Приливные электростанции реферат заключение

Обновлено: 03.07.2024

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной. Энергия океана давно привлекает к себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д.

Содержание

Введение 3
Краткие сведения об приливах и отливах 4
Краткое описание работы приливной электростанции 8
Техника - экономические обоснования необходимости внедрения
приливных электростанций 11
Экологический особенности приливные электростанции 15
Расчет экономической эффективности внедрения ПЭС 17
Заключение 22
Список литературы 23

Вложенные файлы: 1 файл

ЭКОНОМИКА и УПРАВЛЕНИЕ.docx

Министерство образования и науки России
Белгородский государственный технологический

университет им. В.Г. Шухова

Кафедра менеджмента и внешнеэкономической деятельности

Экономика и управление теплотехнологическими системами

студент гр. ЭТ-32

Принял: доцент, к.э.н.

Содержание

Введение 3

Краткие сведения об приливах и отливах 4

  1. Краткое описание работы приливной электростанции 8
  2. Техника - экономические обоснования необходимости внедрения

приливных электростанций 11

  1. Экологический особенности приливные электростанции 15
  2. Расчет экономической эффективности внедрения ПЭС 17

Список литературы 23

Введение

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной. Энергия океана давно привлекает к себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д. Во многих странах мира все чаше и чаше используют электроэнергию за счет природных источников, вод. Этот способ получения электроэнергии представляются более мягким в смысле воздействия на окружающую среду, чем сжигание ископаемого топлива или расщепления ядерного урана. Кроме того этот источник энергии возобновляем, т. е. практически они доступны всегда и везде. За последнее десятилетие интерес к этому источнику энергии постоянно возрастает, поскольку во многих отношениях он неограничен. По мере того как поставки топлива становятся менее надежными и более дорогостоящими, эти источники становятся все более привлекательными и более экономичными. Повышение цен на нефть и газ послужило главной причиной того, что мы вновь обратили свое внимание на воду. Поэтому люди все чаше создают и совершенствуют, как в технологическом, так и в экономическом плане, различные приливные станции, турбины, мельницы для получения электроэнергии.

Под влиянием притяжения Луны и Солнца происходят периодические поднятия и опускания поверхности морей и океанов – приливы и отливы. Частицы воды совершают при этом и вертикальные и горизонтальные движения.

Наибольшие приливы наблюдаются в дни сизигий (новолуний и полнолуний), наименьшие (квадратурные) совпадают с первой и последней четвертями Луны. Между сизигиями и квадратурами амплитуды приливов могут изменяться в 2,7 раза.

Вследствие изменения расстояния между Землей и Луной, приливообразующая сила Луны в течение месяца может изменяться на 40%, изменение приливообразующей силы Солнца за год составляет лишь 10%. Лунные приливы в 2,17 раза превышают по силе солнечные.

Основной период приливов полусуточный. Приливы с такой периодичностью преобладают в Мировом океане. Наблюдаются также приливы суточные и смешанные. Характеристики смешанных приливов изменяются в течение месяца в зависимости от склонения Луны.

При отливах на пологих берегах морей может происходить обнажение дна на расстоянии в несколько километров по перпендикуляру к береговой линии. Рыбаки Терского побережья Белого моря и полуострова Новая Шотландия в Канаде используют это обстоятельство при ловле рыбы. Перед приливом они устанавливают на пологом берегу сети, а после спада воды подъезжают к сетям на телегах и собирают попавшую в чих рыбу. Когда время прохождения приливной волны по заливу совпадает с периодом колебаний приливообразующей силы, возникает явление резонанса, и амплитуда колебаний водной поверхности сильно возрастает. Подобное явление наблюдается, например, в Кандалакшском заливе Белого моря. В устьях рек приливные волны распространяются вверх по течению, уменьшают скорость течения и могут изменить его направление на противоположное. На Северной Двине действие прилива сказывается на расстоянии до 200 км от устья вверх по реке, на Амазонке – на расстоянии до 1 400 км. На некоторых реках (Северн и Трент в Англии, Сена и Орне во Франции, Амазонка в Бразилии) приливное течение создает крутую волну высотой 2. 5 м, которая распространяется вверх по реке со скоростью 7 м/сек. За первой волной может следовать несколько волн меньших размеров. По мере продвижения вверх волны постепенно ослабевают, при встрече с отмелями и преградами они с шумом дробятся и пенятся. Явление это в Англии называется бор, во Франции Аскаре, в Бразилии пророка. В большинстве случаев волны бора заходят вверх по реке на 70. 80 км, на Амазонке же до 300 км. Наблюдается бор обычно во время наиболее высоких приливов.

Спад уровня воды в реках при отливе происходит медленнее, чем подъем во время прилива. Поэтому, когда в устье начинается отлив, на удаленных от устья участках еще может наблюдаться последействие прилива. Река Сен-Джонс в Канаде, недалеко от места впадения в залив Фанди, проходит через узкое ущелье. Во время прилива ущелье задерживает движение воды вверх по реке, уровень воды выше ущелья оказывается ниже и поэтому образуется водопад с движением воды против течения реки. При отливе же вода не успевает достаточно быстро проходить через ущелье в обратном направлении, поэтому уровень воды выше ущелья оказывается выше и образуется водопад, через который вода устремляется вниз по течению реки.

Приливо-отливные течения в морях и океанах распространяются на значительно большие глубины, чем течения ветровые. Это способствует лучшему перемешиванию воды и задерживает образование льда на ее свободной поверхности. В северных морях благодаря трению приливной волны о нижнюю поверхность ледяного покрова происходит уменьшение интенсивности приливо-отливных течений. Поэтому зимой в северных широтах приливы имеют меньшую высоту, чем летом.

Поскольку вращение Земли вокруг своей оси опережает по времени движение Луны вокруг Земли, в водной оболочке нашей планеты возникают силы приливного трения, на преодоление которых тратится энергия вращения, и вращение Земли замедляется (примерно на 0,001 сек за 100 лет). По законам небесной механики дальнейшее замедление вращения Земли повлечет за собой уменьшение скорости движения Луны по орбите и увеличение расстояния между Землей и Луной. В конечном итоге период вращения Земли вокруг своей оси должен сравняться с периодом обращения Луны вокруг Земли Это произойдет, когда период вращения Земли достигнет 55 суток. При этом прекратится суточное вращение Земли, прекратятся и приливо-отливные явления в Мировом океане. В течение длительного времени происходило торможение вращения Луны за счет возникавшего в ней приливного трения под действием земного притяжения (приливно-отливные явления могут возникать не только в жидкой, но и в твердой оболочке небесного тела). В результате Луна потеряла вращение вокруг своей оси и теперь обращена к Земле одной стороной. Благодаря длительному действию приливообразующих сил Солнца потерял свое вращение и Меркурий. Как и Луна по отношению к Земле, Меркурий обращен к Солнцу толь к одной стороной. В XVI и XVII веках энергия приливов в небольших бухтах и узких проливах широко использовалась для приведения в действие мельниц.

Впоследствии она применялась для приведения в действие насосных установок водопроводов, для транспортировки и монтажа массивных деталей сооружений

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Введение

Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов – все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия океана давно привлекает к себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д.

Приливные электростанции

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Приливные волны таят в себе огромный энергетический потенциал – 3 млрд. кВт.

Идея использования энергии приливов появилась у наших предков добрую тысячу лет назад. Правда, строили они тогда не ПЭС, а приливные мельницы. Одна из таких мельниц, упоминаемая еще в документах 1086 года, сохранилась в местечке Илинг, на юге Англии. В России первая приливная мельница появилась на Беломорье в XVII веке.

В ХХ веке ученые задумались над использованием потенциала приливов в электроэнергетике. Достоинства приливной энергии неоспоримы. Приливные станции можно строить в труднодоступных местах в прибрежной зоне, они не загрязняют атмосферу вредными выбросами в отличие от тепловых станций, не затапливают земель в отличие от гидроэлектростанций и не представляют потенциальной опасности в отличие от атомных станций.

В случае если прилив или отлив совпадает по времени с максимумом нагрузки энергосистемы, ПЭС работает в генераторном режиме. Таким образом, ПЭС может использоваться в энергосистеме как пиковая электростанция.

В 1966 г. во Франции на реке Ранс (рис. 2) построена первая в мире приливная электростанция. Система использует двадцать четыре 10-мегаваттных турбины, обладает проектной мощностью 240 МВт и ежегодно производит около 50 ГВт*ч электроэнергии. Для этой станции разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС Ранс экономически оправдана. Годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений.

Другая крупная приливная электростанция мощностью 20 МВт расположена в Аннаполис-Ройал, в заливе Фанди (провинция Новая Шотландия, Канада). Она была официально открыта в сентябре 1984 г. Система смонтирована на о. Хогс в устье р. Аннаполис на основе уже существующей дамбы, защищающей плодородные земли от затопления морской водой в период штормов. Амплитуда прилива колеблется от 4,4 до 8,7 м.

В 1968 г. на побережье Баренцева моря в Кислой губе сооружена первая в нашей стране опытно-промышленная ПЭС. В здании электростанции размещено 2 гидроагрегата мощностью 400 кВт. Основоположниками этого проекта были советские ученые Лев Бернштейн и Игорь Усачев. Впервые в мировой практике гидротехнического строительства станция была возведена наплавным способом, который потом широко стал использоваться при строительстве подводных туннелей, нефтегазовых платформ, прибрежных ГЭС, ТЭС, АЭС и защитных гидротехнических комплексов.

В отличие от гидроэнергии рек, средняя величина приливной энергии мало меняется от сезона к сезону, что позволяет приливным электростанциям более равномерно обеспечивать энергией промышленные предприятия.

За рубежом разрабатываются проекты приливных электростанций в заливе Фанди (Канада) и в устье реки Северн (Англия) мощностью соответственно в 4 и 10 млн киловатт, работают небольшие приливные электростанции в Китае.

Пока энергия приливных электростанций обходится дороже энергии тепловых электростанций, но при более рациональном осуществлении строительства гидросооружений этих станций стоимость вырабатываемой ими энергии вполне можно снизить до стоимости энергии речных электростанций. Поскольку запасы приливной энергии планеты значительно превосходят полную величину гидроэнергии рек, можно полагать, что приливная энергия будет играть заметную роль в дальнейшем прогрессе человеческого общества.

Мировое сообщество предполагает лидирующее использование в XXI веке экологически чистой и возобновляемой энергии морских приливов. Ее запасы могут обеспечить до 15 % современного энергопотребления.

33-летний опыт эксплуатации первых в мире ПЭС - Ранс во Франции и Кислогубской в России - доказали, что приливные электростанции:

• устойчиво работают в энергосистемах как в базе так и в пике графика нагрузок при гарантированной постоянной месячной выработке электроэнергии

• не загрязняют атмосферу вредными выбросами в отличие от тепловых станций

• не затапливают земель в отличие от гидроэлектростанций

• не представляют потенциальной опасности в отличие от атомных станций

• капитальные вложения на сооружения ПЭС не превышают затрат на ГЭС благодаря апробированному в России наплавному способу строительства (без перемычек) и применению нового технологичного ортогонального гидроагрегата

• стоимость электроэнергии самая дешевая в энергосистеме (доказано за 35 лет на ПЭС Ранс - Франция).

Наплавная "российская" технология строительства ПЭС позволяет на треть снизить капитальные затраты по сравнению с классическим способом строительства гидротехнических сооружений за перемычками.

Приливные электростанции не оказывают вредного воздействия на человека:

• нет вредных выбросов (в отличие от ТЭС)

• нет затопления земель и опасности волны прорыва в нижний бьеф (в отличие от ГЭС)

• нет радиационной опасности (в отличие от АЭС)

• влияние на ПЭС катастрофических природных и социальных явлений (землетрясения, наводнения, военные действия) не угрожают населению в примыкающих к ПЭС районах.

Подобная технология особенно выгодна для островных территорий, а также для стран, имеющих протяженную береговую линию.

• плотины ПЭС биологически проницаемы

• пропуск рыбы через ПЭС происходит практически беспрепятственно

• натурные испытания на Кислогубской ПЭС не обнаружили погибшей рыбы или ее повреждений (исследования Полярного института рыбного хозяйства и океанологии)

• основная кормовая база рыбного стада - планктон: на ПЭС гибнет 5-10 % планктона, а на ГЭС - 83-99 %

• снижение солености воды в бассейне ПЭС, определяющее экологическое состояние морской фауны и льда составляет 0,05-0,07 %, т.е. практически неощутимо

• ледовый режим в бассейне ПЭС смягчается

• в бассейне исчезают торосы и предпосылки к их образованию

• не наблюдается нажимного действия льда на сооружение

• размыв дна и движение наносов полностью стабилизируются в течение первых двух лет эксплуатации

• наплавной способ строительства дает возможность не возводить в створах ПЭС временные крупные стройбазы, сооружать перемычки и прочее, что способствует сохранению окружающей среды в районе ПЭС

• исключен выброс вредных газов, золы, радиоактивных и тепловых отходов, добыча, транспортировка, переработка, сжигание и захоронение топлива, предотвращение сжигания кислорода воздуха, затопление территорий, угроза волны прорыва

• ПЭС не угрожает человеку, а изменения в районе ее эксплуатации имеют лишь локальный характер, причем, в основном, в положительном направлении.

• Энергетическая характеристика приливных электростанций

Использование великих сил приливов и отливов Мирового океана, даже самих океанских волн – интересная проблема. К решению ее еще только приступают. Тут многое предстоит изучать, изобретать и конструировать.

Список литературы:

1. Бернштейн Л. Б., Приливные электростанции в современной энергетике, М., 1961;

Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов – все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия океана давно привлекает к себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Приливные волны таят в себе огромный энергетический потенциал – 3 млрд. кВт.

Идея использования энергии приливов появилась у наших предков добрую тысячу лет назад. Правда, строили они тогда не ПЭС, а приливные мельницы. Одна из таких мельниц, упоминаемая еще в документах 1086 года, сохранилась в местечке Илинг, на юге Англии. В России первая приливная мельница появилась на Беломорье в XVII веке.

В ХХ веке ученые задумались над использованием потенциала приливов в электроэнергетике. Достоинства приливной энергии неоспоримы. Приливные станции можно строить в труднодоступных местах в прибрежной зоне, они не загрязняют атмосферу вредными выбросами в отличие от тепловых станций, не затапливают земель в отличие от гидроэлектростанций и не представляют потенциальной опасности в отличие от атомных станций.

В случае если прилив или отлив совпадает по времени с максимумом нагрузки энергосистемы, ПЭС работает в генераторном режиме. Таким образом, ПЭС может использоваться в энергосистеме как пиковая электростанция.

В 1966 г. во Франции на реке Ранс (рис. 2 ) построена первая в мире приливная электростанция. Система использует двадцать четыре 10-мегаваттных турбины, обладает проектной мощностью 240 МВт и ежегодно производит около 50 ГВт*ч электроэнергии. Для этой станции разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС Ранс экономически оправдана. Годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений.

Другая крупная приливная электростанция мощностью 20 МВт расположена в Аннаполис-Ройал, в заливе Фанди (провинция Новая Шотландия, Канада). Она была официально открыта в сентябре 1984 г. Система смонтирована на о. Хогс в устье р. Аннаполис на основе уже существующей дамбы, защищающей плодородные земли от затопления морской водой в период штормов. Амплитуда прилива колеблется от 4,4 до 8,7 м.

В 1968 г. на побережье Баренцева моря в Кислой губе сооружена первая в нашей стране опытно-промышленная ПЭС. В здании электростанции размещено 2 гидроагрегата мощностью 400 кВт. Основоположниками этого проекта были советские ученые Лев Бернштейн и Игорь Усачев. Впервые в мировой практике гидротехнического строительства станция была возведена наплавным способом, который потом широко стал использоваться при строительстве подводныхтуннелей, нефтегазовых платформ, прибрежных ГЭС, ТЭС, АЭС и защитных гидротехнических комплексов.

В отличие от гидроэнергии рек, средняя величина приливной энергии мало меняется от сезона к сезону, что позволяет приливным электростанциям более равномерно обеспечивать энергией промышленные предприятия.

За рубежом разрабатываются проекты приливных электростанций в заливе Фанди (Канада) и в устье реки Северн (Англия) мощностью соответственно в 4 и 10 млн киловатт, работают небольшие приливные электростанции в Китае.

Пока энергия приливных электростанций обходится дороже энергии тепловых электростанций, но при более рациональном осуществлении строительства гидросооружений этих станций стоимость вырабатываемой ими энергии вполне можно снизить до стоимости энергии речных электростанций. Поскольку запасы приливной энергии планеты значительно превосходят полную величину гидроэнергии рек, можно полагать, что приливная энергия будет играть заметную роль в дальнейшем прогрессе человеческого общества.

Мировое сообщество предполагает лидирующее использование в XXI веке экологически чистой и возобновляемой энергии морских приливов. Ее запасы могут обеспечить до 15 % современного энергопотребления.

33-летний опыт эксплуатации первых в мире ПЭС - Ранс во Франции и Кислогубской в России - доказали, что приливные электростанции:

· устойчиво работают в энергосистемах как в базе так и в пике графика нагрузок при гарантированной постоянной месячной выработке электроэнергии

· не загрязняют атмосферу вредными выбросами в отличие от тепловых станций

· не затапливают земель в отличие от гидроэлектростанций

· не представляют потенциальной опасности в отличие от атомных станций

· капитальные вложения на сооружения ПЭС не превышают затрат на ГЭС благодаря апробированному в России наплавному способу строительства (без перемычек) и применению нового технологичного ортогонального гидроагрегата

· стоимость электроэнергии самая дешевая в энергосистеме (доказано за 35 лет на ПЭС Ранс - Франция).

Наплавная "российская" технология строительства ПЭС позволяет на треть снизить капитальные затраты по сравнению с классическим способом строительства гидротехнических сооружений за перемычками.

Приливные электростанции не оказывают вредного воздействия на человека:

· нет вредных выбросов (в отличие от ТЭС)

· нет затопления земель и опасности волны прорыва в нижний бьеф (в отличие от ГЭС)

· нет радиационной опасности (в отличие от АЭС)

· влияние на ПЭС катастрофических природных и социальных явлений (землетрясения, наводнения, военные действия) не угрожают населению в примыкающих к ПЭС районах.

Подобная технология особенно выгодна для островных территорий, а также для стран, имеющих протяженную береговую линию.

· плотины ПЭС биологически проницаемы

· пропуск рыбы через ПЭС происходит практически беспрепятственно

· натурные испытания на Кислогубской ПЭС не обнаружили погибшей рыбы или ее повреждений (исследования Полярного института рыбного хозяйства и океанологии)

· основная кормовая база рыбного стада - планктон: на ПЭС гибнет 5-10 % планктона, а на ГЭС - 83-99 %

· снижение солености воды в бассейне ПЭС, определяющее экологическое состояние морской фауны и льда составляет 0,05-0,07 %, т.е. практически неощутимо

· ледовый режим в бассейне ПЭС смягчается

· в бассейне исчезают торосы и предпосылки к их образованию

· не наблюдается нажимного действия льда на сооружение

· размыв дна и движение наносов полностью стабилизируются в течение первых двух лет эксплуатации

· наплавной способ строительства дает возможность не возводить в створах ПЭС временные крупные стройбазы, сооружать перемычки и прочее, что способствует сохранению окружающей среды в районе ПЭС

· исключен выброс вредных газов, золы, радиоактивных и тепловых отходов, добыча, транспортировка, переработка, сжигание и захоронение топлива, предотвращение сжигания кислорода воздуха, затопление территорий, угроза волны прорыва

· ПЭС не угрожает человеку, а изменения в районе ее эксплуатации имеют лишь локальный характер, причем, в основном, в положительном направлении.

· Энергетическая характеристика приливных электростанций

Использование великих сил приливов и отливов Мирового океана, даже самих океанских волн – интересная проблема. К решению ее еще только приступают. Тут многое предстоит изучать, изобретать и конструировать.

Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов – все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана. Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Содержание

1. Введение.
2. Прилив и отлив.
3. Историческая справка.
4. Принцип работы и устройство ПЭС.
5. Недостатки и достоинства использования ПЭС.
6. Список использованных источников.

Прикрепленные файлы: 1 файл

Введение в специальность .docx

Министерство образования и науки Российской Федерации

Кафедра электрических станций, сетей и систем

Выполнил студент группы ЭЭбз –___________

Проверил ____________ Снопкова Н.Ю

  1. Введение.
  2. Прилив и отлив.
  3. Историческая справка.
  4. Принцип работы и устройство ПЭС.
  5. Недостатки и достоинства использования ПЭС.
  6. Список использованных источников.

Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов – все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана. Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Столетиями люди думали и размышляли над природой морских приливов и отливов. Сегодня мы точно знаем, что это грандиозное явление природы – ритмичное движение морских вод провоцируют силы притяжения Солнца и Луны. Так как наше Солнце расположено от Земли в 400 раз дальше, то гораздо более скромная масса Луны оказывает действие на земные воды вдвое большее, чем масса Солнца. Поэтому определяющую роль играет именно прилив, вызванный Луной (лунный прилив). На морских просторах приливы сменяются отливами теоретически через 6 часов 12 минут 30 секунд. Если Луна, Солнце и Земля находятся на одной прямой линии (сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает более сильный прилив (сизигийный прилив, или большая вода). А когда Солнце находится под прямым углом к отрезку прямой Земля-Луна (квадратура), имеет место слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы сменяют друг друга через семь дней.

Но настоящая природа прилива и отлива весьма сложна. На него оказывают влияние особенности движения небесных тел, характер береговой линии, глубина воды, разнообразные морские течения и ветер.

Самые большие и сильные приливные волны имеют место в мелких и узких заливах или устьях рек, которые впадают в моря и океаны. Приливная волна Индийского океана идет против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана движется на 900 км вверх по Амазонке. В закрытых морях, например Черном море, возникают малые приливные волны высотой порядка 60-70 см.

Идея использования энергии приливов появилась у наших предков добрую тысячу лет назад. Правда, строили они тогда не ПЭС, а приливные мельницы. Одна из таких мельниц, упоминаемая еще в документах 1086 года, сохранилась в местечке Илинг, на юге Англии. В России первая приливная мельница появилась на Беломорье в XVII веке. В ХХ веке ученые задумались над использованием потенциала приливов в электроэнергетике. Мощность приливных электрических станций в некоторых местах могла бы составить порядка 2–20 МВт. Первая морская приливная электростанция (мощность 635 кВт) была создана в 1913 г. в бухте Ди около Ливерпуля. А в 1935 г. приливную электростанцию начали возводить и в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, потратили на это сумму в 7 млн. долларов, но работы пришлось свернуть из-за неудобного для строительства морского дна (слишком глубокого и мягкого), а также из-за того, что построенная довольно близко крупная тепловая электростанция могла давать более дешевую энергию, чем приливная. Аргентинские инженеры и специалисты предлагали использовать очень высокую приливную волну в Магеллановом проливе, но тогда правительство так и не утвердило дорогостоящий и рискованный проект. С 1967 года в устье реки Ранс во Франции на приливных волнах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей примерно 540 тыс. кВт*ч.

Принцип работы и устройство ПЭС.

Для постройки приливной электростанции находят на берегу узкий залив и отсекают его от океана плотиной. В отверстия плотины вставляют гидротурбины с генераторами. Сейчас спроектированы обтекаемые капсулы, в которых заключены и турбина, и генератор. Эти, как их назвали, капсульные агрегаты наиболее удобны для приливных электростанций. Главное достоинство таких капсульных агрегатов, их универсальность. Они не только вырабатывают электроэнергию при прохождении через них морской воды, но и могут работать в качестве насосов. При этом вырабатывать электроэнергию они могут как во время прилива, так и во время отлива.

Идет прилив- вода наполняет бассейн приливной электростанции, и рабочие колеса капсульных агрегатов под действием движения воды вращаются. Электростанция дает ток. Начался отлив – вода уходит из бассейна в океан, по пути опять вращая рабочие колеса, только в обратную сторону. И электростанция снова дает ток, потому, что капсульный агрегат одинаково хорошо работает при вращении колеса в любую сторону.
Но вот пауза между приливом и отливом. Колеса останавливаются. Как тут быть?
Энергетики нашли хороший выход из положения. Приливные электростанции не будут работать в одиночку. Провода свяжут их с другими, например тепловыми электростанциями. Получится энергетическое кольцо, каждый участок которого будет хорошо помогать остальным. Во время пауз соседи по кольцу помогут приливным электростанциям не только тем, что возьмут на себя их нагрузку.
Как уже было сказано, для эффективной работы приливной электростанции желателен уровень воды не менее 4 метров. А что же делать кода прилив или отлив только начинается и разница уровней воды между океаном и бассейном электростанции незначителен?
Точные расчеты показали, что для более эффективной работы приливных электростанций, в конце отлива и начале прилива, капсульный агрегат должен не вырабатывать электроэнергию, а откачивать воду из водоема электростанции в океан, тем самым понижая уровень воды в водоеме и увеличивая разницу уровней воды. А в конце прилива и начале отлива, он должен наоборот, закачивать воду в водоем приливной электростанции, тем самым так же увеличивая разницу уровней воды. Чем больше будет разница высот воды, тем более эффективно будет работать приливная электростанция.
Обычно график работы приливной электростанции состоит из четырех циклов простоев по 1-2 часа, когда прилив только начинается или заканчивается. И четырех рабочих циклов длительностью по 4-5 часов, когда прилив или отлив уже действует в полную силу.

В последние годы некоторыми компаниями создаются новые типы приливных электростанций. Главное их отличие, это отсутствие дорогой плотины. Электрогенераторы приводят в движение не компактные турбины, а крупные лопасти диаметром 10-20 метров. Подобные электростанции больше всего напоминают ветряную электростанцию, опущенную в воду. Для осмотра и обслуживания турбину можно время от времени поднимать на поверхность, двигая по опоре. Мощность одной турбины составит от 600 до 1000 кВт, энергия будет передаваться на берег по подводному кабелю.

Первый в мире подводный гидроагрегат в открытом море установлен к юго-востоку от Белфаста (Северная Ирландия) в морском озере-заливе Стренгфорд - Лох. Мощность этой электростанции – 1,2 мегаватта. В нашей стране первая такая электростанция (Паужетская) мощностью 5 МВт была построена на Камчатке.

Недостатки использования ПЭС.

К сожалению, приливные электростанции (как плотинные, так и подводные) обладают серьёзными недостатками:

1. Во время штормов возникает мощнейший напор воды, а гидрогенераторы, способные его выдержать, стоят очень дорого.

2. Время работы с максимальной мощностью составляют 4-5 часов с перерывами 1-2 часа четыре раза в сутки.

3. Экологические последствия связаны с изменением флоры и фауны региона (нарушают нормальный обмен соленой и пресной воды и тем самым - условия жизни морской флоры и фауны).

Достоинства использования ПЭС.

1. Отсутствие вредных выбросов в атмосферу

2. Возможность максимально точного прогнозирования выработки электрической энергии (приливы и отливы – явление постоянное и хорошо изученное),

в отличие от типовых проектов гидроэлектростанций

3. Организация приливных станций не требует значительных изменений ландшафта прибрежной зоны

Читайте также: