Конструкция узлов и деталей электростартеров реферат

Обновлено: 04.07.2024

Изучение устройства и принципа работы автомобиль­ного элек­тростартера.

2. Краткие сведения

Электростартер предназначен для осуществления пуска авто­мобильного двигателя.

Электростартер конструктивно объединяет в себе элек­тродви­гатель постоянного тока с последовательным или сме­шанным воз­буждением, электромагнитное тяговое реле и ме­ханизм привода. Применение смешанного возбуждения по­зволяет снизить частоту вращения якоря поверхностей и об­легчить работу механизма при­вода.

Наибольшее распространение на автомобилях получили элек­тростартеры с принудительным электромеханическим включением и выключением шестерни, имеющие роликовые муфты свободного хода и управляемые дистанционно с по­мощью тягового электромагнитного реле, установленного на корпусе или на крышке со стороны привода.

Основными узлами и деталями электростартера явля­ются кор­пус 1 (рис. 2.1) с полюсами 2 и катушками 4 обмотки возбужде­ния; якорь 3 с коллектором 36, механизм привода с муфтой свободного хода 12, электромагнитное тяговое реле 25, крышка 17 со стороны привода (передняя крышка), крышка 33 со сто­роны коллектора (задняя крышка) и щеточ­ный узел с щеткодержате­лями 32.

Корпусы электростартеров изготавливают из трубы или сталь­ной полосы с последующей сваркой стыка. К корпусу винтами крепятся полюсы 2, на которых располагаются ка­тушки 4 обмот­ки возбуждения. Практически все стартерные электродвигатели выполняются четырехполюсными. В стар­терных электродвигателях смешанного возбуждения катушки последовательной и параллельной обмоток возбуждения ус­танавливаются на отдельных полюсах.


Рис. 2.1. Стартер с принудительным электромеханическим перемещением шестерни привода с роликовой муфтой свободного хода.

1 – корпус; 2 — полюсный сердечник; 3 — якорь; 4 — обмотки воз­бужде­ния; 5 — фланец; 6 запор­ное кольцо; 7— упорный фланец; 8 — повод­ковое кольцо; 9— по­водковая муфта; 10 буферная пружина; 11 — шлицевая втулка; 12 муфта свободного хода; 13 — шестерня; 14 упорное кольцо; 15 – замочное кольцо; 16— регулировочные шайбы; 17 и 33 крышки; 18— рычаг; 19— резиновая заглушка; 20— палец по­водка; 21 поводок; 22 — воз­вратная пружина; 23 якорек; 24 шпилька крепления реле; 25— тяговое реле; 26 обмотка; 27 — кон­тактная пластина; 28— крышка реле; 29 — штекерный вывод обмотки реле; 30 зажимы; 31 — защитная лента; 32— щеткодер­жатель; 34 тормозной диск; 35 конус; 36 коллектор; 37 — шпиль­ка; 38 — изо­ляционная трубка.

Катушки последовательной обмотки возбуждения имеют неболь­шое число витков неизолированного медного провода прямоугольного сечения марки ПММ. Между вит­ками катушки прокладывают электро­изоляционный картон толщиной 0,2. 0,3 мм. Катушки параллельной обмотки нама­тываются изолированным круглым проводом ПЭВ-2. Сна­ружи катушки изолируют хлобчатобумажной лентой, пропи­тываемой лаком.

Ток к обмотке возбуждения проводится через главные контакты тягового реле по многожильному проводу или мед­ной шине, проходя­щим через изоляционные втулки в корпусе или задней крышке.

Сердечник якоря представляет собой пакет стальных плас­тин. Применение шихтованного сердечника уменьшает потери на вих­ревые токи. Пакет якоря напрессован на вал.

Полузакрытые или закрытые пазы якорей имеют прямо­угольную или грушевидную форму. Прямоугольная форма обеспечивает лучшее заполнение паза прямоугольным прово­дом. Грушевидные пазы удобны для размещения двухвитко­вых секций.

Обмотка якоря укладывается в пазы сердечника. При­меняются простые волновые и простые петлевые обмотки с одно- и двухвитковыми секциями. Двухвитковые секции ха­рактерны для электродви­гателей небольшой мощности. Од­новитковые секции выполняются из неизолированного пря­моугольного провода марки ПММ. Обмотки с двухвитко­выми секциями наматываются круглым изолированным про­водом. Одновитковые секции закладываются в пазы с торца пакета якоря. Проводники в пазах изолируются друг от друга и от паке­та пластин электроизоляционным картоном. По схеме волновой об­мотки число пазов якоря четырехполюс­ного электродвигателя долж­но быть нечетным и у отечест­венных электростартеров находится в пределах 23. 33.

На лобовые части обмотки якоря накладывают бандажи из нес­кольких витков стальной проволоки, намотанных на прокладку из электроизоляционного картона и скрепленных металлическими ско­бамии, хлобчатобумажного или капроно­вого шнура.

Концы секций обмотки якоря припаиваются в прорезях петуш­ков к пластинам коллектора. В электростартерах при­меняются сбор­ные цилиндрические коллекторы на металли­ческой втулке, цилин­дрические и торцевые коллекторы на пластмассе.

Цилиндрические коллекторы набирают в виде пакета медных пластин, изолированных прокладками из миканита, слюдината или слюдопласта.

Замена цилиндрических коллекторов торцевыми сни­жает расход коллекторной меди и повышает срок службы ще­точно-коллекторного узла. Якорь вращается в двух или трех опорных с бронзографитовыми или металлокерамическими подшипниками скольжения.

Задние крышки электростартеров с цилиндрическими коллекто­рами отливаются из цинкового, алюминиевого сплава или штампуют­ся из стали. К крышке 33 крепятся че­тыре коробчатых щеткодержа­теля 32 радиального типа с щетками и спиральными пружинами. Щеткодержатели изо­лированных щеток отделены от крышки прок­ладками из тек­столита или другого изоляционного материала. В стартерах с торцевыми коллекторами щетки размещаются в пласт­массо­вой или металлической траверзе и прижимаются к рабочей поверхности коллектора цилиндрическими пружинами.

В 12-вольтовых стартерах используются меднографит­ные щетки марок МГСО и МГС20 с добавкой олова и свинца, которые улучшают коммутацию, уменьшают износ коллек­тора и падение напря­жения под щетками. Щетки МГC5 и МГС51 устанавливаются в двадцатичетырехвольтовых стар­терах. Плотности тока в стартерных щет­ках на рабочих ре­жимах достигают 50. 120 А/см 2 . Щетки имеют канатики и присоединяются к щеткодержателям с помощью винтов. Обычно щетки устанавливаются на геометрической нейтрали. На некоторых стартерах против направления вращения. Вол­новая об­мотка якоря имеет две параллельных ветви и позво­ляет ограни­читься установкой двух щеток, однако на старте­рах с целью уменьшения плотности тока устанавливается полное число щеток, рав­ное числу полюсов.

Алюминиевые или чугунные передние крышки 17 имеет устано­вочные фланцы с двумя или большим числом отвер­стий под болты или шпильки крепления стартера к картеру маховика или сцепле­ния и посадочные пояски. Фланцевое крепление обеспечивает не­обходимую точность взаимного расположения шестерни стартера относительно венца махо­вика при снятии и повторной установке стартера.

Передняя и задняя крышки крепятся к корпусу стяж­ными болтами.

Дистанционно управляемое тяговое реле 25 обеспечи­вает ввод шестерни 13 в зацепление с венцом маховика и подключает стартерный электродвигатель к аккумуляторной батарее. Реле имеет одну или две обмотки (вытягивающую и удерживающую), намотанные на латунную втулку, в которой свободно перемещается стальной якорь с контактной пласти­ной 27. Два неподвижных контакта в виде кон­тактных болтов 30 установлены в пластмассовой или металлической крышке реле. Втягивающая обмотка 26, подключенная параллельно контактом реле, при включении реле действует согласно с удер­живающей обмоткой и создает достаточную притяги­вающую силу, когда зазор между якорем и сердечником мак­симален. При замыка­нии главных контактов втягивающая обмотка замыкается накорот­ко и выключается из работы. В двухобмоточном реле удерживаю­щая обмотка, рассчитанная в основном на удержание якоря реле в притянутом состоянии, намотана проводом меньшего сечения, чем втягивающая об­мотка.

Механизм привода стартера расположен на шлицевой части ва­ла. Муфта свободного хода 12 привода обеспечивает передачу вращающего момента от вала якоря маховику в пе­риод пуска и пре­пятствует вращению якоря маховиком после пуска двигателя.

Электростартеры с принудительным перемещением шестерни имеют роликовые, фрикционные и храповые муфты свободного хода. Наибольшее распространение получили ро­ликовые муфты (рис. 2.2), бесшумные в работе и технологич­ные по конструкции, способные при небольших размерах пе­редавать значительные вращающие мо­менты.


Рис. 2.2. Приводной механизм стартера с плунжерной муфтой свободного хода.

1 – ролик; 2 – плунжер; 3 – пружина прижимная; 4 – упоры пружины; 5 – обойма наружная ведущая; 6 – кольцо замковое; 7- чашка; 8 – вспомога­тельная пружина; 9 – втулка отвода; 11 – пружина буферная; 12 – втулка; 13 – кольцо центрирующее; 14 – обойма ведомая; 15 – пластина металли­ческая; 16 – кожух муфты; 17 – шестерня привода; 18 – вкладыш.

Рабочие поверхности ведущей звездочки 5 представ­ляют собой логарифмическую спираль, спираль Архимеда или окружность со смещенным центром, что позволяет полу­чить постоянный угол за­клинивания в 4. 6°. При включении муфты в работу ведущая обой­ма 5 поворачивается относи­тельно еще неподвижной ведомой 14, ролики 1 под дейст­вием прижимных пружин 3 и сил трения переме­щаются в уз­кую часть клиновидного пространства и муфта закли­нива­ется. После пуска двигателя частота вращения шестерни 17 привода и связанной с ней ведомой обоймы превышает час­тоту вращения ведущей обоймы, ролики переходят в широ­кую часть клиновид­ного пространства между обоймами, по­этому передача вращения от венца маховика к якорю исклю­чается.

Воздействие центробежных сил на ролики и плунжеры 2 тре­бует применения прижимных пружин с большими уста­новочными уси­лиями. При неустойчивом пуске возникают значительные ускоре­ния. Действующие на ролики и плун­жеры центробежные силы могут превысить усилия прижим­ных пружин и привести к динамической пробуксовке муфты.

При резких динамических ударах роликов по плунже­рам деформируются юбка и дно плунжера 2, упоры 4 в плун­жерном отверс­тии обоймы и пружины. Результатом является неравномерное зак­линивание роликов, перегрузка отдельных элементов, снижение надежности работы.

Шестерню 17 привода и обоймы муфт свободного хода для по­вышения механической прочности и износоустойчиво­сти изготавли­вают из высоколегированной стали. Чтобы пре­дотвратить смеще­ние пружин 3 и обеспечить стабильность прижимного усилия, исполь­зуют специальные упоры 4. Цен­трирующее кольцо 13 уменьшает ра­диальное биение обоймы, ограничивает перекос муфты при заклини­вании роликов и улучшает работу привода в режиме обгона.

Электромагнитное тяговое реле воздействует на меха­низм привода с помощью рычага включения через разрезную поводковую муфту, состоящую из двух половин. Со стороны втулки отвода 9 расположена вспомогательная пружина 8, упирающаяся в чашку 7. Такое устройство позволяет разомк­нуть главные контакты тягового реле путем сжатия вспомога­тельной пружины при перемещении втул­ки отвода возврат­ной пружиной в тех случаях, когда шестерню привода заедает в зубчатом венце маховика после отключения стартера.

Схема дистанционного управления стартером приведена на рис. 2.3. При переводе включателя зажигания S1 в положе­ние стартования, контакты KV1:1 дополнительного реле KV1 подклю­чают втягивающую КА2:1 и удерживающую КV2 об­мотки тягового реле к аккумуляторной батарее GB. Под дей­ствием намагничи­вающей силы двух обмоток якорь тягового реле перемещается и с помощью рычага включения вводит шестерню стартера в зацепление с венцом маховика. В конце хода якоря реле замыкаются основные контакты КА2:1 тяго­вого реле и GB оказывается соединенной со стартерным элек­тродвигателем М.

Контакты КА2:1замыкаются раньше, чем шестерни полностью войдет в зацепление с венцом маховика. Даль­нейшее перемещение шестерни до упорного кольца на валу происходит за счет осевого усилия в винтовых шлицах вала якоря и направляющей муфты втул­ки свободного хода.


Рис. 2.3. Электрическая схема дистанционного управления старте­ром.

S1 – выключатель зажигания; KV1 – обмотка дополнительного реле; KV1:1 – контакты дополнительного реле; КА2 – втягивающая об­мотка тягового реле стартера; KV2 – удерживающая обмотка тягового реле стартера; КА2:1 – контакты тягового реле стартера; GB – аккумуля­торная батарея; М – якорь стартера.

Если при запуске шестерня стартера упирается в венец махо­вика, якорь реле все равно продолжает двигаться, сжи­мая буфер­ную пружину, и замыкает контакты КА2:1. Якорь стартера вместе с приводом начинают вращаться, и как только зуб шестерни уста­навливается напротив впадины зуб­чатого венца маховика, шестер­ня под действием буферной пружины и осевого усилия в шлицах входит в зацепление с маховиком.

Шестерня остается в зацеплении до тех пор, пока води­тель не отключить питание дополнительного реле стартера. После раз­мыкания контактов КV1:1 дополнительного реле втягивающая КА2 и удерживающая KV2обмотки тягового реле оказываются включен­ными последовательно, получая питание через контакты КА2:1. Число витков обеих обмоток одинаково и по ним проходит один и тот же ток. Так как на­правление тока во втягивающей обмотке в этом случае изме­няется, обмотки действуют встречи и создает два равных, но противоположно направленных магнитных потока. Сердеч­ник электромагнита размагничивается и возвратная пружина, пере­мещая якорь реле в исходное положение, размыкает главные кон­такты и выводит шестерню из зацепления с вен­цом маховика.

3. Учебные пособия, приспособления и инструменты

3.1. Стартеры в сборе, разрезанные образцы, щиты с де­та­лями и плакаты.

3.2. Приспособления и инструменты, необходимые для разбор­ки и сборки электростартера.

4. Порядок выполнения работы

4.1. Разобрать стартер.

4.2. Нарисовать схему внутренних соединений кату­шек обмот­ки возбуждения и обмотки якоря.

4.3. Нарисовать эскиз магнитной системы стартер­ного электродвигателя.

4.4. Определить число пазов, число витков в секциях обмот­ки якоря, число коллекторных пластин.

4.5. Нарисовать схему обмотки якоря и рассчитать её шаги.

4.6. Привести частичную разборку тягового реле.

4.7. Нарисовать магнитную систему тягового реле.

4.8. Нарисовать схему соединения обмоток реле.

4.9. Собрать тяговое реле в порядке, обратном раз­борке.

4.10. Собрать стартер в порядке, обратном разборке.

5. Содержание отчета

5.1. Тип изучаемого стартера и его техническая харак­теристика.

5.2. Краткое описание особенностей устройства и принципа работы стартера.

5.3. Схема внутренних соединений катушек обмотки возбуж­дения и обмотки якоря.

5.4. Эскиз магнитной системы стартерного электродви­гате­ля.

5.5. Эскиз магнитной системы тягового электромаг­нитного реле.

5.6. Схема соединений обмоток тягового реле.

5.7. Схема управления электростартером.

6. Контрольные вопросы

6.1. Из каких основных реле узлов и деталей состоит элек­тростартер?

6.2. Какие возможны схемы внутренних соединений обмоток возбуждения и якоря в электростартерах?

6.3. Почему пакет якоря набирается из стальных пла­стин?

6.4. Почему пакеты якорей четырехполюсных стартер­ных элек­тродвигателей с волновой обмоткой имеют нечетное число пластин?

6.5. Какой тип щеткодержателей пршленяется в элек­тростар­терах?

6.6. Какие типы коллекторов применяются в электро­старте­рах?

6.7. Почему удерживающая и втягивающая обмотки тягового реле имеют одинаковое число витков, но намотаны проводами разного сечения?

6.8. Каково назначение пружин привода?

6.9. Можно ли в четырехполюсном электродвигателе с вол­новой обмоткой ограничиться установкой двух щеток?

Электрические стартеры отличаются способами возбуждения электродвигателя, крепления на двигателе, видами механизма привода, степени герметичности.

По способу возбуждения различают стартеры с последовательным, смешанным возбуждением и возбуждением от постоянных магнитов. Смешанное возбуждение применяют для ограничения частоты вращения вала якоря nя в режиме холостого хода. В диапазоне рабочих токов характеристики стартеров смешанного и последовательного возбуждения отличаются незначительно. Характеристики электродвигателей с возбуждением от постоянных магнитов аналогичны характеристикам электродвигателей с независимым возбуждением. Возбуждение от постоянных магнитов применяется на стартерах малой мощности. Для мощных стартеров налаживают выпуск небольших магнитов с высокой энергией, например, на основе элементов неодим-железо-бор.

Электростартер должен иметь надежное соединение с коленчатым валом двигателя на период пуска и автоматически отключаться от него после выхода двигателя на режим самостоятельной работы. От передаточного числа привода от стартера к маховику зависит согласование характеристик стартерного- электродвигателя с пусковыми характеристиками двигателя. Повышение передаточного числа позволяет применять более быстроходные и меньшие по габаритным размерам электродвигатели. С целью увеличения передаточного числа в стартере используют дополнительный понижающий редуктор.

Шестерню привода стартера располагает между опорами под крышкой привода или консольно за пределами крышки. Стартеры с шестерней между опорами могут быть двух- и трехопорными. Двухопорными выполняются стартеры мощностью до 1,5 кВт. В трехопорных стартерах привод с шестерней расположен на валу якоря между подшипниковыми втулками крышки привода и промежуточной опоры.

Консольное расположение шестерни характерно для стартеров с инерционным приводом, перемешающимся якорем, а также для стартеров с тяговыми реле, встроенными в крышку привода соосно с приводом или размещенными в крышке коллектора.

Разработаны конструкции стартеров с одной опорой в крышке коллектора (стартер 29.3708 автомобиля ВАЗ-2108) при расположении второй опоры вала якоря со стороны привода в картере маховика. В этом случае отпадает необходимость в крышке привода, снижаются нагрузки на детали крепления стартера и уменьшается его масса.

Стартер с принудительным электромеханическим включением шестерни и роликовой МСХ

Рис. Стартер с принудительным электромеханическим включением шестерни и роликовой МСХ: 1 — вал якоря с винтовыми шлицами; 2 — шестерня привода; 3 — кольцо упорное; 4 — ведущая обойма МСХ; 5 — крышка со стороны привода; 6 — буферная пружина; 7 — рычаг включения привода; 8 — возвратная пружина тягового реле; 9 — удерживающая обмотка тягового реле; 10 — втягивающая обмотка тягового реле; 11 — тяговое реле; 12 — неподвижный контакт; 13 — контактный болт; 14 — подвижный контакт; 15 — крышка коллектора; 16 — щеткодержатель; 17 — щеточная пружина; 18 — коллектор; 19 — щетка; 20 — корпус стартера; 21 — полюс; 22 — якорь; 23 — полюсный винт; 24 — катушка обмотки возбуждения; 25 — обмотка якоря; 26 — роликовая МСХ.

На отечественных автомобилях и тракторах применяют стартеры с принудительным электромеханическим включением шестерни, имеющие роликовые, храповые или фрикционные муфты свободного хода (МСХ) и управляемые дистанционно с помощью тяговых электромагнитных реле, устанавливаемых на крышке привода.

Основными деталями и узлами электростартера являются корпус 20 с полюсами и катушками обмотки возбуждения, якорь 22 с коллектором 18 и обмоткой якоря 25, механизм привода с МСХ 26, электромагнитное тяговое реле 11, крышка привода 5, крышка коллектора 15, щеточный узел с щеткодержателями, щетками и щеточными пружинами.

Изменения в конструкции корпусов электростартеров и якорей электродвигателей связаны с применением в качестве катушечной и пазовой изоляции полимерных материалов, а также коллекторов из пластмассы.

Использование пластмассы в коллекторах позволяет увеличить их механическую прочность, дает возможность автоматизировать формирование пакета коллектора. Особый интерес представляют торцовые и свертные коллекторы. Замена цилиндрических коллекторов торцовыми и свертными снижает расход коллекторной меди и повышает срок службы щеточно-коллекторного узла. Свертной коллектор получают из медной ленты, которая подвергается расчеканке на требуемое количество пластин. После свертывания ленты в цилиндр и опрессовки пластмассой цилиндрическую часть коллектора обтачивают, в результате перемычки между пластинами срезаются и они оказываются изолированными.

Механизм привода стартера располагается на шлицевой части вала якоря. МСХ привода обеспечивает передачу вращающего момента от вала якоря маховику во время пуска двигателя и препятствует вращению якоря маховиком после пуска. Применение МСХ в приводных механизмах стартеров повышает их надежность и исключает преждевременный выход шестерни их зацепления с венцом маховика при пуске холодного двигателя в условиях низких температур.

Наибольшее распространение получили роликовые МСХ. Они просты по конструкции, мало чувствительны к загрязнению, надежны, не требуют регулировки и ухода в эксплуатации. На автотракторных стартерах устанавливают роликовые МСХ с бесплунжерными прижимными устройствами. Прижимное устройство в виде Г-образного толкателя 2 расположено между роликом У и специальным упором, закрепленным на наружной ведущей обойме 12. При включении МСХ в работу наружная ведущая обойма 12 поворачивается относительно ведомой обоймы 17 с шестерней, ролики под действием прижимных пружин и сил трения между обоймами и роликами перемещаются в узкую часть клиновидного пространства и МСХ заклинивается. После пуска двигателя частота вращения ведомой обоймы 17 с шестерней превышает частоту вращения наружной ведущей обоймы 12, ролики перемещаются в широкую часть клиновидного пространства и МСХ проскальзывает.

На стартерах мощностью 6-10 кВт в настоящее время применяется привод с храповой МСХ. Преимуществом храповой МСХ по сравнению с роликовыми является высокая прочность и возможность передачи большого вращающего момента при сравнительно небольших ее размерах.

Бесплунжерная роликовая МСХ

Рис. Бесплунжерная роликовая МСХ: 1 — ролик; 2 — толкатель; 3 — прижимная пружина; 4 и 8 — замковые кольца; 5 — опорная чашка; 6 — пружина; 7 — поводковая муфта: 9 — буферная пружина; 10 — направляющая шлкцевая втулка; 11 — центрирующее кольцо; 12 — наружная ведущая обойма; 13 — фиксатор пружины (пластина с отогнутыми лепестками); 14 — шайба; 15 — войлочный уплотнитель; 16 — кожух МСХ: 17 — ведомая обойма с шестерней; 18 — втулка.

При срабатывании тягового реле рычаг привода через корпус 2 МСХ перемещает направляющую шлицевую втулку 1 вместе с ведущим 5 и ведомым 6 храповиками по шлицам вала и вводит шестерню в зацепление с венцом маховика. Вращающий момент к венцу маховика передается через шлицевую втулку 1, ведущий 5 и ведомый 6 храповики и шестерню 8. Осевое усилие, возникающее в винтовых шлицах втулки 1 и храповика 5, воспринимается резиновым кольцом 11.

Приводной механизм с храповой МСХ

Рис. Приводной механизм с храповой МСХ: 1 — шлицевая втулка: 2 — корпус привода: 3 — шайба: 4 — пружина; 5 — ведущий храповик: 6 — ведомый храповик; 7 — штифт направляющий; 8 — шестерня; 9 — сегмент; 10 — коническое кольцо; 11 — резиновое кольцо; 12 — запорное кольцо.

В случае, когда шестерня упирается в венец маховика, сжимается пружина 4, и ведущий храповик 5, перемещаясь по винтовым шлицам втулки 1, своими торцовыми зубьями поворачивает ведомый храповик 6 с шестерней 8 на угол, достаточный для ввода шестерни в зацепление.

Если частота вращения шестерни и ведомого храповика больше частоты вращения направляющей втулки 1, ведущий храповик, перемещаясь по винтовым шлицам втулки 1, отходит от ведомого храповика и шестерня вращается вхолостую. Вместе с ведущим храповиком отходит и коническое кольцо 10, при этом сегменты получают свободу перемещения в радиальном направлении вдоль штифтов 7 ведомого храповика и фиксируют МСХ в расцепленном состоянии. Во время отдельных вспышек воспламенения в цилиндрах двигателя шестерня остается в зацеплении с венцом маховика и может снова передавать вращающий момент от электродвигателя после выравнивания частот вращения ведущего и ведомого храповиков. Шестерня выходит из зацепления только после выключения тягового реле электростартера.

Фрикционные дисковые муфты применяют на мощных стартерах автомобилей БелАЗ. МСХ состоит из ведущий и ведомой полумуфт и заклинивается после ввода шестерни в зацепление. Фрикционные диски прижимаются друг к другу в результате усилия в резьбовом соединении ведомой втулки муфты и корпуса шестерни. После пуска двигателя усилие в резьбовом соединении меняет направление, прижатие дисков ослабевает и муфта пробуксовывает. Недостатком фрикционных МСХ является изменение передаваемого вращающего момента в процессе эксплуатации вследствие износа фрикционных дисков.

Схема управления электростартером

Рис. Схема управления электростартером

Электростартеры конструктивно выполнены в герметичном исполнении. Степень защиты стартера от проникновения посторонних тел и воды оговаривается в стандартах на отдельные виды изделий. Стартеры, предназначенные для тяжелых условий работы (на большегрузных автомобилях и на тракторах), отличаются большей степенью герметизации. Герметизация обеспечивается установкой в местах разъема резиновых колец, применением пластмассовых втулок и уплотнительных прокладок из мягких пластических материалов.

Конструктивное исполнение стартера зависит от способа крепления его на двигателе. Обычно стартер располагают сбоку картера двигателя, при этом крышка привода обращена в сторону маховика и входит в отверстие картера сцепления. Крепление стартера на двигателе обеспечивает сохранение постоянного расстояния между центрами шестерни привода и зубчатого венца маховика при снятии стартера и его установке после технического обслуживания и ремонта. Такому условию удовлетворяет фланцевое крепление. Конфигурация и размеры присоединительного фланца на крышке со стороны привода стандартизованы. При фланцевом креплении крепежный фланец несет нагрузку как от усилий, возникающих при передаче вращающего момента от стартера к двигателю, так и от массы стартера. Поэтому для стартеров большой мощности осуществляют крепление на постели двигателя посредством натяжной ленты. Установка стартера на постели упрощает конструкцию крышки со стороны привода, но повышает требования к качеству изготовления корпуса стартера. Для предотвращения проворачивания стартера в канавке на его корпусе и в постели двигателя установлены специальные шпонки.

Типовая схема дистанционного управления стартером с дополнительным реле включения приведена на рисунке. При замыкании контактов выключателя S зажигания контакты К1 дополнительного реле подключают втягивающую КА2 и удерживающую KV2 обмотки тягового реле к аккумуляторной батарее GB. Под действием МДС двух обмоток якорь реле перемещается и с помощью рычага привода вводит шестерню в зацепление с венцом маховика. В конце хода якоря реле замыкаются силовые контакты К2 тягового реле и аккумуляторная батарея соединяется со стартерным электродвигателем М.

Шестерня остается в зацеплении с венцом маховика до тех пор, пока водитель не отключит питание дополнительного реле. После размыкания контактов К1 дополнительного реле втягивающая КА2 и удерживающая KV2 обмотки тягового реле оказываются включенными последовательно, получая питание через контакты К2. Число. витков обеих обмоток одинаково, и по ним проходит ток одной и той же силы. Так как направление тока во втягивающей обмотке в этом случае изменяется, обмотки действуют встречно и создают два равных, но противоположно направленных магнитных потока. Сердечник электромагнита размагничивается и возвратная пружина, перемещая якорь реле в исходное положение, размыкает силовые контакты К2 и выводит шестерню из зацепления с венцом маховика.

Двигатели внутреннего сгорания, устанавливаемые на автомобилях, автобусах, тракторах, мотоциклах, не имеют пускового момента. Для начала самостоятельной работы такого двигателя необходимо сообщить ему определенную начальную или пусковую частоту вращения, т. е. запустить двигатель. Пусковая частота вращения зависит от типа двигателя: 40 — 70 об/мин — для карбюраторных двигателей и 100 — 200 об/мин — для дизельных. В качестве пусковых устройств используются преимущественно электрические стартеры прямого действия.

Содержание работы

1. Устройство электростартеров
1.1. Внутреннее строение стартеров
1.2. Принципиальные электрические схемы
1.3. Крепление стартеров на двигателях
1.4. Защита от посторонних тел и воды
2. Характеристики электростартеров
3. Особенности работы электростартеров и требования к электростартерам
4. Схемы управления электростартерами

Список использованной литературы

Файлы: 1 файл

Устройство электрических стартеров.doc

1. 2. Принципиальные электрические схемы

Электрическая схема стартера (рис 4):

1. Battery – аккумулятор, 2. Fusible link - плавкая вставка (фактически предохранитель, выполненый в виде плавкой части в начале провода от аккумулятора на стартер), 3. Ignition switch - Выключатель (точнее "включатель" зажигания, это в нашей стране включатели умудрились обозвать "выключателями", 4. ECU – компьютер, 5. EFI – инжектор, 6. Engine – мотор.

Рис.5 Схема электрической цепи стартера

1 - аккумуляторная батарея; 2 - предохранитель; 3 - замок зажигания; 4 - реле стартера

Работа стартера состоит из трех этапов:

1. Механизм привода стартера вводит шестерню на валу якоря в зацепление с зубчатым венцом маховика.

2. Начинается вращение вала якоря стартера вместе с шестерней, которая проворачивает коленчатый вал двигателя через маховик, тем самым, запуская двигатель.

3. После начала работы двигателя, механизм привода выводит шестерню стартера из зацепления с зубчатым венцом маховика.

1.3. Крепление стартеров на двигателях

Обычно стартер располагают сбоку картера двигателя, при этом крышка со стороны привода обращена в сторону маховика и входит в отверстие картера сцепления.

Стартеры мощностью свыше 4,4кВт с диаметром корпуса 130-180 мм устанавливают в углублениях специальных приливов двигателя. К посадочной, поверхности прилива двигателя корпус стартера прижимается стальными лентами или литыми скобами. От проворота стартер фиксируют шпонками или штифтами. Шестерня механизма привода стартера может быть установлена между опорами под крышкой или консольно за ее пределами.

1.4. Защита от посторонних тел и воды

В эксплуатации стартеры подвержены воздействию влаги, масла, грязи. Конструкция стартера предусматривает защиту от них. Лучше защищены стартеры грузовых автомобилей. Герметизация обеспечивается установкой в местах разъема резиновых колец, применением втулок и уплотнительных прокладок из мягких пластических материалов. Герметизация стартера в местах вывода обмоток тягового реле и стартера обеспечивается установкой резиновых, шайб. Попадание в стартер и тяговое реле грязи, влаги и посторонних тел исключается благодаря установке резинового сильфона 19 (рис. 10.19) и резиновой армированной манжеты 27 в промежуточной опоре 26. Герметизирующий сильфон 19 не должен препятствовать регулированию механизма привода.

  1. Особенности работы электростартеров и требования к электростартерам

Электростартер получает питание от аккумуляторной батареи - автономного источника электроэнергии ограниченной мощности. Вследствие внутреннего падения напряжения в батарее напряжение на выводах электростартера не остается постоянным, а уменьшается с увеличением нагрузки и силы потребляемого тока.

Сила тока электростартеров может составлять несколько сот и даже тысяч ампер. При такой силе тока на характеристики стартерного электродвигателя большое влияние оказывает падение напряжения в стартерной сети, т.е. в стартерном проводе и “массе”.

Характеристики стартерных электродвигателей зависят от емкости и технического состояния аккумуляторной батареи. “Семейству” вольт-амперных характеристик батареи (см. рис. 10.33) соответствует “Семейство” рабочих и механических характеристик стартерного электродвигателя.

Для стартерного электропривода двигателя характерна значительная неравномерность нагрузки, обусловленная резким изменением момента сопротивления, от сил давления газов в цилиндрах и сложной кинематикой кривошипно- шатунного механизма. При переменной нагрузке снижается мощности и КПД системы пуска, что необходимо учитывать при выборе мощности стартерного электродвигателя и емкости аккумуляторной батареи.

Режим работы электростартеров - кратковременный с длительностью включения до 10 с при температуре 20°С. При отрицательных температурах допускается, длительность работы до 15 с для стартеров бензиновых двигателей и до 20 с для, стартеров дизелей.

Длительное время по отношению к периоду прокручивания коленчатого вала двигателя стартер может работать в режимах полного торможения и холостого хода. Якорь стартера должен без повреждений в течение 20 с выдерживать нагрузки, возникающие при частоте вращения коленчатого вала, на 20% превышающей частоту его вращения в режиме холостого хода.

Якорь стартера должен иметь надежный привод к коленчатому валу при пуске двигателя и автоматически отключаться от него после осуществления пуска. Конструкция стартерами зубчатая передача должны обеспечивать надежный ввод шестерни в зацепление и передачу коленчатому валу двигателя вращающего момента. Шестерня привода стартера не должна самопроизвольно входить в зацепление с венцом маховика. Муфта свободного хода привода должна защищать якорь от механических повреждении.

Тяговое реле стартера должно обеспечивать ввод шестерни в зацепление и включение стартера при снижении напряжения до 9 В Для Uн=12 В и до 18 В для Uн=24 В при температуре окружающей среды (20±5)°С. Контакты тягового реле должны оставаться замкнутыми при снижении напряжения на выводах стартера до 5,4 и 10,8 В При номинальных напряжениях соответственно 12 и 24 В.

Автомобильные электростартеры имеют степень защиты не ниже IRX4 (по ГОСТ 14254-80), кроме полости механизма привода.

Пусковой цикл (попытка пуска) на двигателе (на стенде) не должен превышать 15 с при температуре окружающей среды (20±5)°С. Допускается не более трех пусковых циклов подряд с перерывам между ними не менее 30 с. После охлаждения стартера до температуры окружающей среды допускается еще один пусковой цикл.

Не допускается нагружать стартер более чем на номинальную мощность. Повышение температуры стартера во время пусковых циклов не должно приводить к изменениям, отрицательно влияющим на его работоспособность.

Рациональному использованию аккумуляторной батареи, имеющей в системе пуска относительно большую массу и в наибольшей степени подверженной влиянию эксплуатационных факторов, способствуют правильное согласование характеристик элементов системы, пуска и обоснованный выбор ее схемы и параметров, при которых расходуется минимальное количество энергии источника тока.

Для уменьшения длины стартерных проводов, габаритных размеров и массы стартера и батареи, а также для удобства их установки и технического обслуживания важно предусмотреть рациональное размещение элементов системы пуска двигателя на автомобиле.

Параметром, определяющим рациональное согласование мощностной характеристики пускового устройства с пусковыми характеристиками двигателя, является передаточное число привода. При изменении передаточного числа привода меняется наклон механической характеристики стартерного электродвигателя, приведенной к коленчатому валу двигателя. С повышением передаточного числа приведенный вращающий момент увеличивается, а приведенная частота вращения вала уменьшается. Максимальное значение мощности электростартера смещается в сторону меньшей частоты вращения коленчатого вала. Для каждого типа двигателя и заданных условий пуска существуют наивыгоднейшие передаточные числа, при которых наилучшим образом используются мощностные характеристики стартерного электродвигателя.

Автомобильные электростартеры должны обеспечивать номинальные параметры при нормальные климатических условиях: температура окружающего воздуха (25±10)°С; относительная влажность (45-80)%; атмосферное давление (84-106) кПа.

Автомобильный стартер: устройство (корпус, якорь, втягивающее реле, обгонная муфта (бендикс) и приводная шестерня, щеткодержатели) и основные функции. Принцип работы автомобильного стартера, его классификация. Принцип действия безредукторных стартеров.

Рубрика Транспорт
Вид реферат
Язык русский
Дата добавления 09.02.2016
Размер файла 136,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Студент группы КТ-32

1. Автомобильный стартер: устройство и основные функции

2. Принцип работы автомобильного стартера

3. Что ещё нужно знать про стартер?

Как следует из самого названия, автомобильный стартер применяется для запуска двигателя внутреннего сгорания. Для этого он обеспечивает первичное вращение коленчатого вала с необходимой частотой. Стартер является неотъемлемой частью электрооборудования любого современного автомобиля. Конструктивно он представляет собой четырехполюсный электродвигатель постоянного тока, получающий питание от аккумуляторной батареи. Мощность его бывает разной, в зависимости от конкретной модификации автомобиля, однако для запуска большинства бензиновых моторов достаточно стартера мощностью 3 кВ.

автомобильный стартер шестерня безредукторный

1. Автомобильный стартер: устройство и основные функции

Устройство стартера включает в себя следующие основные составляющие:

· Корпус (электродвигатель). Стальная деталь цилиндрической формы. В нем размещаются обмотки возбуждения и сердечники.

· Якорь. Выполнен в виде оси из легированной стали. На якоре запрессовывается сердечник и коллекторные пластины.

· Втягивающее реле. Предназначено для подачи питания на электродвигатель стартера от замка зажигания. При этом оно выполняет еще одну немаловажную функцию - выталкивает обгонную муфту. Реле имеет в своей конструкции силовые контракты и подвижную перемычку.

· Обгонная муфта (бендикс) и приводная шестерня. Роликовый механизм, передающий крутящий момент на венец маховика через специальную шестерню зацепления. После запуска мотора рассоединяет приводную шестерню и венец маховика, обеспечивая тем самым сохранность стартера.

· Щеткодержатели и щетки. Предназначены для подачи рабочего напряжения на коллекторные пластины якоря. Повышают мощность электродвигателя, при осуществлении основного рабочего цикла стартера.

2. Принцип работы автомобильного стартера

Рабочий процесс электростартера можно условно разделить на три этапа: соединение приводной шестерни с венцом маховика, пуск стартера, рассоединение маховика и приводной шестерни. Рабочий цикл стартера является кратковременным, т.к. он не участвует в последующем движении автомобиля - его основная задача запустить мотор. Если рассмотреть подробнее, то принцип работы стартера выглядит следующим образом:

2) Приводная шестерня обгонной муфты (бендикса) входит в зацепление с маховиком;

3) Одновременно с перемещением и зацеплением шестерни замыкается цепь и напряжение подается на электродвигатель;

4) Осуществляется запуск мотора и после того, как его обороты превысят обороты стартера, обгонная муфта рассоединяет приводную шестерню и вал электродвигателя.

3. Что ещё нужно знать про стартер?

Помимо перечисленных, существует еще два классификатора автомобильного стартера. По типу своей конструкции он может быть:

На моторах с дизельной системой питания, а также на двигателях повышенной мощности устанавливается стартер с редуктором. Планетарный редуктор, состоящий из нескольких шестерен, монтируется в корпусе стартера. Он в несколько раз усиливает проходящее напряжение, увеличивая тем самым крутящий момент. Стартер с редуктором обладает следующими преимуществами:

· он более эффективен, обладает высоким КПД;

· потребляет гораздо меньший ток при холодном пуске двигателя;

· редукторный стартер имеет более компактные габаритные размеры;

· сохраняет высокую эффективность и превосходные эксплуатационные характеристики при падении силы пускового тока аккумулятора.

Принцип действия безредукторных стартеров заключается в непосредственном контакте с вращающейся шестерней. Среди преимуществ такого устройства можно отметить:

1. простоту устройства и более высокую ремонтопригодность;

2. более быстрый запуск мотора, за счет моментального соединение с венцом маховика после подачи тока;

3. стойкость в к высоким нагрузкам.

Список литературы

Подобные документы

Особенности конструкции автомобильных стартеров. Работы, выполняемые при ремонте автомобильных стартеров. Требуемое оборудование, расчет площади электротехнического участка. Технологический процесс ремонта стартера, методы его совершенствования.

курсовая работа [1,1 M], добавлен 15.06.2012

Назначение, структурный состав, принцип работы, устройство современных автомобильных генераторов и стартеров. Основные их технические характеристики, особенности условий эксплуатации. Главные неисправности и перспективы развития генераторов и стартеров.

курсовая работа [673,0 K], добавлен 21.01.2014

Назначение и принцип действия стартера. Характеристика деталей, из которых состоит стартер. Требования к сборке стартера, ее последовательность и контроль качества. Организация рабочего места слесаря механосборочных работ, охрана труда при их выполнении.

реферат [196,2 K], добавлен 17.03.2011

Назначение и устройство стартера, его основные неисправности. Магнитная система реле. Порядок выполнения разборки, ремонта и сборки стартера. Техническое обслуживание электрооборудования. Проверка стартера на стенде. Испытание в режиме полного торможения.

курсовая работа [780,1 K], добавлен 21.05.2012

Стартер. Пуск электрическим стартером. Стартерная цепь. Электромеханические характеристики стартера. Применение пусковых жидкостей. Зависимость минимальных пусковых оборотов двигателя от температуры пуска. Устройство и принцип работы стартера.

Читайте также: