Реферат на тему история тригонометрии

Обновлено: 04.07.2024

История создания тригонометрии плотно связанна с космосом, а точнее с решением астрономических задач. Изначально на первых этапах развития этого направление в математики были положены в основу примитивные соотношение длин и сторон треугольника. Но со временем она развивалось и превратилось в сегодняшний вариант этого раздела. Сейчас это небольшой раздел геометрии, который включают в себя лишь некоторые программы обучения. Если взять современную математику, то тригонометрия это узкий раздел, изучающий взаимоотношения углов треугольника.

Когда в руках историков оказались древние математические рукописи и манускрипты они смогли сделать несколько заключений. Они пришли к выводу, что основателем тригонометрии был древнегреческий математик и астроном Гипарх. В ходе своих научных работ он стал задумываться о новаторских способах решения геометрического треугольника. Гипарх был удивительным ученым своего времени, так как он смог создать начальный уровень современной тригонометрии, живя в втором веке до нашей эры. Также в это время жил и творил Пифагор, который смог создать правильное соотношения сторон прямоугольного треугольника, то есть теорему Пифагора.

Значительный вклад в тригонометрию внесли молодые ученые из Индии, но эти открытия были сделаны уже в средневековые времена. Также в эпоху средневековья были сделаны множества различных открытий и других направлениях науки, культуры и общества.

Доклад №2

История тригонометрии, как науки об соотношении углов и сторон различных геометрических фигур насчитывает несколько тысячелетий. Хоть наука обрела такое название сравнительно недавно, но сама наука весьма древняя. Об этом говорит тот факт, что древние ученые проводили расчеты лунного и солнечного затмения, сделать эти расчеты не прибегая к тригонометрии невозможно. Ещё древневавилонские учёные научились максимально точно рассчитывать дни и часы затмения, а это говорит о том, что уже они владели хотя бы базовыми знаниями этой науки.

Возникновение тригонометрии, как науки связывают с такими науками, как астрономия, землемерие, а также строительное дело. То есть в результате того с чем обществу приходилось сталкиваться, какие задачи оно пыталось решить. Общество сталкивалось с этими задачами на практике.

Тригонометрия не останавливалась в своем развитии, в средние века наибольшего её развития достигли учёные из Средней Азии и Закавказья. К этому времени наука смогла обрести самостоятельность, больше о ней не говорили, как о дополнении к астрономии. Европа в развитии тригонометрии отставала почти на два века.

Во время развития математики развивалась и тригонометрия. После введения в алгебре чисел с отрицательными знаками. Был получен шанс изучать числовой аргумент тригонометрических функций, а также просчитывать любое числовое значение с той точностью, которая была задана заранее.

Эйлер был одним из тех, кто значительно приложил руку для развития этой науки. Он сумел сформулировать определение тригонометрических функций которые используются по сей день, а также он смог установить связь между показательными и тригонометрическими функциями.

История тригонометрии

История тригонометрии

Можно сказать, что утка мандаринка одна из самых ярких и прекрасных птиц на земле. Она не большого размера и весит всего лишь 0,4-0,7. Но из - за своей яркой окраски, ее видно из далека. Самец представляет собой более ярким,

Нашу замечательную планету населяют самые удивительные и уникальные животные. Многие из них приносят пользу человеку, другие наоборот оказываются очень дикими и опасными. Многие звери прошли долгий путь эволюции. Кто-то полностью исчез,

Якутия или Республика Саха представляет собой самый большой регион в России и располагается в Дальневосточном Федеральном округе. Ее местность соседствует с Красноярском, Хабаровском, Иркутской, Читинской, Амурской,

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Я заинтересовался этой темой, потому что хотел узнать больше о тригонометрии и особенно о ее истории.

Я поставил перед собой цель: определить на основе отобранного материала, где тригонометрия, за исключением школьного курса, встречается в решении проблем и идентичностей.

Прочитав литературу, я узнал, что тригонометрические вычисления используются практически во всех областях геометрии, физики и технологии. Большое значение имеет метод триангуляции, который может быть использован для измерения расстояний до далеких звезд в астрономии, между географическими достопримечательностями для управления спутниковыми навигационными системами.

Также стоит отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансового рынка, электроника, теория вероятности, статистика, биология, медицина (в том числе ультразвук и компьютерная томография), фармация, химия, теория чисел (и), как следствие криптографии), сейсмологии, метеорологии, океанографии, картографии, многих областях физики, топографии и геодезии, архитектуры, фонетики, экономики, электротехники, машиностроения, компьютерной графики, кристаллографии, а также я узнал много нового, чего раньше не знал.

По истории тригонометрии

Тригонометрия — греческое слово и буквально означает измерение треугольников (Триггунон — треугольник и измерение Метрю).

В этом случае под измерением треугольников следует понимать треугольное решение, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, но также и задачи планаметрии, стереометрии, астрономии и другие даны задачам решения треугольников.

Появление тригонометрии связано с астрономией и строительством.

Хотя название науки появилось сравнительно недавно, многие понятия и факты, связанные с тригонометрией, были известны уже две тысячи лет назад.

Решения для треугольников, основанные на зависимостях между сторонами и углами треугольника, были впервые найдены древнегреческими астрономами Гиппархом (II в. до н.э.) и Клавдием Птолемеем (II в. н.э.). Позже отношения между сторонами треугольника и его углами стали называться тригонометрическими функциями.

В долгой истории существует понятие синуса. Фактически, различные соотношения сечений треугольника и круга (а по существу, и тригонометрические функции) встречаются уже в III в. до н.э. в трудах великих математиков Древней Греции — Евклида, Архимеда, Аполлонии Пергусской. В римский период эти отношения систематически изучались Менелаем (I в. н.э.), хотя конкретное название им не давалось. Современный синус a, например, изучался как полуаккорд, на котором центральный угол лежит в размере a, или как двухдуговой аккорд.

Уже в IV-V веке в астрономических трудах великого индийского ученого Ариабхаты, чье имя было дано первому индийскому спутнику Земли, существовал особый термин. Он назвал отрезок АМ (рис. 1) аргаджива (арга — половина, джива — луковая струна, которая напоминает аккорд). Позже появилось более короткое имя Джива. Арабские математики в IX в. заменили это слово на арабское слово jib (выпуклость). В переводе арабских математических текстов в этом столетии он был заменен на латинский синус (синус — кривизна, изгиб).

Касательные появились в связи с решением задачи определения длины тени. Тангент (как и кокангент) был введен в X. столетие арабский математик Абу-л-Вафа, который создал первые таблицы для нахождения тангенса и кокангента. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенты были заново открыты только в XIV веке немецким математиком и астрономом Реджимонтаном (1467 г.). Он доказал теорему о тангенте. Regimontan также сделал подробные тригонометрические таблицы, благодаря его работам плоские и сферические тригонометрии стали отдельной дисциплиной в Европе.

Дальнейшее развитие тригонометрии состоялось в трудах выдающегося астронома Николая Коперника (1473-1543) — создателя мировой гелиоцентрической системы Тихо Браге (1546-1601) и Иоганна Кеплера (1571-1630), а также в трудах математика Франсуа Виета (1540-1603), который полностью решил задачу определения всех элементов плоского или сферического треугольника на три даты.

Долгое время тригонометрия была чисто геометрической. Факты, которые мы сейчас формулируем в виде тригонометрических функций, были сформулированы и доказаны с помощью геометрических концепций и высказываний. Так было уже в средние века, хотя иногда использовались аналитические методы, особенно после появления логарифмов. Пожалуй, наибольший стимул для развития тригонометрии возник в связи с решением астрономических задач, представлявших большой практический интерес (например, для решения задач определения положения корабля, прогнозирования отключения электроэнергии и т.д.). Астрономов интересовали отношения между сторонами и углами сферических треугольников. И надо сказать, что математики древнего мира успешно справились с поставленными задачами.

С XVII века тригонометрические функции стали использоваться для решения уравнений, задач механики, оптики, электротехники, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, изучения переменного тока и др. Поэтому тригонометрические функции были всесторонне и глубоко исследованы и приобрели значение для всей математики.

Аналитическая теория тригонометрических функций была разработана в основном Леонардом Эйлером (1707-1783), выдающимся математиком XVIII века, членом Санкт-Петербургской Академии наук. Большое научное наследие Эйлера включает в себя блестящие результаты, связанные с математическим анализом, геометрией, теорией чисел, механикой и другими математическими приложениями. Именно Эйлер первым ввел известные определения тригонометрических функций, начал рассматривать функции любого угла, и получил формулы редукции. По словам Эйлера, тригонометрия получила форму расчета: различные факты стали доказываться формальным применением формул тригонометрии, доказательства стали намного компактнее.

Таким образом, тригонометрия, зародившаяся как наука о разрешении треугольников, со временем переросла в науку о тригонометрических функциях.

Тригонометрические функции

Элементарные функции, которые исторически возникали при взгляде на прямоугольные треугольники и выражают зависимость сторон этих треугольников от острых углов гипотенузы (или, эквивалентно, зависимость аккордов и высоты от центрального угла в круге). Эти функции нашли самое широкое применение в различных областях науки. В результате было расширено определение тригонометрических функций, и их аргументом теперь может быть любое реальное или даже сложное число.

Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

Ссылка на тригонометрические функции:

Во-первых, прямые тригонометрические функции:

Во-вторых, противоположные тригонометрические функции:

В-третьих, производные тригонометрические функции:

В западной литературе загар х, кроватка х, цхх называются загаром, кроватка х, цхх.

В дополнение к этим шести, существуют также некоторые редко используемые тригонометрические функции (верна и т.д.) и обратные тригонометрические функции (арксин, аркозин и т.д.), которые рассматриваются в отдельных статьях.

Синусоидальный и косинусоидальный вещественные аргументы являются периодически непрерывными и бесконечно дифференцируемыми вещественными функциями.

Остальные четыре функции на реальной оси также являются материально значимыми, периодическими и бесконечно различимыми в областях определения, но не непрерывными.

Тангенты и секанты имеют паузы второго поколения на ±rp, в то время как катангенсы и секанты имеют паузы на ±rp.

Геометрическое определение

Обычно тригонометрические функции определяются геометрически. Укажем декартовую систему координат на плоскости и сформируем окружность радиусом R, центр которой находится в начале координат O. Измеряем углы как вращения от положительного направления оси абсциссы к акустическому пучку. Направление против часовой стрелки считается положительным, направление по часовой — отрицательным. Если мы обозначим абсциссой точку B с xB, то мы обозначим ординату с yB.

Понятно, что значения тригонометрических функций не зависят от радиуса окружности R из-за свойств подобных фигур.

Следует также отметить, что этот радиус часто принимается равным значению одного сечения.

Исходя из этого, синус является просто ординатой yB, а косинус — абсциссой xB.

Если b является вещественным числом, то в математическом анализе синус b называется угловым синусом, радиан которого равен b, аналогично другим тригонометрическим функциям.

Рассмотрим графическое изображение этого явления на рисунке 3.

Определение тригонометрических функций как решений дифференциальных уравнений, уравнений функций и по ряду

Во многих учебниках элементарной геометрии тригонометрические функции острого угла до сих пор определялись как отношения сторон прямоугольного треугольника. Пусть ОАБ будет треугольником с углом b.

Ну, тогда:

  • Синус угла b называется отношением AB/OB (отношение противоположного катетера к гипотенузе);
  • Козин угла b называется отношением OA/OB (отношение смежного катетера к гипотенузе);
  • Касательная угла b называется отношением AB/OA (отношение противоположного катетера к соседнему катетеру);
  • Катангензис угла b называется отношением OA/AB (отношение смежного катетера к противоположному катетеру);
  • Секанс угла b называется отношением ОВ/ОА (отношение гипотенузы к соседнему катетеру);
  • Угол cosecansome b называется отношением OV/AB (отношение гипотенузы к контркатетеру).

После того, как мы построили систему координат с началом в точке О, изменили направление оси абсциссы вдоль ОА и, при необходимости, ориентацию треугольника (перевернув его) так, чтобы он лежал в первой четверти системы координат, а затем построили окружность с радиусом, равным гипотенусе, сразу замечаем, что такое определение функций приводит к тому же результату, что и предыдущее.

На основании геометрии и свойств предельных значений можно доказать, что производная синуса равна косинусу, а производная косинуса равна минус синус. Затем можно использовать преимущества теории рядов Тейлора и представить синус и косинус как сумму степенных рядов.

Самые простые личности

Тригонометрические тождества — это математические выражения для тригонометрических функций, которые выполняются по всем значениям аргумента (из общего диапазона определений).

Поскольку синус и косинус являются ординатой и абсциссой точки, соответствующей единичной окружности впадин, то в соответствии с уравнением единичной окружности или пифагорейской теоремой.

Это соотношение называется базовой тригонометрической идентичностью.

Мы делим это уравнение на квадрат косинуса и синуса.

Синус и косинус являются непрерывными функциями. У тангентов и секантов есть точки перелома: катангенез и косекансы.

Где f — произвольная тригонометрическая функция, g — соответствующая ей кофункция (т.е. косинус для синуса, синус для косинуса и подобная для других функций), n — целое число. Полученной функции предшествует знак, который имеет начальную функцию в данной координатной четверти, при условии, что угол b острый.

Формулы для работы с касательными и катангами трех углов получены путем деления правой и левой частей соответствующих уравнений, представленных выше.

Вид одного параметра.

Все тригонометрические функции могут быть выражены полукруглым касательным.

Производные и интегралы

Все тригонометрические функции непрерывно и бесконечно дифференцируются по всему диапазону определения:

Интегралы тригонометрических функций в домене выражаются элементарными функциями следующим образом.

Большинство из вышеперечисленных свойств тригонометрических функций были сохранены даже в сложном случае.

Некоторые дополнительные свойства: тригонометрическое уравнение идентичности:

  • Сложные синусоидальные и косинусоидальные значения, в отличие от реальных, могут принимать любое количество значений модуля;
  • Все нули сложного синуса и косинуса лежат на оси материала.

Заключение

В данной работе были выполнены все задачи: получены более подробные сведения о тригонометрических функциях, приведены доказательства теорем косинуса и синуса, а также теоремы о площади треугольников, применены при решении задач по нахождению неизвестных элементов треугольника, научились применять эти теоремы при измерении работы на местности. Представленные проблемы представляют большой практический интерес, закрепляют полученные знания в области геометрии и могут быть использованы в практической работе.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

hello_html_m607e2ef0.jpg

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

"КОЛЛЕДЖ ПОЛИЦИИ"

Курсант 111 взвода

Куракина В.А.

Преподаватель:

2. Возникновение тригонометрии……………………………………………..2

3. Тригонометрия в ранние века……………………………………………….4

4. История тригонометрии: Новое время……………………………………..5

5. Заслуги Леонарда Эйлера…………………………………………………. 6

6. Области применения тригонометрии……………………………………. 7

7. История происхождения основных понятий ……………………………. 8

Тригонометрия как наука о соотношениях между углами и сторонами треугольника и других геометрических фигур возникла более двух тысячелетий назад. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Полагают, что у истоков создания тригонометрии стоят древние астрономы. Немного позднее её стали использовать в геодезии и архитектуре. Со временем область применения тригонометрии постоянно расширялась, и в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.
Истории тригонометрии посвящен ряд трудов отечественных и зарубежных ученых.

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю). В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё две тысячи лет назад.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус , например, изучался как полухорда, на которую опирается центральный угол величиной , или как хорда удвоенной дуги.

В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Отрезок АМ (рис. 1) он назвал ардхаджива (ардха – половина, джива – тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость).

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cos = sin ( 90° - ).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. Факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе – наука об измерении углов, от греческого gwnia - угол, metrew- измеряю). Термин гониометрия в последнее время практически не употребляется.

Тригонометрия в ранние века

Руководствуясь данными о сохранившихся научных реликвиях, исследователи сделали вывод, что история возникновения тригонометрии связана с работами греческого астронома Гиппарха, который впервые задумался над поиском способов решения треугольников (сферических). Его труды относятся ко 2 веку до нашей эры.

hello_html_m5cff02b3.jpg

История тригонометрии: Новое время

hello_html_m26a933c.jpg

Заслуги Леонарда Эйлера

hello_html_m1581609d.jpg

6

Области применения тригонометрии

Тригонометрия не относится к прикладным наукам, в реальной повседневной жизни ее задачи редко применяются. Однако этот факт не снижает ее значимости. Очень важна, например, техника триангуляции, которая позволяет астрономам достаточно точно измерить расстояние до недалеких звезд и осуществлять контроль за системами навигации спутников. Также тригонометрию применяют в навигации, теории музыки, акустике, оптике, анализе финансовых рынков, электронике, теории вероятностей, статистике, биологии, медицине (например, в расшифровке ультразвуковых исследований УЗИ и компьютерной томографии), фармацевтике, химии, теории чисел, сейсмологиии, метеорологии, океанологии, картографии, многих разделах физики, топографии и геодезии, архитектуре, фонетике, экономике, электронной технике, машиностроении, компьютерной графике, кристаллографиии и т. д. История тригонометрии и ее роль в изучении естественно-математических наук изучаются и по сей день. Возможно, в будущем областей ее применения станет еще больше.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




История тригонометрии


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Актуальность: знакомство с новым предметом - тригонометрией.

Цель: Расширить знания по истории развития тригонометрии.

1. Чем вызвана к жизни наука тригонометрия

2. Применение тригонометрии в астрономии, физике, биологии и медицине.

Объект: тригонометрия, история зарождения и развития тригонометрии.

Гипотеза: многие физические явления природы можно описать с помощью тригонометрии.

Новизна: знакомство с тригонометрией.

Методика исследования. Изучение литературы по данной теме, информации из Интернет-ресурсов. Обобщение найденного материала.

Практическая значимость: данный материал можно использовать на уроках геометрии и тригонометрии для дополнительного образования. Любой ученик может развить в себе интерес к науке тригонометрии через данный материал.

Возникновение тригонометрии

Исторически тригонометрия сложилась из задач на решение плоских и сферических треугольников.

Как и всякая другая наука, тригонометрия возникла в результате человеческой практики в процессе решения конкретных практических задач.

Возникновение тригонометрии тесно связано с развитием одной из древнейших наук – астрономии. Главная роль принадлежит ей в формировании и развитии сферической тригонометрии. Со времен древнего Вавилона до времени Эйлера и Лапласа астрономия была руководящей и вдохновляющей силой самых замечательных математических открытий.

Развитие астрономии, вызвано, в первую очередь, необходимостью составления правильного календаря, имевшего важное значение для земледельческого хозяйства древности. Земледельцу нужно было знать смену времен года, чтобы своевременно производить необходимые сельскохозяйственные работы. Календарь был необходим также и служителям культа, исполняющим религиозные обряды, для определения дней праздником и многим другим лицам.

Развитие торговли, связанное с необходимостью передвижения, как по суше, так и водным путем, оказало большое влияние на развитие астрономии: нужно было уметь правильно определять курс корабля в открытом море.

Значительную роль в развитии астрономии и связанной с ней тригонометрии сыграла, несомненно, потребность в составлении точных географических карт, это требовало правильного определения больших расстояний на земной поверхности.

Врачам нужна была астрономия, алгебра и тригонометрия для астрологических вычислений, чтобы составить гороскоп больного и по расположению планет в созвездиях определить, поправится больной или нет.

Эти и другие стороны деятельности человека уже в глубокой древности наталкивались на необходимость ознакомления с положением и видимым движением небесных светил (Солнца, Луны, звезд).

Уровень развития математики у древних народов Двуречья был более высоким, чем у других восточных народов. У древних народов Двуречья были особенно развиты астрономические наблюдения. Следовательно, они владели некоторыми простейшими сведениями из тригонометрии. Уже 2-3 тысяч лет до нашей эры древние египтяне практически использовали астрономические наблюдения при работах по сельскому хозяйству. Разливы Нила были важны фактором в развитии земледелия.

Тригонометрия в Древней Греции

Значительно позднее тригонометрия вступила в следующий этап своего развития в древней Греции, как часть астрономии. В связи с потребностями астрономии и геодезии первостепенное значение получили вычислительные задачи сферической тригонометрии. Некоторое знакомство с сферической тригонометрией имел еще Фалес Милетский (640 – 548 гг. до н.э. – древнегреческий математик и астроном (Приложение 1); в первой половине 3 веке до н.э. древнегреческий астроном и математик Аристарх Самосский (310 – 230 г г. до н.э.); Архимед (Приложение 1), высказал смелую гипотезу о том, что Земля движется по кругу около Солнца (за это его обвинили в безбожии и изгнали из Афин).

Уже в середине I тысячелетия до н.э. древнегреческие ученные знали, что Земля имеет форму шара, в частности длины его окружности. Были разработаны некоторые методы решения этой задачи. Первое измерение дуги меридиана и радиуса Земли принадлежит Эратосфену Киренскому (ок. 276 – 194 гг. до н.э.) – древнегреческому математику, географу, историку, философу, поэту (Приложение 1).

Но основополагающее значение для развития тригонометрии в эпоху ее зарождения имели работы древнегреческого ученого Гиппарха (ок. 180 – 125 г г. до н.э. ) (Приложение 1) – основателя научной астрономии.

Гиппарх составил звездный каталог с тем, чтобы будущие астрономы могли следить за появлением новых звезд и исчезновением старых. В каталог было занесено положение на небе более 1 тысячи звезд, подразделенных им по блеску на 6 звездных величин и определенных им по блеску на 6 звездных величин и определенных для того времени весьма точно. Гиппарх явился основоположником математической географии. Им было введено определение точек на земной поверхности при помощи географических координат – широты и долготы.

Тригонометрия в Индии

Индийцам было так же известно соотношение sin 2 a + cos 2 a= r 2 , а также формулы для синуса половинного угла и синуса суммы и разности двух углов. Таким образом, индийцы положили начало тригонометрии как учению о тригонометрических величинах, хотя у них и было мало внимания отведено как раз решению треугольников. Для измерений высот и расстояний были разработаны несколько правил, основанных на изменении тени вертикального шеста – гномона и на подобии треугольников. Все это предвосхищало введение тангенса и котангенса.

Тригонометрия в странах Арабского Халифата

Следующий этап в развитии тригонометрии связан с расцветом культуры стран арабского халифата. Так называлось объединение различных стран и народов, завоеванных арабами в VII – VIII вв. в него входили таджики, узбеки, персы, азербайджанцы, египтяне, сирийцы и другие народы. Многие из этих народов стояли на более высоком уровне общественного и культурного развития, чем сами арабы. Необходимые сведения по астрономии вместе с тригонометрией, алгеброй и арифметикой были заимствованы в первые из Индии. И хотя индийская математика дала начало развитию арабской математики, господствующее положение в нарождающейся науки науке у арабов занимала греческая геометрия и астрономия, благодаря переводом всех трудов Евклида, Аполлония, Архимеда, Птолемея и их позднейших комментаторов. Особенно велик вклад, внесенный арабоязычными народами в математику. Это прежде всего десятичная система счисления, позаимствованная арабами у индийцев и позже, благодаря трудам арабоязычных ученых, получившая распространение в Европе. Успехи в математике, в частности в тригонометрии, создали основу для достижений в астрономии и в некоторых других науках.

В Багдаде в разное время занимались научной работой такие ученые, как ал – Хорезми (783 – 830), ал – Хабаш (764 – 874), Ибн кора (836 – 901), Ибн Ирак (965 – 1035), ал – Бируни (973 – 1050) (Приложение 1) .)

Ал – Хорезми внес большой вклад в развитии математики, астрономии и математической географии. Его труды в течение нескольких столетий оказывали сильное влияние на ученных Востока и Запада и долго служили образцом при написании учебников математики. Два его трактата по арифметики и алгебре сыграли большую роль в развитии математики.

Тригонометрия в Европе

В настоящее время тригонометрия перестала существовать как самостоятельная наука, распавшись на две части. Одна из этих частей представляет собой учение о тригонометрических функциях, а другая – вычисление элементов тригонометрических фигур.

Первая часть, как мы уже говорили выше, входит в состав математического анализа, располагающего общими методами исследования функций, а вторая часть относится к геометрии и играет в ней вспомогательную роль.

Применение тригонометрии

Продолжая тему тригонометрии важно отметить, что тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей: астрономии, физике, природе, музыке, медицине, биологии и многих других.

2.1. Тригонометрия в астрономии

Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии.

2.2. Тригонометрия в физике

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Механические колебания. Механическими колебанияминазывают движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

2.3 Тригонометрия в природе

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

2.4. Тригонометрия в медицине

Ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

2.5. Тригонометрия и тригонометрические функции в медицине и биологии, музыке

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов. Основной земной ритм – суточный. Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

Биологические ритмы, биоритмы связаны с тригонометрией. Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека (день, месяц, год ) и длительность прогноза.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При полёте птицы траектория взмаха крыльев образует синусоиду.

Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

диатоническая гамма 2:3:5

Заключение

В ходе исследовательской работы расширились знания по тригонометрии, изучены материалы по истории тригонометрии и сделан вывод о том, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Выяснили, что тригонометрия исторически сложившаяся наука. Она была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Убедились, что тригонометрия перестала существовать как самостоятельная наука, распавшись на две части.

Думаем, что тригонометрия не только нашла своё применение в жизни человека, что сферы применения её будут расширяться.

Список использованных источников и литературы

Волошинов. Математика и искусство// Москва, 1992г. Газета

История математики с Древнейших времен до начала XIX столетия в 3-х томах// под ред. А. П. Юшкевича. Москва, 1970г. – том 1-3 Э. Т. Бэлл Творцы математики.

Математика. Приложение к газете от 1.09.98г.

Предшественники современной математики// под ред. С. Н. Ниро. Москва,1983г. А. Н. Тихонов, Д. П. Костомаров.

История тригонометрии неразрывно связана с астрономией, ведь именно для решения задач этой науки древние ученые стали исследовать соотношения различных величин в треугольнике.

На сегодняшний день тригонометрия является микроразделом математики, изучающим зависимость между значениями величин углов и длин сторон треугольников, а также занимающимся анализом алгебраических тождеств тригонометрических функций.

история развития тригонометрии

Общие сведения о тригонометрии

История тригонометрии началась более двух тысячелетий назад. Первоначально ее возникновение было связано с необходимостью выяснения соотношений углов и сторон треугольника. В процессе исследований выяснилось, что математическое выражение данных соотношений требует введения особых тригонометрических функций, которые первоначально оформлялись как числовые таблицы.

Для многих смежных с математикой наук толчком к развитию стала именно история тригонометрии. Происхождение единиц измерения углов (градусов), связанное с исследованиями ученых Древнего Вавилона, опирается на шестидесятиричную систему исчисления, которая дала начала современной десятиричной, применяемой во многих прикладных науках.

Предполагается, что изначально тригонометрия существовала как часть астрономии. Затем она стала использоваться в архитектуре. А со временем возникла целесообразность применения данной науки в различных областях человеческой деятельности. Это, в частности, астрономия, морская и воздушная навигация, акустика, оптика, электроника, архитектура и прочие.

Тригонометрия в ранние века

Руководствуясь данными о сохранившихся научных реликвиях, исследователи сделали вывод, что история возникновения тригонометрии связана с работами греческого астронома Гиппарха, который впервые задумался над поиском способов решения треугольников (сферических). Его труды относятся ко 2 веку до нашей эры.

история возникновения тригонометрии

Также одним из важнейших достижений тех времен является определение соотношения катетов и гипотенузы в прямоугольных треугольниках, которое позже получило название теоремы Пифагора.

История развития тригонометрии в Древней Греции связана с именем астронома Птоломея - автора геоцентрической системы мира, господствовавшей до Коперника.

Греческим астрономам не были известны синусы, косинусы и тангенсы. Они пользовались таблицами, позволяющими найти значение хорды окружности с помощью стягиваемой дуги. Единицами для измерения хорды были градусы, минуты и секунды. Один градус приравнивался к шестидесятой части радиуса.

история тригонометрии

Средневековье: исследования индийских ученых

Значительных успехов достигли индийские средневековые астрономы. Гибель античной науки в IV веке обусловила перемещение центра развития математики в Индию.

История возникновения тригонометрии как обособленного раздела математического учения началась в Средневековье. Именно тогда ученые заменили хорды синусами. Это открытие позволило ввести функции, касающиеся исследования сторон и углов прямоугольного треугольника. То есть именно тогда тригонометрия начала обосабливаться от астрономии, превращаясь в раздел математики.

Первые таблицы синусов были у Ариабхаты, они была проведены через 3 о , 4 о , 5 о . Позже появились подробные варианты таблиц: в частности, Бхаскара привел таблицу синусов через 1 о .

история возникновения и развития тригонометрии

История развития тригонометрии в Европе

После перевода арабских трактатов на латынь (XII-XIII в) большинство идей индийских и персидских ученых были заимствованы европейской наукой. Первые упоминания о тригонометрии в Европе относятся к XII веку.

История тригонометрии: Новое время

история тригонометрии кратко

Заслуги Леонарда Эйлера

Определение тригонометрических функций на всей числовой прямой стало возможным благодаря исследованиям Эйлера не только допустимых отрицательных углов, но и углов боле 360°. Именно он в своих работах впервые доказал, что косинус и тангенс прямого угла отрицательные. Разложение целых степеней косинуса и синуса тоже стало заслугой этого ученого. Общая теория тригонометрических рядов и изучение сходимости полученных рядов не были объектами исследований Эйлера. Однако, работая над решением смежных задач, он сделал много открытий в этой области. Именно благодаря его работам продолжилась история тригонометрии. Кратко в своих трудах он касался и вопросов сферической тригонометрии.

история тригонометрия происхождение единиц измерения углов

Области применения тригонометрии

Тригонометрия не относится к прикладным наукам, в реальной повседневной жизни ее задачи редко применяются. Однако этот факт не снижает ее значимости. Очень важна, например, техника триангуляции, которая позволяет астрономам достаточно точно измерить расстояние до недалеких звезд и осуществлять контроль за системами навигации спутников.

Также тригонометрию применяют в навигации, теории музыки, акустике, оптике, анализе финансовых рынков, электронике, теории вероятностей, статистике, биологии, медицине (например, в расшифровке ультразвуковых исследований УЗИ и компьютерной томографии), фармацевтике, химии, теории чисел, сейсмологиии, метеорологии, океанологии, картографии, многих разделах физики, топографии и геодезии, архитектуре, фонетике, экономике, электронной технике, машиностроении, компьютерной графике, кристаллографиии и т. д. История тригонометрии и ее роль в изучении естественно-математических наук изучаются и по сей день. Возможно, в будущем областей ее применения станет еще больше.

История происхождения основных понятий

История возникновения и развития тригонометрии насчитывает не один век. Введение понятий, которые составляют основу этого раздела математической науки, также не было одномоментным.

история развития тригонометрии и ее роль в изучении естественно математических наук

Читайте также: