов, открытых великими учеными в прошлом.
Таким образом, изучив и рассмотрев основные аспекты данной темы, можно сказать, что термодинамические процессы в физике являются немаловажными и играют большую роль в науке. Такой раздел физики, как термодинамика, всегда будет актуальным, поскольку он позволяет совершенствовать существующие аспекты науки и формировать новые.
Список литературы
Базаров И. П. Термодинамика. — М.: Высшая школа, 1991. — 376 с.
Воронин Г. Ф. Основы термодинамики. — М.: Изд-во Моск. ун-та, 1987. — 192 с.
Гиббс Дж. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
Квасников И. А. Термодинамика и статистическая физика. Т. 1: Теория равновесных систем: Термодинамика. — Изд. 2, сущ. перераб. и доп.. — М.: Едиториал УРСС, 2002. — 240 с.
Киттель Ч. Статистическая термодинамика. — М.: Наука, 1977. — 336 с.
Кубо Р. Термодинамика. М.: Мир, 1970.
Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с.
Ферми Э., Термодинамика. Харьков: Изд-во Харьковского ун-та, 1969. — 140 с.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

«Первый закон термодинамики, как и закон сохранения энергии в механике, часто дает возможность исследовать тепловые процессы в макроскопических системах даже в тех случаях, когда нам не известны детали микроскопической картины изучаемых явлений.

Первый закон универсален, он применим ко всем без исключения тепловым процессам в любых системах. Как и всякий закон сохранения, он не дает детальной информации о ходе процесса, но позволяет составить уравнение баланса, если заранее известно, какие энергетические превращения происходят в рассматриваемой системе.

Сделаем несколько замечаний о смысле входящих в уравнение первого закона величин. Количество переданной теплоты было определенно как мера изменения внутренней энергии системы при теплопередаче. Но не всегда подведение к системе теплоты приводит к изменению ее внутренней энергии. Например, при изотермическом расширении идеального газа подведение теплоты не сопровождается увеличением внутренней энергии газа. Внутренняя энергия идеального газа зависит только от температуры и при изотермическом процессе не меняется, но газ совершает работу, и величина этой работы равна подводимому к системе количеству теплоты.

«Применение первого закона термодинамики к процессам в одноатомных идеальных газах

1. Изотермический процесс (Т = const):


При изотермическом процессе обмен энергией между идеальным газом и окружающими телами происходит и в форме теплопередачи, и в форме работы. Все подведенное к идеальному газу тепло затрачивается на совершение работы.

Если газ получает теплоту (Q > 0), то он совершает положительную работу (А` > 0), если газ отдает теплоту (Q 0).

2. Изобарический процесс (р = const):


При изобарическом процессе обмен энергией между идеальным газом и окружающими телами происходит в форме работы и теплопередачи. Сообщенная идеальному газу теплота затрачивается и на изменение внутренней энергии, и на совершение газом работы:




3. Изохорический процесс:

При изохорическом процессе обмен между идеальным газом и окружающими телами происходит только в форме теплопередачи. Вся подведенная к идеальному газу теплота затрачивается на изменение его внутренней энергии:


4. Адиабатический процесс (Q = 0):

Адиабатический процесс - процесс, при котором физическая система не получает теплоты извне и не отдает ее. Этот процесс протекает без теплообмена с окружающими телами.

При адиабатическом процессе:


При адиабатическом процессе обмен энергией между идеальным газом и окружающими телами происходит только в форме работы. Работа при адиабатическом процессе совершается за счет изменения внутренней энергии газа.

«Змеевик как тепловая машина. Посмотрим как происходит протекание газа через змеевик. Если в змеевике газ охлаждается, т.е. отдает теплоту (Q 0), то наш змеевик подобен тепловой машине – газ сам совершает работу над внешними телами. Этот результат не зависит от того, какова величина давления газа на выходе и на входе. Единственное условие при этом – давление на входе должно быть больше давления на выходе, иначе газ просто потечет в обратную сторону.

Попробуем при помощи компрессора прокачивать через змеевик газ в вакуум. Для того чтобы процесс можно было считать стационарным, сечение выходного отверстия нужно сделать много меньше сечения входного. Змеевик теплоизолируем от окружающей среды.

Совершаемая компрессором над газом работа положительна и равна полной совершаемой над газом работе, ибо, выходя за вакуум, газ работы не совершает. Так как нет обмена теплотой, налицо противоречие с утверждением о том, что при адиабатическом протекании работа равна нулю.

Это противоречие возникло потому, что при прокаичвании газа в вакуум происходят и такие энергетические превращения, которые были совершенно несущественны. Действительно, первый закон термодинамики использовался в виде Q + A = U, где U – внутренняя энергия газа. Поэтому при использовании такой формулировки первого закона термодинамики заранее молчаливо предполагается, что в рассматриваемых процессах не происходит изменения механической энергии системы, т.е. не меняется потенциальная энергия газа как целого во внешнем поле, не меняется и кинетическая энергия движения газа как целого, не возникает в газе никаких макроскопических потоков. Теперь уже становится ясно, что при прокачивании газа в вакуум возникает макроскопический направленный поток, кинетическую энергию которого необходимо учитывать. Работа компрессора в этом случае как раз и определяет кинетическую энергию этого потока.

Список использованной литературы:

1) Бутиков Е.И., Кондратьев А.С., Уздин В.М. Физика. Строение и свойства вещества. М. – С.-П., ФИЗМАТЛИТ.

по дисциплине Концепции современного естествознания

«Всякая термодинамическая система в любом состоянии обладает внутренней энергией – энергией теплового (поступательного, вращательного и колебательного) движения молекул и потенциальной энергией их взаимодействия. Возможны два способа изменения внутренней энергии термодинамической системы при ее взаимодействии с внешними телами: совершение работы и теплообмен.

«Первый закон термодинамики можно сформулировать так: количество теплоты, подведенное к системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами:

«При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу.

Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:


При изотермическом процессе постоянна температура, поэтому внутренняя энергия не изменяется.

При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:

При изотермическом расширении газа, находящегося в цилиндре под поршнем, молекулы газа, сталкиваясь с поршнем, уменьшает свою скорость и соответственно среднюю энергию, поэтому для поддержания постоянной температуры газа к нему подводится дополнительное количество теплоты.

При изотермическом сжатии газа (А 0) и на совершение работы газом (А>0):

Список использованной литературы:

1) Грибов Л.А., Прокофьева Н.И. Основы физики. М.: Гардарика, 1998

2) Карпенков С.Х. Концепции современного естествознания. М.: Академический проект, 2003

3) Касьянов В.А. Физика. М.: Дрофа, 2003

Электролиты. Причины диссоциации

«Одной из характерных особенностей водных растворов солей, кислот и оснований является их электролитическая проводимость. В то же время дистиллированная вода очень плохо проводит электрический ток, а сухие кристаллические соли или щелочи вообще не обладают этой способностью.

Изучая свойства растворов солей, кислот и оснований, С. Аррениус пришел к заключению, что под действием молекул воды вещества в растворе подвергаются ионизации.

Вещества, водные растворы которых обладают электрической проводимостью, называют электролитами.

К электролитам относятся соединения, молекулы которых характеризуются полярной или ионной связью.

Вещества, водные растворы которых не проводят электрический ток, называют неэлектролитами.

Процесс распада электролита на ионы в водном растворе называют электролитической диссоциацией.

Механизм электролитической диссоциации позднее получил объяснение в связи с разработкой теории химической связи и химического равновесия. Распад электролита на ионы в растворе происходит в результате сложного физико-химического взаимодействия молекул с полярными молекулами воды. Если поместить кристаллы хлорида натрия в воду, то полярные молекулы воды принимают упорядоченное направленное положение по отношению к ионам в кристаллической решетке соли. Под влиянием этого взаимодействия и теплового движения молекул воды хлорид натрия распадается на ионы:

В данном случае происходит взаимодействие молекул воды с ионами в кристаллической решетке соли, в результате чего гидратированные ионы переходят в раствор (Рис.1).

О том, насколько велика роль растворителя для процесса диссоциации, можно судить по поведению хлороводорода в воде и, например, в бензоле.

Раствор HCl в бензоле электрической проводимостью не обладает, следовательно, в данном растворе отсутствуют ионы, т.е. не происходит диссоциации. Водный же раствор хлороводорода содержит ионы Н + и Сl - , хотя газообразный HCl представляет собой молекулу с полярной ковалентной связью.

При воздействии диполей воды полярная связь в HCl еще больше поляризуется и в конце концов происходит ионизация молекулы HCl:


Рис.1. Распад кристаллов хлорида натрия на отдельные ионы под влиянием диполей воды:

а – открытых отдельных ионов; б – гидратированные ионы натрия и хлора в растворе

Далее ион водорода Н + присоединяется к атому кислорода в молекуле Н2 О по донорно-акцепторному механизму. Пару электронов для образования связи поставляет атом кислорода. Следовательно, суммарно диссоциацию HCl можно изобразить уравнением:

«Стрелки показывают, что процесс идет в двух направлениях: наряду с диссоциацией молекулы на два иона идет обратный процесс рекомбинации (воссоединения) ионов в нейтральную молекулу.

Положительные ионы, движущиеся к катоду, называются катионами, отрицательные – анионами, т.е движущиеся к аноду.

Степень диссоциации. Факторы, влияющие на степень диссоциации

«Поведение водных растворов электролитов в химических реакциях во многом зависит от того, насколько полно они распадаются на ионы. Для количественной оценки диссоциации важное значение имеют параметры, как степень и константа диссоциации.

Степень диссоциации а – это отношение числа молекул, распавшихся на ионы, к исходному числу молекул растворенного вещества:


Степень диссоциации иногда выражаю в процентах:


Степень диссоциации электролитов зависит от концентрации растворов: с понижением концентрации уменьшается взаимодействие ионов в растворе, которое приводит к образованию молекул, поэтому степень диссоциации возрастает. По степени диссоциации электролиты принято делить на сильные, слабые и средние. Сильные электролиты имеют а > 30%; слабые – а 2+ + 2Cl -

«Процессом, противоположным электролитической диссоциации является молизация – воссоединение ионов противоположных знаков в нейтральные молекулы. Если между процессами диссоциации и молизации существует динамическое, подвижное состояние, то а находится из уравнения:


При имеем , т.е. в слабых растворах почти все молекулы диссоциированы. С ростом концентрации раствора а убывает. В сильных концентрированных растворах

Встречаются весьма и необычные электролиты. Например, электролитом является стекло, представляющее собой сильно переохлажденную жидкость, обладающую громадной вязкостью. При нагревании стекло размягчается и его вязкость сильно уменьшается. Присутствующие в стекле ионы натрия Na + приобретают заметную подвижность, и становится возможным прохождение электрического тока, хотя при обычных температурах стекло является хорошим изолятором.

Наглядной демонстрацией этого может служить опыт, схема которого показана на рис.2.


Демонстрация электропроводности стекла при нагревании

Стеклянная палочка АВ включена в осветительную сеть через реостат R. Пока палочка холодная, ток в цепи ничтожный из-за высокого сопротивления стекла. Если палочку нагреть газовой горелкой до температуры 300-400 0 С, то ее сопротивление упадет до нескольких десятков омов и нить лампочки Л раскалится. Теперь можно закоротить лампочку ключом К. При этом сопротивление цепи уменьшится, и сила тока возрастет. В таких условиях палочка будет эффективно нагреваться электрическим током и раскаляться до яркого свечения, даже если убрать горелку[16] .

[1] См.: бутиков Е.И., Кондратьев А.С., Уздин В.М. Физика. Строение и свойства вещества. М. – С.-П., ФИЗМАТЛИТ. – Стр. 141.

[4] Грибов Л.А., Прокофьева Н.И. Основы физики. М.: Гардарика, 1998, с.219

[5] Карпенков С.Х. Концепции современного естествознания. М.: Академический проект, 2003, с.158

[6] Грибов Л.А., Прокофьева Н.И. Основы физики. М.: Гардарика, 1998, с.219

[7] Карпенков С.Х. Концепции современного естествознания. М.: Академический проект, 2003,с. 161.

[8] Касьянов В.А. Физика. М.: Дрофа, 2003, с. 269.

[9] Грибов Л.А., Прокофьева Н.И. Основы физики. М.: Гардарика, 1998, с. 220.

[10] Карпенков С.Х. Концепции современного естествознания. М.: Академический проект, 2003,с. 161.

[11] Касьянов В.А. Физика. М.: Дрофа, 2003, с.269,270,271.

Читайте также: