Реферат на тему обработка поверхностей

Обновлено: 30.06.2024

Введение
Использование металлов человеком началось в глубокой древности (более пяти тысячелетий до н. э.). Вначале находили применение цветные металлы (медь, сплавы меди, золото, серебро, олово, свинец и др.), позднее начали применять черные — железо и сплавы на его основе.
Длительное время производство металлов носило примитивный характер и по объему было весьма незначительным. Однако в конце XIX в. мировая выплавка стали резко возросла с 0,5 млн. т в 1870 г. до 28 млн. т в 1900 г. Еще в большем объеме растет металлургическая промышленность в XX столетии. Наряду с увеличением выплавки стали появилась необходимость организовать в больших масштабах получение меди, цинка, вольфрама, молибдена, алюминия, магния, титана, бериллия, лития и других металлов.
Металлургическое производство подразделяется на две основные стадии. В первой получают металл заданного химического состава из исходных материалов. Во второй стадии металлу в пластическом состоянии придают ту или иную необходимую форму при практически неизменном химическом составе обрабатываемого материала.
Для изготовления отдельных деталей и изделия в целом используют различные способы обработки металлов и других материалов. Наиболее распространенные виды механической обработки металлов будут рассмотрены ниже.
Глава 1. Механическая обработка металлов
Особенности механической обработки металлов
Металлообработка представляет собой проведение технологических работ по изменению формы, размеров, качественных характеристик металлов и сплавов. Помимо этого, в ходе обработки металлов различными методами также могут меняться их физико-механические свойства.
К числу основных видов обработки металлических изделий относят:
литье;
обработку металлов давлением;
механическую обработку;
сварку металлов.
Сложно переоценить важность качества металлообработки, поскольку именно от него будет зависеть прочность той или иной металлической конструкции.
Большая часть работ по изменению основных характеристик металлических деталей и сплавов с использованием вышеперечисленных методов проводится на специальных предприятиях – металлообрабатывающих заводах.
Под механической обработкой металлов понимают процесс коррекции поверхности детали с использованием сверла, фрезы или шлифовального диска. Это довольно популярный способ, который используют для обработки большинства металлоконструкций.
Результатом механической обработки металлов является образование новой поверхности, получаемой путем деформации исходной детали и дальнейшего отдаления слоев от основной части материала. Сопутствующим процессом подобной работы является образование металлической стружки. Избыточная часть материала, которая отделяется при помощи специальных станков, называется припуском. После снятия излишка (припуска) металлоконструкция обретает нужный размер и форму.
В ходе производства и обработки металлических изделий практически всегда делают небольшой припуск, так как это позволяет уменьшить трудоемкость процесса, снизить себестоимость детали и сэкономить материал.
Механическая обработка металлов в промышленных масштабах возможна на специализированных предприятиях, обеспеченных достаточным количеством производственных площадей и необходимого оборудования.
Снятие верхних слоев металла осуществляется на токарных станках и фрезерных установках. Самыми популярными среди них являются:
токарные центры с ЧПУ;
вертикально-фрезерные станки.
Современное оборудование для различных видов механической обработки металлов и сплавов позволяет соблюдать высокую точность геометрии и шероховатость поверхности.
Стоит отметить, что сегодня на рынке представлен довольно богатый ассортимент приспособлений для металлообработки. Выбор определенных моделей зависит от специфики работы конкретного предприятия. Так, некоторые производства оборудованы специальными карусельными станками, предназначенным для обработки металлических конструкций диаметром до 9 м.
Однако в арсенале большинства заводов имеется стандартный комплект оборудования для различных видов механической обработки металлических изделий:
фрезерное;
зубофрезерное;
радиально-сверлильное;
горизонтально-сверлильное;
вертикально-сверлильное.
Использование обработанных механическим методом металлических конструкций актуально для многих областей народного хозяйства:
судостроения;
атомной промышленности;
оборонной промышленности;
станкостроения.
Нередко в зависимости от конкретной цели дальнейшего применения работникам промышленных секторов требуются металлические детали нестандартных размеров или конфигурации. Сейчас мы говорим о тех случаях, когда даже среди представленного на рынке ассортимента заготовок не получается найти деталь с нужными параметрами.
Выходом из данной ситуации становится механическая обработка металла по индивидуальным чертежам заказчика. Так заказчик может сэкономить собственное время и силы, ведь специалисты всегда готовы быстро и качественно выполнить свою работу в соответствии со всеми пожеланиями и требованиями клиента.
Глава 2. Основные виды механической обработки металлов
Токарная обработка
Данный термин подразумевает механическую обработку резанием наружных и внутренних поверхностей вращения, в том числе цилиндрических и конических, а также торцевание, отрезание, снятие фасок, обработку галтелей, прорезание канавок, нарезание внутренних и наружных резьб на специальных токарных станках. Точение считается одной из самых старых процедур, которую много лет назад начали проводить на простейших токарных станках.
В процессе механической обработки металлов данным способом различают два основных вида движений: главное (вращательное движение заготовки) и движение подачи (поступательное движение режущего инструмента). Помимо этого выделяют также вспомогательные движения, которые не относятся к самому процессу резания и заключаются в осуществлении сопутствующих действий: транспортировке, фиксации заготовки на станке, его включении, изменении частоты вращения заготовки, скорости поступательного движения инструмента и т. д.
Точение является самым популярным способом производства различных тел вращения (валов, дисков, осей, пальцев, цапф, фланцев, колец, втулок, гаек, муфт и т. д.) на токарных станках.Основными видами точения металлов на специализированных станках является коррекция поверхностей:
наружных – обтачивание;
внутренних – растачивание;
плоских – подрезание.
А также резка – деление основного материала на части либо отделение готовой детали от заготовки.
Нарезка резьбы
Нанесение резьбы на изделие из металла может осуществляться следующими способами:
Нарезание резьбы резцами.
Специальные токарно-винторезные станки позволяют наносить на металлические конструкции и наружную, и внутреннюю резьбу (при условии, что диаметр последней начинается от 12 мм).Стоит отметить, что работа резцов не является высокопроизводительной, в связи с этим данное оборудование целесообразно применять лишь в мелкосерийном и индивидуальном производстве, также его можно использовать при создании точных и ходовых винтов, калибров и т. д.

Отделочная обработка со снятием стружки: отделка поверхностей чистовыми резцами и шлифовальными кругами, полирование заготовок, абразивно-жидкостная отделка, притирка поверхностей, хонингование, суперфиниширование. Отделочно-зачистная обработка деталей.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 18.01.2009
Размер файла 2,8 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Отделочная обработка со снятием стружки

К деталям изделий РЭС как правило предъявляются повышенные требования в отношении точности размеров, уменьшении шероховатости поверхностей, придания им особого вида в эстетических или санитарно-гигиенических целях.

Выполнить эти требования можно при достижении особых качеств поверхностных слоев деталей. Достичь их рассмотренными ранее методами формообразования и механической обработки поверхности удается не всегда.

В этих случаях применяют отделочные методы обработки. Для них характерны малые силы резания, небольшие толщины срезания слоев материла, незначительное тепловыделение.

Отделка поверхностей чистовыми резцами и шлифовальными кругами

К этой группе методов относятся:

1) тонкое обтачивание;

2) тонкое растачивание;

3) тонкое шлифование.

Тонкое обтачивание осуществляется при высоких скоростях резания, малых глубинах и подачах. Часто используются токарные резцы с широкими режущими лезвиями, которые располагают строго параллельно оси обрабатываемой заготовки. Подача на оборот заготовки составляет 0,8 ширины лезвия, а глубина резания - не более 0,5 мм. Это приводит к уменьшению шероховатости обрабатываемой поверхности.

Тонкое обтачивание обеспечивает получение поверхностей правильной геометрической формы, с точным пространственным расположением осей и параметрами шероховатости Ra=063-0,063 мкм; вместе с тем этот метод высокопроизводителен.

При обтачивании деталей из медных сплавов резцами, армированными алмазами или композиционными материалами, с использованием шпиндельных головок с высокоточными подшипниками можно получить параметр шероховатости Ra=0,032-0,02 мкм, при обработке деталей из алюминиевых сплавов и тех же условиях можно обеспечить параметр шероховатости поверхности Ra=0,5-0,16 мкм.

Тонкое обтачивание требует применения быстроходных станков высокой жесткости и точности, а также качественной предварительной обработки.

Тонкое растачивание используется в тех случаях, когда заготовки из вязких цветных сплавов либо стали, выполнены тонкостенными. Тонкое растачивание целесообразно при точной обработке глухих отверстий и тогда, когда по условиям работы детали не допускается внедрение абразивных зерен в пары обработанной поверхности.

Тонкое шлифование производят мягким мелкозернисты кругом при больших скоростях резания (vк>40 м/с) и малой глубине резания. Шлифование сопровождается обильной подачей охлаждающей жидкости. Особую роль играет жесткость станков, способных обеспечить безвибрационную работу.

Полированием уменьшают шероховатость поверхности. Этим методом получают зеркальный блеск на соответствующих частях деталей, либо на деталях, применяемых для декоративных целей.

Для этого используют полировальные пасты или абразивные зерна, смешанные со смазочным материалом. Эти материалы наносят на быстровращающиеся (например, фетровые) круги или колеблющиеся щетки. Хорошие результаты дает полирование быстродвижущимися бесконечными абразивными лентами.

В качестве абразивного материала применяют пороки и электрокорунда и оксида железа при полировании стали, оксида хрома при полировании алюминия и сплавов меди.

Смазочный материал состоит из смеси воска, парафина и керосина.

Полировальные круги изготавливают из войлока, фетра, кожи, капрона, спрессованной ткани и других материалов.

Процесс полирования проводят на больших скоростях (до 50 м/с).

Рис. 1. Полирование кругами

Заготовка прижимается к кругу усилием Р и совершает движения подачи Sпр и Sкр в соответствии с профилем обрабатываемой поверхности.

Рис. 2. Полирование лентами

Полирование лентами имеет ряд преимуществ, т.к.эластичная лента может огибать всю полируемую поверхность. Движения подачи в этом случаем могут отсутствовать.

В процессе полирования не удается исправлять погрешности формы, а также местные дефекты предыдущей обработки.

Отделка объемно-криволинейных фасонных поверхностей обычными методами вызывает большие технологические трудности. Для отделочной обработки поверхностей сложной формы используется метод абразивно-жидкостной отделки.

Рис. 3. Абразивно-жидкостная отделка

На обрабатываемую поверхность, имеющую следы предшествующей обработки, подают струю антикоррозионной жидкости со взвешенными частицами абразивного порошка.

Жидкостно-абразивная суспензия перемещается под давлением с большой скоростью. Частицы абразива ударяются о поверхность заготовки и сглаживают микронеровности.

Интенсивность съема обрабатываемого материала регулируется зернистостью порошка, давлением струи и углом в.

В качестве абразива часто применяется электрокорунд. В суспензии содержится 30-35% абразива по массе. Наибольший съем металла обеспечивается при угле в?45°.

Притирка (доводка) поверхностей

Поверхности деталей, обработанных на металлорежущих станках, всегда имеют отклонения от правильных геометрических форм и заданных размеров. Этим методом достигается наивысшая точность (1-2 квалитеты) и наименьшая шероховатость поверхности (Rz=0,05-0,01 мкм).

Процесс осуществляется с помощью притиров соответствующей геометрической формы.

Рис. 4. Различные виды притиров

На притир наносят притирочную пасту или мелкий абразивный порошок со связующей жидкостью.

В процессе обработки притир или заготовка должна совершать разнообразные движения. Наилучшие результаты дает процесс, в ходе которого траектория движения каждого зерна абразивного порошка не повторяются. Микронеровности сглаживаются за счет совокупного химико-механического воздействия на поверхность заготовки.

Толщина жидкостного слоя между притиром и заготовкой должна быть меньше высоты режущих абразивных зерен и определяется вязкостью связующей жидкости. Если эта толщина оказывается больше высоты выступающих зерен, то процесс притирки прекращается, т.к. зерна не будут соприкасаться с обрабатываемой поверхностью.

В качестве абразива для притирочной смеси используют порошок электрокорунда, карбидов кремния и бора, оксиды хрома и железа и др. Притирочные пасты состоят из абразивных порошков и химически активных веществ, например олеиновой и стеариновой кислот, играющих одновременно роль связующего материала.

Материалами притиров являются серый чугун, бронза, красная медь. В качестве связующей жидкости используют машинное масло, керосин, стеарин, вазелин.

Хонингование снижает отклонения формы и повышает размерную точность, уменьшает параметр шероховатости поверхности, сохранят микротвердость и структуру поверхностного слоя, создает специфический микропрофиль обработанной поверхности в виде сетки.

Хонингованием обрабатывают детали из стали, чугуна и цветных метало, преимущественно отверстия диаметром 6-1500 мм, длинной от 10 мм до 20 м.

Отверстия могут быть сквозные, глухие, с гладкой и прерывистой поверхностью, цилиндрические, конические и т.д.

Рис. 5. Хонингование

Поверхность неподвижной заготовки обрабатывают мелкозернистыми абразивными брусками, которые закрепляются в хонинговальной головке (хоне). Бруски вращаются и одновременно перемещаются возвратно-поступательно вдоль оси обрабатываемого отверстия. Соотношение скоростей v1:v2 указанных движений составляет 1,5-10 и определяет условия резания.

Схема обработки по сравнению с внутренним шлифованием имеет преимущества: отсутствует упругий отжим инструмента, реже наблюдается вибрация, резание происходит более плавно.

При сочетании движений на обрабатываемой поверхности появляется сетка микроскопических винтовых царапин - следов перемещения абразивных зерен. Угол и пересечения этих следов зависит от соотношения скоростей.

Рис. 6. Следы перемещения зерен абразива на детали

Абразивные бруски всегда контактируют с обрабатываемой поверхностью, т.к. могут раздвигаться в радиальных направлениях механическими, гидравлическими или пневматическими устройствами.

Хонингованием исправляют погрешности формы от предыдущей обработки в виде отклонений от округлости, цилиндричности, конусности и т.п. если общая толщина снимаемого слоя не превышает 0,01-0,2 мм. Погрешности расположения оси отверстия (например отклонение от прямолинейности) этим методом не исправляется, т.к. режущий инструмент самоустанавливается по отверстию.

Хонингование производят при обильном охлаждении зоны резная смазочно-охлаждающими жидкостями - керосином, смесью керосина и веретенного масла.

Суперфиниширование - отделочный метод обработки абразивными брусками.

Рис. 7. Отделка абразивными брусками

Для него характерны колебательные (осциллирующие) движения и продольные подачи абразивных брусков или детали, постоянная сила прижатия бруска к детали и малое давление в зоне обработки. Обработка происходит без существенного изменения размеров и макрогеометрии поверхности.

Рис. 8. Отделка абразивными брусками: 1 - абразивный брусок;

2 - смазочный материал; 3 - обрабатываемая поверхность

По мере снятия вершин гребешков увеличивается контактная поверхность, уменьшается давление брусков, стружка заполняет поры брусков, режущая способность брусков снижается, процесс обработки прекращается.

Суперфинишированием можно обрабатывать цилиндрические, конические, плоские и сферические поверхности деталей из закаленной стали, раже из цветных металлов и сплавов. При этом шероховатость поверхности снижается до Ra=0,012-0,1 мкм, опорная поверхность увеличивается с 20-30 до 80-90%, удаляется дефектный слой.

Суперфиниширование не устраняет погрешности формы, полученные на предшествующей обработке (волнистость, конусность, овальность).

Отделочно-зачистная обработка деталей

Отделочно-зачистную обработку деталей применяют для снятия заусенцев, очистки, размерной и декоративной отделки поверхностей.

Заусенцы всегда сопутствуют процессу резания и представляют собой излишки материала, располагающиеся на кромках и углах деталей. Они имеют вид гребенок малой толщины. Как правило заусенцы образуются в результате сдвига металла при выходе режущего инструмента из контакта с заготовкой.

Удаляют также шаржированные частицы - внедренные в поверхность деталей абразивных или алмазных осколков зерен в результате шлифования.

На многих деталях подлежат удалению масляные и жировые пленки, образующиеся после обработки резанием с применением смазочно-охлаждающих жидкостей.

Полное удаление этих дефектов возможно только при обработке электроискровым, лучевым, ультразвуковым и некоторыми другими методами.

Различные методы удаления заусенцев применяют и в конце технологического процесса:

- проточка фасок на деталях типа тел вращения на станках токарной группы;

- удаление заусенцев, получение фасок на деталях в виде корпусов, плат, планок (на фрезерных станках)4

- удаление заусенцев и нарушенных слоев металла после штамповочных операций зачисткой на специальных зачистных штампах;

- снятие фасок на выходе отверстий зенковками или сверлами и т.д.

Существуют еще два метода механической очистки и зачистки поверхностей:

Дробеструйная обработка заключается в том, что деталь помещают в камеру и подают на нее из сопла с помощью сжатого воздуха металлический песок, дробь, металлические или пластмассовые шарики.

При галтовке детали загружаются в барабан навалом. Барабаны вращаются вокруг оси. Режущим инструментом служит абразивный бой, гранулированный абразив. В процессе галтовки абразив и детали взаимодействуют, происходят многочисленные соударения, скольжения и микрорезание поверхности.

Для операции полирования в галтовочные барабаны загружают абразивные зерна, абразивные порошки, деревянные шары, обрезки кожи, войлока, мелкие стальные полированные шарики.

Рис. 9. Галтовочный барабан

Обработка поверхности детали без снятия стружки

Методами обработки без снятия стружки получают только те поверхности, которые будут сопрягаться с поверхностями других деталей.

Методы обработки основаны на использовании пластических свойств металлов, т.е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Отделочная обработка методами пластического деформирования сопровождается упрочнением поверхностного слоя, что повышает надежность работы деталей.

Поверхность заготовки принимает требуемые форму и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.

К методам чистовой обработки пластическим деформированием относятся:

- обкатывание и раскатывание поверхностей;

- обкатывание зубчатых колес;

- дробеструйная упрочняющая обработка.

Суть этих методов сводится к обработке поверхностей деталей специальными приспособлениями, рабочими инструментами которых являются ролики, шарики, алмазные выглаживатели и т.д., которые с определенной скоростью и под большим усилием перемещается по поверхности детали.

Твердость инструмента значительно выше твердости материала детали.

Рис. 10. Обкатывание и раскатывание поверхности

Рис. 12. Вибронакатывание

1. Технология производства ЭВМ / А.П. Достанко, М.И. Пикуль, А.А. Хмыль: Учеб. - Мн. Выш. Школа, 2004 - 347с.

2. Технология деталей радиоэлектронной аппаратуры. Учеб. пособие для ВУЗов / С.Е.Ушакова, В.С. Сергеев, А.В. Ключников, В.П. Привалов; Под ред. С.Е. Ушаковой. - М.: Радио и связь, 2002. - 256с.

3. Тявловский М.Д., Хмыль А.А., Станишевский В.К. Технология деталей и пе-риферийных устройств ЭВА: Учеб. пособие для ВУЗов. Мн.: Выш. школа, 2001. - 256с.

4. Технология конструкционных материалов: Учебник для машиностроительных специальностей ВУЗов / А.М. Дольский, И.А. Арутюнова, Т.М. Барсукова и др.; Под ред. А.М. Дольского. - М.: Машиностроение, 2005. - 448с.

5. Зайцев И.В. Технология электроаппаратостроения: Учеб. пособие для ВУЗов. - М.: Высш. Школа, 2002. - 215с.

6. Основы технологии важнейших отраслей промышленности: В 2 ч. Ч.1: Учеб. пособие для вузов / И.В. Ченцов, И.А.

Подобные документы

Черновое обтачивание цилиндрических поверхностей: правые и левые резцы, элементы их головки и форма передней поверхности. Точность размеров деталей и шероховатость поверхностей. Подготовка станка к чистовой обработке и отделке, закрепление деталей.

реферат [6,8 M], добавлен 18.03.2011

Применение метода обработки без снятия стружки для деталей с ужесточением эксплуатационных характеристик машин. Данный метод обработки основан на использовании пластических свойств металлов. Обкатывание, раскатывание и алмазное выглаживание поверхностей.

реферат [508,5 K], добавлен 20.08.2010

Проектирования технологических процессов обработки деталей. Базирование и точность обработки деталей. Качество поверхностей деталей машин. Определение припусков на механическую обработку. Обработка зубчатых, плоских, резьбовых, шлицевых поверхностей.

курс лекций [7,7 M], добавлен 23.05.2010

Схема механической обработки поверхности заготовки на круглошлифовальных станках. Схема нарезания резьбы резьбовым резцом. Обработка поверхностей заготовок деталей с периодически повторяющимся профилем. Физическая сущность обработки металлов давлением.

курсовая работа [415,9 K], добавлен 05.04.2015

Содержание основных этапов обработки поверхности детали. Особенности круглошлифовальной и внутришлифовальной операций, выбор оборудования. Проектирование операций хонингования и суперфиниширования. Технологическое нормирование операций процесса.

контрольная работа [1,0 M], добавлен 30.06.2012

Методика выбора оптимальных маршрутов обработки элементарных поверхностей деталей машин: плоскостей и торцев, наружных и внутренних цилиндрических. Выбор маршрутов обработки зубчатых и резьбовых поверхностей, отверстий. Суммарный коэффициент трудоемкости.

методичка [232,5 K], добавлен 21.11.2012

Изучение химико-термической обработки металлов и сплавов. Характеристика возможностей методов отделочно-упрочняющей обработки для повышения износостойкости поверхностей. Описание фосфорирования, наплавки легированного металла и алмазного выглаживания.

Поверхности деталей (как наружные, так и внутренние) относят к фасонным, если они образованы криволинейной образующей, комбинацией прямолинейных образующих, расположенных под различными углами к оси детали, или комбинацией криволинейных и прямолинейных образующих.

Вложенные файлы: 1 файл

1 Обработка фасонных поверхностей.docx

1 Обработка фасонных поверхностей

Поверхности деталей (как наружные, так и внутренние) относят к фасонным, если они образованы криволинейной образующей, комбинацией прямолинейных образующих, расположенных под различными углами к оси детали, или комбинацией криволинейных и прямолинейных образующих.

На токарных станках фасонные поверхности получают:

ручным или автоматическим поперечным и продольным движением подачи резца относительно заготовки с подгонкой профиля обрабатываемой поверхности по шаблону;

фасонными резцами, профиль которых соответствует профилю обработанной детали;

с помощью приспособлений и копирных устройств, позволяющих обработать поверхность заданного профиля;

комбинированием перечисленных выше методов.

Фасонные поверхности на длинных деталях, заданный профиль которых получается с помощью шаблона, копира и приспособлений, обрабатывают проходными резцами из быстрорежущей стали или твердого сплава.

При обработке галтелей и канавок радиусом R 20 мм режущую часть резцов выполняют с радиусом скругления, равным (1,5. 2)R. При этом используют как продольное, так и поперечное перемещение суппорта.

Для повышения производительности обработки фасонных поверхностей сложного профиля применяют фасонные резцы (рис. 4.39). Ширина фасонных резцов не превышает 60 мм и зависит от жесткости системы станок—приспособление — инструмент— обрабатываемая деталь (СИД) и радиального усилия резания.

Обработка проходными резцами

При небольшой партии заготовок и соответствующей подготовке рабочего фасонную поверхность можно обрабатывать проходным резцом при его одновременном продольном и поперечном движении, осуществляемом вручную.

При выборе резца форма его вершины и расположение режущих кромок должны позволить обработать фасонную поверхность с заданными углами наклона и радиусами.

Для приобретения навыка одновременного продольного и поперечного перемещения резца по заданной траектории следует предварительно (перед обработкой фасонной детали) выполнить несколько упражнений, что позволит освоиться с особенностями управления станком при фасонной обработке. Для этого в патроне или в центрах устанавливают готовую деталь с фасонной поверхностью сложного профиля. Перемещая суппорт координированным вращением его рукояток, следят за тем, чтобы вершина резца перемещалась в непосредственной близости (с одинаковым зазором до 1 мм) от поверхности детали.

Убедившись в надежности управления станком, переходят к обработке детали с фасонной поверхностью. На рис. 4.40, а показана последовательность обработки описанным способом фасонной поверхности заготовки рукоятки. Заготовку закрепляют в трех-кулачковом патроне, используя для этого поверхность А (рис. 4.40, б), и обрабатывают проходным резцом хвостовую часть рукоятки, состоящую из поверхностей В, С, D, и Е. Установив рукоятку в патроне по поверхности G (рис. 4.40, в), обрабатывают фасонную часть рукоятки. С помощью шкалы на станине станка производят разметку (вдоль оси заготовки) наибольшего и наименьшего диаметров фасонной поверхности рукоятки, а затем проходным резцом снимают черновой припуск в несколько проходов (см. заштрихованные участки на рис. 4.40, в).

Окончательный съем припуска (рис. 4.40, г) выполняют в несколько проходов. Вначале аккуратно снимают гребешки плавным перемещением резца вдоль оси обрабатываемой детали и возвратно-поступательным перемещением поперечных салазок суппорта. Затем к невращающейся заготовке прикладывают шаблон с профилем готовой детали, измеряют наибольший и наименьший диаметры фасонной поверхности и определяют места, с которых необходимо снять припуск. Для облегчения условий труда и повышения его производительности опытные рабочие используют автоматическую продольную подачу, перемещая вручную только поперечный суппорт.

Для повышения производительности и точности обработки фасонных поверхностей проходным резцом применяют копир (рис. 4.41). Фасонную поверхность рукоятки 2 обрабатывают резцом 7, поперечное перемещение которого осуществляется по копиру 5 пальцем 4 в соответствии с его профилем. Вместе с пальцем 4 в поперечном направлении перемещается тяга 3 и связанный с ней суппорт с резцовой головкой. При этом винт поперечного движения подачи выводится из зацепления с гайкой поперечного суппорта, а движение продольной подачи может осуществляться автоматически.

Обработка фасонными резцами

Для обработки галтелей, резьбы и других фасонных поверхностей применяют фасонные резцы. Профиль режущей кромки фасонных резцов полностью совпадает с профилем обрабатываемой поверхности, поэтому передняя поверхность резца устанавливается точно на линии центров станка. Фасонные резцы затачивают по передней поверхности. Это необходимо учитывать при повторной установке резцов. В горизонтальной плоскости резец должен быть установлен перпендикулярно к линии центров станка; правильность установки проверяют угольником, который одной стороной прикладывают к цилиндрической поверхности детали, а другой — к боковой поверхности резца, при этом между угольником и резцом должен быть равномерный просвет. Применение призматических и круглых фасонных резцов позволяет обрабатывать фасонные поверхности сложного профиля.

Призматические радиальные фасонные резцы устанавливают на поперечном суппорте или в револьверной головке с горизонтальной осью вращения. Они предназначены для работы с поперечным движением подачи. Режущую кромку резца необходимо устанавливать по центру обрабатываемой детали. Задние углы α создают соответствующей установкой резца в державке, что является преимуществом этой конструкции.

Фасонные круглые резцы с винтовыми образующими режущих кромок обеспечивают получение меньшей шероховатости обрабатываемой поверхности по сравнению с круглыми резцами с кольцевыми образующими. Резцы с винтовыми образующими — это высокопроизводительный инструмент, который применяется на станках с револьверными головками.

Подача фасонного резца должна быть равномерной и не превышать 0,05 мм/об при ширине резца 10. 20 мм и 0,03 мм/об при ширине резца более 20 мм. Подача зависит от жесткости детали.

Контроль фасонной поверхности

Фасонную поверхность детали контролируют, как правило, шаблоном. Отклонения от фактического профиля могут быть вызваны следующими причинами: неточностью профиля резца или погрешностью его установки, а также деформацией детали при обработке, вызванными чрезмерно большими подачами.

2 Технология нарезания резьбы на токарных станках

Вершина резца при перемещении с постоянной скоростью подачи вдоль вращающейся заготовки, врезаясь, оставляет на ее поверхности винтовую линию (рис. 4.42).

Наклон винтовой линии к плоскости, перпендикулярной оси вращения заготовки, зависит от частоты вращения шпинделя с заготовкой и подачи резца и называется углом μ подъема винтовой линии (рис. 4.43). Расстояние между винтовыми линиями, измеренное вдоль оси заготовки, называется шагом Р винтовой линии. Если отрезок на поверхности детали, равный шагу винтовой линии, развернуть на плоскость, то из прямоугольного треугольника АБВ можно определить

где d — диаметр заготовки по наружной поверхности резьбы.

При углублении резца в поверхность заготовки вдоль винтовой линии образуется винтовая поверхность, форма которой соответствует форме вершины резца. Резьба — это винтовая поверхность, образованная на телах вращения и применяемая для соединения, уплотнения или обеспечения заданных перемещений деталей машин и механизмов. Резьбы подразделяются на цилиндрические и конические.

В зависимости от назначения резьбового соединения применяют резьбы различного профиля.

Профиль резьбы — это контур сечения резьбы в плоскости, проходящей через ее ось. Широко применяются резьбы с остроугольным, трапецеидальным и прямоугольным профилями.

Резьбы бывают левые и правые. Винт с правой резьбой завертывают при вращении по часовой стрелке (слева направо), а винт с левой резьбой — против часовой стрелки (справа налево). Различают однозаходные и многозаходные резьбы. Однозаходная резьба образована одной непрерывной ниткой резьбы, а многозаходная — несколькими нитками резьбы, эквидистантно расположенными на поверхности детали. Число ниток легко определить на торце детали, где начинается резьбовая поверхность (рис. 4.44, а и б).

Различают ход Ph и шаг Р многозаходной резьбы. Ход многозаходной резьбы (ГОСТ 11708—82) — это расстояние по линии, параллельной оси резьбы, между любой исходной средней точкой на боковой стороне резьбы и средней точкой, полученной при перемещении исходной средней точки по винтовой линии на угол 360° между одноименными точками одного витка одной нитки резьбы, измеренное параллельно оси детали. Ход многозаходной резьбы равен шагу резьбы, умноженному на число заходов:

где k — число заходов.

Нарезание резьбы резцами

На токарно-винторезных станках наиболее широко применяют метод нарезания наружной и внутренней резьб резцами (рис. 4.45). Резьбонарезные резцы бывают стержневые, призматические и круглые; их геометрические параметры не отличаются от геометрических параметров фасонных резцов.Резьбы треугольного профиля нарезают резцами с углом в плане при вершине ε= 60° ± 10' для метрической резьбы и ε= 55° ± 10' для дюймовой резьбы. Учитывая погрешности перемещения суппорта, которые могут привести к увеличению угла резьбы, иногда применяют резцы с углом ε = 59°30'. Вершина резца может быть скругленной или с фаской (в соответствии с формой впадины нарезаемой резьбы).

Резьбонарезные резцы оснащают пластинами из быстрорежущей стали и твердых сплавов. Предварительно деталь обтачивают таким образом, чтобы ее наружный диаметр был меньше наружного диаметра нарезаемой резьбы. Для метрической резьбы диаметром до 30 мм эта разница ориентировочно составляет 0,14. 0,28 мм, диаметром до 48 мм — 0,17. 0,34 мм, диаметром до 80 мм — 0,2. 0,4 мм. Уменьшение диаметра заготовки обусловлено тем, что при нарезании резьбы материал заготовки деформируется и в результате этого наружный диаметр резьбы увеличивается.

Нарезание резьбы в отверстии производят или сразу после сверления (если к точности резьбы не предъявляют высоких требований), или после его растачивания (для точных резьб). Диаметр отверстия (мм) под резьбу

где d — наружный диаметр резьбы, мм; Р — шаг резьбы, мм.

Диаметр отверстия под резьбу должен быть несколько больше внутреннего диаметра резьбы, так как в процессе нарезания резьбы металл деформируется и в результате этого диаметр отверстия уменьшается. Поэтому результат, полученный по приведенной выше формуле, увеличивают на 0,2. 0,4 мм при нарезании резьбы в вязких материалах (стали, латуни и др.) и на 0,1. 0,02 мм при нарезании резьбы в хрупких материалах (чугуне, бронзе и др.).

В зависимости от требований чертежа резьба может заканчиваться канавкой для выхода резца. Внутренний диаметр канавки должен быть на 0,1 . 0,3 мм меньше внутреннего диаметра резьбы, а ширина канавки (мм)

В процессе нарезания болтов, шпилек и некоторых других деталей при отводе резца, как правило, образуется сбег резьбы.

Для более удобного и точного нарезания резьбы на торце обрабатываемой детали выполняют уступ длиной 2. 3 мм, диаметр которого равен внутреннему диаметру резьбы. По этому уступу определяют последний проход резца, после окончания нарезания резьбы уступ срезают.

Точность резьбы во многом зависит от правильной установки резца относительно линии центров. Для того чтобы установить резец по биссектрисе угла профиля резьбы перпендикулярно к оси обрабатываемой детали, используют шаблон, который устанавливают на ранее обработанной поверхности детали вдоль линии центров станка. Профиль резца совмещают с профилем шаблона и проверяют правильность установки резца по просвету. Резьбонарезные резцы следует устанавливать строго по линии центров станка.

На токарно-винторезных станках резьбу нарезают резцами за несколько проходов. После каждого прохода резец отводят в исходное положение. По нониусу ходового винта поперечного движения подачи суппорта устанавливают требуемую глубину резания и повторяют проход. При нарезании резьбы с шагом до 2 мм подача составляет 0,05. 0,2 мм на один проход. Если резьбу нарезать одновременно двумя режущими кромками, то образующаяся при этом стружка спутывается и ухудшает качество поверхности резьбы. Поэтому перед рабочим проходом резец следует смещать на 0,1. 0,15 мм поочередно вправо или влево, используя перемещение верхнего суппорта, в результате чего обработка ведется только одной режущей кромкой. Число черновых проходов — 3. 6, а чистовых — 3.

Нарезание резьбы плашками и метчиками

Для нарезания наружной резьбы на винтах, болтах, шпильках и других деталях применяют плашки. Участок детали, на котором необходимо нарезать резьбу плашкой, предварительно обрабатывают. Диаметр обработанной поверхности должен быть несколько меньше наружного диаметра резьбы. Для метрической резьбы диаметром 6. 10 мм эта разница составляет 0,1. 0,2 мм, диаметром 11. 18 мм — 0,12. 0,24 мм, диаметром 20. 30 мм — 0,14. 0,28 мм. Для образования захода резьбы на торце детали необходимо снять фаску, соответствующую высоте профиля резьбы.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



МЕТОДЫ ОБРАБОТКИ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ

1. ЧИСТОВАЯ ОБРАБОТКА ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ

Методы обработки без снятия стружки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой производительности, быстроходности, прочности, точности и др. Такой обработке подвергают предварительно подготовленные поверхности.

Если формы заготовок приблизить к формам готовых деталей, то ответственные поверхности можно обрабатывать шлифованием и затем окончательно од ним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упростить обработку.

Методы обработки основаны на использовании пластических свойств металлов, Т.е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Отделочная обработка методами пластического деформирования сопровождается упрочнением поверхностного слоя, что очень важно для повышения надежности работы деталей. Детали становятся менее чувствительными к усталостному разрушению, повышаются их коррозионная стойкость и износостойкость сопряжений, удаляются риски и микротрещины, оставшиеся от предшествующей обработки. В ходе обработки шаровидная форма кристаллитов поверхности металла может измениться, кристаллиты сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки принимает требуемые формы и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.

В зоне обработки не возникает высокая температура, поэтому в поверхностных слоях фазовые превращения не происходят.

Обработку без снятия стружки выполняют на многих металлорежущих станках и установках, используя специальные инструменты. Созданы также особые станки, на которых наряду с резанием заготовки обрабатывают пластическим деформированием. Методы чистовой обработки используют для всех металлов, способных пластически деформироваться, но наиболее эффективны они для металлов с твердостью до НВ 280.

Ожидается, что эти методы все больше будут применяться для высокоточной обработки и использоваться для деталей, размеры которых будут иметь точность в долях микрометра.

2. ОБКАТЫВАНИЕ И РАСКАТЫВАНИЕ ПОВЕРХНОСТЕЙ

Обкатыванием и раскатыванием отделывают и упрочняют цилиндрические, конические, плоские и фасонные наружные и внутренние поверхности.

Сущность этих методов состоит в том, что в результате давления поверхностные слои металла, контактируя с инструментом высокой твердости, оказываются в состоянии всестороннего сжатия и пластически деформируются. Инструментом являются ролики и шарики, перемещающиеся относительно заготовки. Микронеровности обрабатываемой поверхности сглаживаются путем смятия микровыступов и заполнения микровпадин.

Обкатывают, как правило, наружные поверхности, а раскатывают внутренние цилиндрические и фасонные поверхности. При обкатывании роликами основными параметрами режима упрочнения являются давление в зоне контакта с роликом, число его проходов, подача и скорость обкатывания. Глубину деформированного слоя определяет давление.

К вращающейся цилиндрической заготовке подводят закаленный гладкий ролик-обкатку (рис. 1, а), который под действием рабочего давления деформирует поверхность. Движение продольной подачи позволяет обрабатывать всю заготовку. Аналогичным инструментом обрабатывают элементы заготовок, но с поперечным движением. При раскатывании ролик-раскатку закрепляют на консольной оправке . Более совершенна конструкция инструмента с несколькими роликами . Для обеспечения значительной однородности форм микронеровностей используют разнообразные конструкции инструментов, различающихся числом и формой деформирующих частей (роликов, шариков). Наилучшие результаты обеспечивают инструменты, на которые силы передаются через упругие элементы. Этим достигаются постоянные условия обработки в любой точке обрабатываемой поверхности. Сила может регулироваться. Для обработки поверхностей обкатыванием и раскатыванием чаще всего используют токарные или карусельные станки, применяя вместо режущего инструмента обкатки и раскатки. Суппорты обеспечивают необходимое движение подачи. Раскатки можно устанавливать в пиноли задних бабок. Глубокие отверстия раскатывают на станках для глубокого сверления. Так как нагрев заготовок в местах контакта с инструментом незначителен, охлаждения не требуется. Для уменьшения трения используют смазывание веретенным маслом или керосином. Обкатыванием и раскатыванием лишь в незначительной степени исправляют погрешности предшествующей обработки. Поэтому предварительная обработка заготовок должна быть точной с учетом смятия микронеровностей и изменения окончательного размера детали. Решающее значение в достижении необходимого качества поверхностного слоя имеет давление на поверхность. Чрезмерно большое давление так же, как и большое число проходов инструмента, разрушает поверхность и может привести к отслаиванию ее отдельных участков.

3. АЛМАЗНОЕ ВЫГЛАЖИВАНИЕ

Малой шероховатости поверхности и ее упрочнения можно достичь алмазным выглаживанием. Сущность этого метода состоит в том, что оставшиеся после обработки резанием неровности поверхности выглаживаются перемещающимся по ней прижатым алмазным инструментом. Алмаз, закрепленный в державке, не вращается, а скользит с весьма малым коэффициентом трения. Рабочая часть инструмента выполнена в виде полусферы, цилиндра или конуса. Чем тверже обрабатываемый материал, тем меньше радиус скругления рабочей части алмаза. Преимущества алмазного выглаживания состоят в повышении эксплуатационных свойств обработанных поверхностей, снижении шероховатости поверхности, отсутствии пере носа на обрабатываемую поверхность посторонних частиц, возможности обработки тонкостенных деталей и деталей сложной конфигурации, простоте конструкции выглаживателей. Заготовки обрабатывают на станках токарной группы. Державку с подпружиненным наконечником с алмазом устанавливают в резцедержателе вместо резца. Движения заготовки и инструмента аналогичны движениям заготовки и инструмента при обтачивании.

Силы прижатия алмаза к обрабатываемой поверхности сравнительно малы и колеблются в интервале 50 . 300 Н. Процесс выглаживания ведут со смазыванием веретенным маслом, что примерно в 5 раз уменьшает износ алмаза по сравнению с износом при выглаживании всухую. Применение керосина или эмульсии приводит к интенсивному износу алмаза. Число проходов инструмента не должно быть более двух.

4. КАЛИБРОВКА ОТВЕРСТИЙ

Калибровкой повышают точность отверстий и получают поверхности высокого качества. Метод характеризуется высокой производительностью.

Сущность калибровки сводится к перемещению в отверстии с натягом жесткого инструмента. Размеры поперечного сечения инструмента несколько больше размеров поперечного сечения отверстия. При этом инструмент сглаживает неровности, исправляет погрешности, упрочияет поверхность.

Простейшим инструментом служит шарик, который проталкивается штоком (рис. 2, а). Роль инструмента может выполнять также оправка-дорн (рис. 2, б ), к которому прикладывается сжимающая или растягивающая (рис. 2, в) сила. Заготовки обрабатываются за один или несколько ходов инструмента. Заготовки обрабатывают с малыми либо большими натягами. В первом случае зона пластического деформирования не распространяется на всю толщину детали. Так обрабатывают толстостенные заготовки. Во втором случае зона пластического деформирования охватывает всю деталь. Этот вариант обработки используют для тонкостенных деталей, что существенно повышает их точность. Шарики как инструмент не обеспечивают оптимальных условий деформирования и имеют малую стойкость. Калибрующие оправки выполняют одноэлементными, многоэлементными или сборными. Каждый из элементов-поясков имеет свой размер. Деформирующие элементы изготовляют из твердого сплава или стали, закаленных до высокой твердости. В качестве смазочного материала для сталей и бронз применяют сульфофрезол, для чугунов - керосин. Разработаны специальные смазочные материалы, обеспечивающие жидкостное трение. Они снижают рабочее усилие оборудования, способствуют повышению качества поверхностных слоев, увеличивают точность обработки и стойкость инструмента. Отверстия калибруют на прессах (рис. 2 , а, б) или горизонтально-протяжных станках (рис. 2, в). Для правильного взаимного расположения инструмента и заготовки обычно применяют самоустанавливающиеся приспособления с шаровой опорой. Заготовку не закрепляют.

Рис. 2. Схемы калибровки отверстий

Для повышения износостойкости деталей машин на поверхностях трения целесообразно выдавливать слабозаметные, прилегающие друг к другу канавки. В канавках скапливаются смазочный материал и мелкие частицы, образовавшиеся в процессе изнашивания. Канавки образуются вибронакатыванием. Упрочняющему элементу - шару или алмазу, установленному в резцедержателе токарного станка, помимо движения Ds пр (рис.3) специальным устройством сообщают дополнительные движения алмаза Da с относительно малой амплитудой. Изменяя Dзаг, Dпр , амплитуду и частоту колебаний, можно на обрабатываемой поверхности получить требуемый рисунок. Распространение получили рисунки с непересекающимися канавками, с не полностью пересекающимися и со сливающимися канавками. Возможно также вибронакатывание внутренних и плоских поверхностей. Канавки одновременно упрочняют поверхность. Важнейшей характеристикой такой поверхности является общая площадь канавок (в процентах от номинальной площади обрабатываемой поверхности). Такие отклонения для каждого типа рисунка определяют аналитически.

Рис. 3. Схема вибронакатывания

6. ОБКАТЫВАНИЕ ЗУБЧАТЫХ КОЛЕС

Пластическое деформирование поверхностных слоев повышает работоспособность зубчатых колес. Микронеровности, оставшиеся от предшествующей обработки, сглаживаются путем смятия специальным инструментом. Обрабатываемое зубчатое колесо вводят в плотное зацепление с тремя остальными, закаленными эталонными колесами. Последние имеют полированные зубья и располагаются вокруг обкатываемого колеса. Эталонные колеса прижимаются к обкатываемому с помощью пружинных устройств. Сила прижима регламентируется. Одно из эталонных колес является ведущим и приводит во вращение обрабатываемое колесо, а через него - два остальных эталонных колеса. Движение колес реверсируется. Колеса обкатывают со смазочными материалами на специальных зубообкатных станках.

Обкатыванием лишь частично исправляют профиль зуба и его размеры путем сглаживания шероховатостей.

7. НАКАТЫВАНИЕ РЕЗЬБ, ШЛИЦЕВЫХ ВАЛОВ И ЗУБЧАТЫХ КОЛЕС

Формообразование фасонных поверхностей в холодном состоянии методом накатывания имеет ряд преимуществ. Главные из них - очень высокая производительность, низкая стоимость обработки, высокое качество обработанных деталей. Накатанные детали имеют более высокое сопротивление усталости. Это объясняется тем, что при формообразовании накатыванием волокна исходной заготовки не перерезаются, как при обработке резанием. Профиль накатываемых деталей образуется за счет вдавливания инструмента в материал заготовки и выдавливания части его во впадины инструмента. Такие методы сочетают в себе функции черновой, чистовой и отделочной обработок. Их используют для получения резьб, валов с мелкими шлицами и зубчатых мелкомодульных колес.

Резьбы накатывают обычно до термической обработки, хотя точные резьбы можно накатывать и после нее.

При формировании резьбы плашками (рис. 4, а) заготовку 2 помещают между неподвижной 1 и подвижной 3 плашками, имеющими на рабочих поверхностях рифления, профиль и расположение которых соответствуют профилю и шагу накатываемой резьбы. При перемещении подвижной плашки заготовка катится между инструментами, а на ее поверхности образуется резьба.

При формировании резьбы роликами (рис. 4, б) ролики 4 и 5 получают принудительное вращение, заготовка 2 свободно обкатывается между ними. Ролику 5 придается радиальное движение для вдавливания в металл заготовки на необходимую глубину. Обработка роликами требует меньших сил, с их помощью накатывают резьбы с более крупным шагом.

При накатывании мелких шлицев на валах (рис. 4, в) накатный ролик имеет профиль шлицев. Он внедряется в поверхность заготовки при вращении и поступательном продольном перемещении вдоль вала.

Накатывание цилиндрических (рис. 4 , г) и конических мелкомодульных колес в 15 . 20 раз производительнее зубонарезания. Процесс можно осуществлять на токарных станках накатниками 6 и 7, которые закреплены на суппорте и перемещаются, совершая движение Ds пр . Каждый накатник имеет заборную часть для постепенного образования накатываемых зубьев на заготовке 2.

Для накатывания применяют универсальное специальное оборудование. Для образования резьб служат резьбонакатные станки, обеспечивающие силы до 2·10 5 Н. Эти станки автоматизированы и имеют горизонтальное, наклонное или вертикальное движение ползуна с плашкой. Резьбы роликами накатывают на автоматах.

На автоматизированном оборудовании – прессах - накатывают и шлицы. Шлиценакатный пресс может заменить10. 15 шлицефрезерных станков. Рабочие усилия создаются мощными гидравлическими устройствами.

Зубчатые колеса накатывают на специальных станках. Получает распространение комбинированное накатывание (горячее накатывание с последующей холодной калибровкой).

Рис. 4. Схемы накатывания

8. НАКАТЫВАНИЕ РИФЛЕНИЙ И КЛЕЙМ

Методом холодного накатывания на отдельных элементах деталей наносят рифления, маркировочные клейма, знаки. Производительность метода весьма велика. В основе накатывания лежит способность металла получать местные деформации под действием накатных роликов или накатников.

На рис. 5, а приведена схема накатывания рифленой поверхности. Заготовку закрепляют на токарном станке, на суппорте которого установлена державка с одним или двумя накатными роликами. Ролики внедряются в поверхность заготовки (D s п ) и перемещаются вдоль заго товки с движением Ds пр . Вид рифлений (рис. 5, б) определяется характером зубчиков на роликах. Крестовое рифление производят двумя роликами, один из которых имеет правое направление отпечатывающих зубчиков, а другой - левое. Оба ролика вращаются на осях самоустанавливающейся державки. Для накатывания клейм (рис. 5, в) на накатнике J располагают негативно выступающие знаки. Заготовку 2 устанавливают на ролики для более легкого перемещения в момент накатывания.

Рис. 5. Схемы накатывания рифлений и клейм

9. УПРОЧНЯЮЩАЯ ОБРАБОТКА ПОВЕРХНОСТНЫХ СЛОЕВ ДЕТАЛЕЙ

Упрочняющую обработку предпринимают для увеличения сопротивления усталости деталей. Методы упрочнения основаны на локальном воздействии инструмента на обрабатываемый материал. При этом возникают многочисленные зоны воздействия на весьма малых участках поверхности, в результате чего создаются очень большие местные давления. Многочисленные контакты с инструментом приводят к упрочнению поверхностного слоя. В поверхностных слоях возникают существенные напряжения сжатия.

Прочность конструкционных материалов повышается благодаря воздействию нагрузок, создающих эффективные препятствия для движения несовершенств кристаллической решетки. При этом создаются структуры с повышенной плотностью закрепленных и равномерно распределенных по объему дислокаций.

Распространено упрочнение нанесением ударов по поверхности заготовки шариками, роликами, различными бойками. При динамическом упрочнении в качестве инструмента используют диск, в котором по окружности в несколько рядов расположены ролики, свободно сидящие на осях. Диск закрепляют на шпинделе металлорежущего станка. При вращении диска ролики наносят по упрочняемой поверхности очень большое количество ударов.

При статическом упрочнении на поверхность заготовки воздействуют вращающимися роликами в процессе обкатывания или раскатывания.

Процесс упрочнения можно выполнять на специальных установках. При ультразвуковом деформационном упрочнении заготовки закрепляют в камерах, содержащих большое количество стальных шариков диаметром 1мм, смачиваемых эмульсией. Камера получает колебания от ультразвукового генератора, и колеблющиеся шарики наносят удары по поверхности заготовки. шероховатость поверхности после деформационного упрочнения увеличивается.

Распространено дробеструйное динамическое упрочнение. Готовые детали машин подвергают ударному действию потока дроби в специальных камерах, где дробинки с большой скоростью перемещаются под действием потока воздушной струи или центробежной силы. Эффектом поверхностного упрочнения можно управлять, подавая сухую или мокрую дробь. Дробь изготовляют из отбеленного чугуна, стали, алюминия, стекла и других материалов. Исходная шероховатость обрабатываемой поверхности увеличивается.

Этот метод применяют для таких изделий, как рессорные листы, пружины, лопатки турбин, штоки, штампы.

Эффект деформационного упрочнения повышается при использовании импульсных нагрузок, в частности взрывной волны. При упрочении взрывом необходимы энергоноситель и среда, передающая давление на упрочняемую деталь. В качестве энергоносителя используют бризантные взрывчатые вещества, обеспечивающие как поверхностные, так и сквозные упрочнения деталей.

Читайте также: