Реферат на тему клеточная инженерия у растений

Обновлено: 05.07.2024

Клеточная инженерия – методика конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции.

Задачи — клеточной инженерии:

  • получение и применение культур клеток животных, человека, растений и бактерий для культивирования вирусов с целью создания вакцин, сывороток, диагностических препаратов.
  • культивирование культур клеток для получения биологически активных веществ.
  • получение моноклональных антител (гибридом) для использования в медицине и ветеринарии.
  • генно-инженерные манипуляции с клетками для получения новых форм, новых культур клеток, биопрепаратов и др.

Улучшение растений и животных на основе клеточных технологий

Важную роль в животноводстве сыграла разработка методов длительного хранения спермы в замороженном состоянии и искусственного осеменения. Реально же развернулись исследования по клеточной и генной инженерии на млекопитающих только с освоением техники оплодотворения, обеспечившей получение достаточного количества зародышей на ранних стадиях развития. Генетическое улучшение животных связано с разработкой технологии трансплантации эмбрионов и методов микроманипуляций с ними (получение однояйцевых близнецов, межвидовые пересадки эмбрионов и получение химерных животных, клонирование животных при пересадке ядер эмбриональных клеток в энуклеированные, т. е. с удаленным ядром, яйцеклетки). В 1996 шотландским ученым из Эдинбурга впервые удалось получить овцу из энуклеированной яйцеклетки, в которую было пересажено ядро соматической клетки (вымени) взрослого животного. Эта работа открывает широкие перспективы в области клонирования животных и принципиальную возможность клонирования в будущем и человека. В этой же лаборатории было получено еще пять клонированных ягнят, в ген одного из которых был встроен ген белка человека. Клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса гибридизации и, более того, комбинировать отдельные фрагменты разных клеток, клетки различных видов относящиеся не только к разным родам, семействам, но и царствам. Это облегчает решение многих теоретических проблем и имеет практическое значение.

Генная инженерия и ее практические результаты

Генетическая инженерия — это раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. Основа прикладной генетической инженерии — теория гена. Созданный генетический материал способен размножаться в клетке-хозяине и синтезировать конечные продукты обмена.

Генетическая инженерия возникла в 1972 году, в Станфордском университете, в США. Тогда лаборатория П. Берга получила первую рекомбинатную (гибридную) ДНК или (рекДНК). Она соединяла в себе фрагменты ДНК фага лямбда, кишечной палочки и обезьяньего вируса SV40

Генная инженерия — направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования.

В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее. Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.

На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная “индустрией ДНК”. Это одна из современных ветвей биотехнологии.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рек ДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений. Генная инженерия может дать в неограниченном количестве гормоны и другие белки человека, необходимые для лечения генетических болезней (например, инсулин, гормон роста и др.). Усилия генной инженерии направлены на получение бактерий с высокоактивной нитрогеназой, способных в больших количествах связывать и накапливать азот. Еще более интересны попытки биологов включить ген нитрогеназы в растительную клетку. В генной инженерии бактериофаги используются для переноса генетического материала, т. е. В качестве векторов . Задача генной инженерии – активная и целенаправленная перестройка генов живых существ и их конструирование, т.е. управление наследственностью. Разработаны методы, позволяющие выращивать организмы из отдельных клеток и тканей. Благодаря генетической инженерии и слиянию клеток, теперь становится возможным производить биотехнологическим методом в промышленных масштабах синтезируемые живыми организмами в ничтожных количествах. Это интерферон, гормон роста человека или некоторые антитела. Так ген для гормона роста переносят в бактерию таким образом, чтобы она была способна производить его. Генетика способствует изучению закономерностей развития организма человека и появление его наследственных особенностей, в том числе индивидуальных, творческих, физических и интеллектуальных особенностей. Очевидна роль генетики и в изучении наследственных болезней человека и способов их профилактики, лечения, а так же путем предотвращения вредного воздействия на наследственность физических и химических факторов окружающей среды.

За короткий срок генная инженерия оказала огромное влияние на развитие молекулярно-генетических методов и позволила существенно продвинуться по пути познания строения и функционирования генетического аппарата. Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека.

В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных, и тратят на это десятки миллионов долларов в год, они же мобилизировали выпуск химических веществ для быта. Добавок к продукции строительной индустрии и так далее. Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок. Очевидно, поэтому любой прогресс биотехнологий растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами.

Кроме этого учёные занимаются поиском генов, кодирующих новые полезные признаки. Ситуация в этой области меняется радикальным образом, прежде всего, существованию публичных баз данных, которые содержат информацию о большинстве генов, бактерий, дрожжей, человека и растений, а также в следствии разработки методов, позволяющих одновременно анализировать экспрессию большого количества генов с очень высокой пропускной способностью. Применяемые на практике методы можно разделить на две категории:

б) позиционное клонирование, заключается в создании за счет инсерционного мутагенеза мутантов с нарушениями в интересующем нас признаке или свойстве, с последующим клонированием соответствующего гена как такового, который заведомо содержит известную последовательность (инсерция).

Заключение

В ходе выполнения данной работы, я выяснила, что генная и клеточная инженерия очень важны для развития огромного количества направлений. Например, в медицине биотехнологические приемы и методы играют ведущую роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний.

В решении задач расширения источников получения ЛРС, повышения стабильности и импортозамещению сырьевой базы перспективным направлением представляется метод биотехнологии, основанный на выращивании клеток и тканей ЛР на искусственных питательных средах.

Наша страна обладает огромными территориями находящимися в различных климатический условиях и следовательно обладает различной флорой и фауной. А также имеет сильную школу ботаники и биотехнологии.

В данном реферате мы рассмотрим препараты которые получают с помощью культивирования растений

Культура клеток растений

Клетки выращивают в специальных питательных средах, при постоянной температуре. Как правило, регулируется концентрация в воздухе углекислого газа и паров воды, но иногда также и кислорода. Питательные среды для разных культур клеток различаются по составу, pH, концентрации глюкозы, составу факторов роста и др . Одним из факторов риска при этом является возможность заражения культуры клеток прионами или вирусами. При культивировании одной из важных задач является исключение или сведение к минимуму использование зараженных ингредиентов. Однако на практике это бывает достигнуто не всегда.

Клетки можно выращивать в суспензии, либо в адгезивном состоянии. Некоторые клетки (такие, как клетки крови) в естественных условиях существуют во взвешенном состоянии. Существуют также линии клеток, искусственно измененных таким образом, чтобы они не могли прикрепляться к поверхности; это сделано для того, чтобы увеличить плотность клеток в культуре. Для выращивания адгезивных клеток требуется поверхность, например, культура ткани, или пластик, покрытый элементами внеклеточного матрикса для улучшения адгезивных свойств, а также для стимулирования роста и дифференцировки. Большинство клеток из мягких и твердых тканей адгезивны. Из адгезивного типа культуры выделяются органотипические культуры клеток, которые представляют собой трёхмерную среду, в отличие от обычной лабораторной посуды. Эта система культивирования физически и биохимически наиболее сходна с живыми тканями, но имеет некоторые технические сложности в обслуживании (например, нуждается в диффузии).

Клеточная инженерия растений

Метод рассматривает различные способы получения клеточных культур, культивирования растительных и животных клеток, выделение изолированных протопластов, биологическое конструирование, а также создание экспериментальных ассоциативных систем между культивируемыми клетками высших растений и микроорганизмами.

Десять наиболее употребляемых лекарственных веществ, получаемых из растений

Лекарственное вещество Активность Растение-источник
Стероиды из диосгенина Противозачаточные средства Dioscorea deltoidea
Кодеин Болеутоляющее Papaver somniferum
Атропин Антихолинэргическое Atropa belladonna L.
Резерпин Снижающее давление Rauwolfia serpentina L.
Гиосциамин Антихолинэргическое Hyoscyamus niger L.
Дигоксин Тонизирующее сердечную деятельность Digitalis lanata L.
Скополамин Антихолинэргическое Datura metel L.
Дигитоксин Сердечно-сосудистые Digitalis purpurea L.
Пилокарпин Холинэргическое Pilocarpus jabonandi
Хинидин Антималярийное Cinchona ledgeriana

Клеточные технологии, основанные на культивировании in vitro органов, тканей, клеток и изолированных протопластов высших растений, могут облегчить и ускорить традиционный селекционный процесс. Это, прежде всего, следующие технологии: культура семяпочек и зародышей, регенерация растений из тканей летальных гибридов, экспериментальная гаплоидия, криосохранение генофонда, клональное микроразмножение. Клеточная инженерия предлагает новые пути для создания высокопродуктивных форм растений. Это гибридизация соматических клеток, перенос чужеродных генов.

Примеры лекарственных веществ, полученные на основе каллусных* культур

• Стевиозид - естественный подсластитель и заменитель сахара, успешно используется вместо искусственных подслащивающих веществ. Исходное растение - Stevia rebaudiana Bertoni.


*- Культура каллусных тканей - выращивание в длительной пересадочной культуре тканей, возникших путем пролиферации клеток изолированных сегментов разных органов или самих органов (пыльники, семяпочки и т. д.) растений

Биотрансформация

Очень преспективный метод, использующий ферменты, локализованные в клетке растения, которые способны менять функциональные группы добавленных извне химических соединений. Этот метод пригоден для повышения биологической активности данной конкретной химической структуры и осуществления серии специфических химических реакций за счет включения одного или нескольких последовательно связанных ферментов.

Дигитоксин и дигоксин принадлежат к группе "карденолидов", применяемых для лечения хронической болезни сердца.

В настоящее время названные соединения стоят на шестом и восьмом месте в списке наиболее распространенных препаратов США, но использование дигоксина предпочтительнее из-за его меньшей токсичности, по сравнению с таковой у дигитоксина. Оба соединения в США получают путем экстрагирования плантационно выращиваемых растений, но при этом выделяется в основном дигитоксин.

Недифференцированные культуры Digitalis не образуют сердечных гликозидов, но могут осуществлять определенные реакции биотрансформации субстратов, добавленных в питательную среду. Биотрансформация дигитоксина в дигоксин происходит за счет реакции 12-гидроксилирования, катализируемой ферментом, содержащимся в клетках Digitalis lanata. Работа была проведена с использованием свободных недифференцированных суспензионных культур в Германии в 1977 г, а к настоящему времени внедрена в производство; достигнут выход дигоксина в пределах 700 г/л в 20-ти литровом реакторе за 17 суток культивирования. Таким образом, основные проблемы, связанные с биотрансформацией сердечных гликозидов клетками Digitalis lanata в настоящее время разрешены. Однако для дальнейшего развития этого направления необходима дальнейшая селекция специализированных линий клеток и оптимизация условий их культивирования, сокращение времени ферментации и увеличение срока работы клеток. Основные условия для перевода лабораторных методов культивирования клеток растений в промышленное производство – это экономически оправданные и относительно простые технологии культивирования клеток и выделения конечных продуктов.

Например, производство аймалина на основе меристемных культур Раувольфии стало реальным, когда в ходе селекционной работы и отбора были получены субклоны клеток, которые синтезируют этот алкалоид на порядок выше, чем исходные материнские штаммы.

Производство серпентина на основе суспензионных культур частично дифференцированных клеток меристемы Catharatus roseus оказалось эффективным и экономически оправданным лишь после того, как были получены субклоны, способные накапливать за 10-ти суточный цикл выращивания до25 г сухого вещества на 1 литр суспензионной культуры.

Аналогичная ситуация имела место и при организации биотехнологического производства настойки женьшеня. Количественный выход биологической субстанции в пересчете на сухое вещество каллуса женьшеня было ниже, чем из женьшеня, полученного при плантационном выращивании, примерно в 3-4 раза.


Клеточная технология и инженерия

Ключевые слова: клеточная технология и инженерия, клеточная инженерия, метод культуры клеток и тканей, тотипотентностъ, микроклоналъное размножение растений, соматическая гибридизация, гибридомы, моноклональные антитела, метод трансплантации ядер, клонирование.
Раздел ЕГЭ: 3.9. Биотехнология, ее направления. Клеточная и генная инженерия, клонирование…

Клеточной инженерией называют эксперименты с изолированными клетками организмов, которые позволяют конструировать клетки нового типа путём гибридизации и слияния клеточных структур (ядер, митохондрий, хлоропластов) для получения организмов с заданными свойствами. Предпосылкой к развитию клеточной инженерии стала клеточная технология, использующая методы выращивания клеток и тканей на питательных средах (in vitro).

Микроклональное размножение растений

Выращивание клеток и тканей на питательных средах получило название метода культуры клеток и тканей. Его создание связано с работами американского и французского учёных

Ф. Уайта и Р. Готре, проводившимися в начале XX в. Положительные результаты впервые были получены на моркови. Кусочек растительной ткани — эксплант — был выделен из корнеплода растения и помещён на питательную среду, содержащую минеральные соли, аминокислоты, гормоны и другие необходимые для роста и развития вещества. В результате митотического деления эксплант образовал однородную неспециализированную клеточную массу — каллус, клетки которого обладали тотипотентностью (от лат. totus — целый и potentia — сила) — способностью давать начало любому типу клеток. При разделении клеток и добавлении в питательную среду фитогормонов ауксинов и кининов, обеспечивающих рост и дифференцировку клеток, были получены небольшие по размеру растения-регенеранты, похожие на проростки. Эти растения отмыли от питательной среды и пересадили на поле, где они развились в полноценные экземпляры моркови.

Микроклональное размножение моркови

Микроклональное размножение моркови

Таким образом, метод культуры клеток и тканей позволяет размножить какое-либо растение в искусственно созданных условиях, т. е. создать его клон. Главное преимущество микроклонального размножения растении по сравнению с семенным размножением состоит в том, что с его помощью можно за короткое время получить большое число генетически однородных особей, способных к быстрому росту, обладающих калиброванными качествами и не заражённых возбудителями болезней. В настоящее время в некоторых европейских странах, например Голландии и Финляндии, весь посадочный материал получают с помощью метода культуры клеток и тканей. В России существуют питомники микроклонального размножения овощных, плодовых и декоративных культур, в которых производят посадочный материал для выращивания картофеля, томатов, смородины, яблони, земляники, роз, гвоздик и др.

Соматическая гибридизация

Искусственное объединение целых клеток с образованием гибридных геномов называют соматической гибридизацией. С помощью метода клеточной технологии были созданы отдалённые гибриды соматических клеток не только растений, но и животных.

Путём соматической гибридизации клеток культурного картофеля (Solarium tuberosum) и дикого (Solarium chacoense) был выведен новый сорт, отличающийся необычайной мощностью куста и устойчивый к ряду заболеваний. Для гибридизации использовались протопласты клеток двух видов картофеля, лишённые клеточной стенки и имеющие только наружную плазматическую мембрану. Они выращивались на питательной среде, где и происходило их слияние с образованием гибридного каллуса и дальнейшее развитие из него соматического гибридного растения. Благодаря хозяйственно ценным признакам полученный соматический гибрид картофеля стал затем широко использоваться в практической селекции. Половой же гибрид этих двух видов картофеля такими признаками не обладает.

Гибридизация картофеля

Гибридизация картофеля: 1 — родительская форма S. tuberosum; 2 — соматический гибрид; 3 — родительская форма S. chacoense; 4 — половой гибрид

Иные задачи стоят перед клеточной инженерией в отношении работы с животными клетками. Например, важным вопросом иммунологии является регуляция иммунного ответа организма на конкретный антиген. Его решение позволит преодолеть проблемы трансплантационного (при пересадке органов и тканей), противоопухолевого и противовирусного иммунитета. Разработка направления клеточной инженерии, связанного с созданием антител определённой специфичности, приближает решение этих проблем.

Для получения таких антител конструируют гибридомы (от лат. hybrida — помесь и ота — опухоль) — гибридные клетки, образованные из протопластов лимфоцитов селезёнки иммунизированных животных и раковых клеток. Гибридомы производят один вид антител — моноклональные антитела (свойство, характерное для лимфоцитов) и способны неограниченно размножаться (свойство раковых клеток). В 1975 г. немецкий и английский учёные Г. Кёллер и Ц. Милыитейн описали методику получения моноклональных антител от гибридомы В-лимфоцитов селезёнки мышей и опухолевых клеток мышиной плазмоцитомы (рис. 269). За эту работу они были удостоены Нобелевской премии.

В настоящее время получено большое разнообразие моноклональных антител (от разных гибридом). Их используют в медицине для нейтрализации дифтерийного и столбнячного токсинов, змеиных ядов, для распознавания антител и антигенов, а также биологически активных веществ (гормонов, ферментов), находящихся в крови, плазме и лимфе. Моноклональные антитела обладают преимуществом перед кровяными сыворотками, так как по специфичности действия служат идеальными реагентами на конкретный антиген. Введённые в организм моноклональные антитела блокируют антигены, поэтому их применяют с целью ранней диагностики онкологических заболеваний. Моноклональные антитела способны доставлять к клеткам опухоли радиоактивные вещества, позволяющие точно обнаружить её местонахождение в организме, а также лекарственные препараты, обеспечивающие разрушение опухоли.

Реконструкция яйцеклеток и клонирование животных

В 1952 г. американские учёные Р. Бриггс и Т. Кинг разработали хирургический метод трансплантации ядер эмбриональных клеток лягушки. Осуществляли такую трансплантацию с помощью микропипетки. Учёные установили, что если брать ядра из клеток зародыша на стадии бластулы, то примерно в 80 % случаях зародыши благополучно развиваются и превращаются в нормальных головастиков. Реконструированные таким способом яйцеклетки давали начало новому полноценному организму, причём его признаки полностью определялись генами, содержащимися в хромосомах пересаженных в яйцеклетки ядер.

Результатом этих работ стало открытие способности соматических ядер обеспечивать нормальное развитие яйцеклеток в зародыши. Эксперименты доказали, что наследственный материал соматических клеток способен сохраняться полноценным в функциональном отношении, а дифференцировка клеток является результатом активности и блокировки определённых генов. Методом трансплантации ядер соматических клеток в яйцеклетки получены клоны амфибий, рыб, мышей, кроликов, овец и др.


Развитие взрослой лягушки из реконструированной яйцеклетки

Уникален опыт по клонированию домашних овец. В 1997 г. была опубликована статья шотландского учёного Яна Уилмута, в которой сообщалось, что в результате использования донорского ядра клетки молочной железы овцы породы Финский дорсет было получено клональное животное — овца по кличке Долли. В эксперименте использовались не только эмбриональные клетки, но и фибробласты (клетки соединительной ткани) плода, а также клетки молочной железы взрослой овцы. Все три типа клеток принадлежали разным породам овец и имели одинаковое число хромосом — 54. Деление клеток всех трёх типов на определённой стадии останавливали и ядра клеток овцы-донора пересаживали в ооциты овцы-реципиента.

Клеточная инженерия – это совокупность технологий, приемов и методов конструирования клеток нового типа.

В рамках направления выполняют реконструкцию полноценной жизнеспособной клетки из нескольких фрагментов различных клеток, объединение генетического материала двух и более клеток, принадлежащих разным царствам и видам, в одной целой клетке.

В основе конструирования могут лежать такие принципы, как:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  • культивирование – выращивание клеток в контролируемых условиях;
  • гибридизация – искусственное слияние цельных жизнеспособных единиц с формированием гибридного генома;
  • реконструкция – встраивание активного гена вместо отсутствующего или поврежденного.

В отличие от генной инженерии, предметом исследования клеточной является не целый живой организм, а только клетки и состоящие из них ткани. Это представляется особенно важным в отношении человека и животных, когда получение отдаленных гибридов является не просто сомнительным, но и опасным, запрещенным.

Какими исследованиями занимается клеточная инженерия

Этот раздел науки является достаточно молодым и одним из наиболее перспективных, так как открывает биологам множество возможностей. В клеточной инженерии растений на данном этапе можно выделить три основных направления:

  1. Применение культуры изолированных тканей для размножения.
  2. Выведение устойчивых к климатическим, вирусным и бактериальным нагрузкам гибридов сельскохозяйственных растений.
  3. Получение ценных для фармакологии, медицины, косметики веществ.

Задействована клеточная инженерия и в решении задач здравоохранения. Исследователи работают над регенерацией тканей, получением живых органов. Изучают возможность создания полноценно работающих участков кровеносной системы, выпуска способных бесследно исчезать хирургических нитей.

Методы и условия культивирования изолированных тканей и клеток растений

Успешное культивирование возможно при соблюдении четырех важнейших условий:

  1. Правильно подобранная питательная среда, критерии выбора которой зависят от характеристик предмета исследования.
  2. Высокая влажность.
  3. Комфортная температура.
  4. Освещенность, отвечающая основным потребностям и процессу фотосинтеза.
  • гаплоидия – выращивание гаплоидных растений путем повторяющего удвоения хромосом;
  • соматическая гибридизация – развитие гибридных растений в результате изолированных из соматических клеток родительских форм протопластов;
  • преодоление невозможности скрещивания видов, сортов;
  • селекция на клеточном уровне.

Применяя такие методы, биологи получают возможность экспериментировать с новыми сортами, получать гибриды, недоступные в рамках традиционной селекции.

Области практического применения достижений клеточной инженерии

В области растениеводства достигнуты высокие результаты по выведению максимально продуктивных и практичных сортов. Из их описания видно, что растения устойчивы к:

  • засухе;
  • продолжительным минусовым температурам;
  • грибковым и бактериальным инвазиям;
  • болотистым, глинистым, скальным грунтам.

Благодаря достижениям ученых, занимающихся клеточной инженерией, сельскохозяйственные предприятия осваивают такой способ размножения, как клонирование культур, выращивание здорового, не подверженного негативным изменениям генома урожая.

В сфере медицины работа идет над созданием тканей, которые смогут не просто устранить механические и физические погрешности, а полностью восстановят метаболические функции. При этом выращивание функционального материала производится вне человеческого организма.

Применение достижений клеточной инженерии на практике позволит производить замену не только сосудов, отдельных тканей, но и целых органов, к примеру, печени или селезенки. Значение такой возможности сложно переоценить, зная, насколько современный человек подвержен травмам и болезням.

Читайте также: