Реферат на тему история появления ядерного оружия

Обновлено: 05.07.2024

Научные знания могут служить и целям гуманным, благородным, и целям варварским. Все зависит от того, в чьих руках находится наука и добытые ею результаты, кто и по каким соображениям занимается научной деятельностью, каковы моральные устои и социальные воззрения людей науки. Эти вопросы возникли перед человечеством именно в тот момент, когда атомная бомба стала реальной угрозой. За годы, отделяющие нас от того дня, когда была взорвана первая атомная бомба, история ее создания успела обрасти легендами. Об этом событии были написаны десятки книг, правдивых и ничего общего с исторической правдой не имеющих.

Содержание

Введение
Предпосылки ядерного оружия
Испытания атомного оружия
Применение первого атомного оружия
Поражающие факторы ядерного взрыва
Заключение
Литература

Работа содержит 1 файл

реферат БЖД.docx

Преподаватель: Пряхин Александр Михайлович

  1. Введение
  2. Предпосылки ядерного оружия
  3. Испытания атомного оружия
  4. Применение первого атомного оружия
  5. Поражающие факторы ядерного взрыва
  6. Заключение
  7. Литература

Научные знания могут служить и целям гуманным, благородным, и целям варварским. Все зависит от того, в чьих руках находится наука и добытые ею результаты, кто и по каким соображениям занимается научной деятельностью, каковы моральные устои и социальные воззрения людей науки. Эти вопросы возникли перед человечеством именно в тот момент, когда атомная бомба стала реальной угрозой. За годы, отделяющие нас от того дня, когда была взорвана первая атомная бомба, история ее создания успела обрасти легендами. Об этом событии были написаны десятки книг, правдивых и ничего общего с исторической правдой не имеющих.

Предпосылки создания атомного оружия

В 1898 году французский учёный Пьер Кюри и его польская жена Мария Склодовская-Кюри обнаружили в настуране, минерале урана, некое вещество, выделяющее большое количество радиации. Это открытие дало основание предположить наличие огромного потенциала неведанной ранее энергии, заключённой в атомах радиоактивных элементов. В 1911 Эрнест Резерфорд сделал важные открытия в области изучения атомов, а в 1932 Эрнест Уолтон и Джон Кокрофт смогли впервые расщепить ядро атома. В 1934 Лео Силард запатентовал атомную бомбу.

Испытания атомного оружия

сигналу остановить испытания. Испытание нового оружия состоялось в 5 часов 30 минут 16июля 1945 г. Ослепительная вспышка неестественно белого света прорезала предутреннюю мглу. Казалось, будто много солнц соединилось в одном и разом осветило полигон, позади которого четко обозначились горы. Через несколько секунд раздался оглушительный взрыв, и мощная волна пронеслась над убежищами, свалив на землю нескольких солдат, не успевших лечь. Огненный шар стал расти, все больше и больше увеличиваясь в диаметре. Вскоре его поперечник составлял уже полтора километра. Еще через несколько секунд огненный шар уступил место столбу клубящегося дыма, который поднялся на высоту 12 км, приняв форму гигантского гриба, ставшего впоследствии зловещим символом ядерного взрыва. А потом задрожала земля и вновь раздался грохот. Это был первый крик

Применение первого атомного оружия

бомбардировщики ежедневно совершали налеты на Японию. Бомбы были собраны на авиационной базе. Специальное авиационное соединение ждало приказа. Как известно, многие ученые-атомники надеялись, что ультиматум, в котором объективно оценивалось положение Японии после капитуляции гитлеровской Германии и конкретно излагались гибельные для нее последствия, должен склонить силы рассудка в Японии к капитуляции. Ученые считали, что США обрушат на Японию свое новое оружие, обладающее ни с чем не сравнимой мощью, лишь в случае ее отказа принять ультиматум. Кабинет Судзуки 28 июля отклонил Потсдамскую декларацию, что дало правительству США желанный предлог для атомной бомбардировки японских

Военно-воздушные командование США только 8 августа узнало о действительных масштабах разрушения Хиросимы. Результаты аэрофотосъемки показали, что на площади около 12 кв. км. 60 процентов зданий было превращено в пыль, остальные разрушены. Город перестал существовать. Командующий союзническими военно-воздушными силами на Дальнем Востоке генерал Дж. Кенней заявил, что город выглядел так, как будто его раздавила нога великана. Бомба, сброшенная на Хиросиму, соответствовала по силе взрыва заряду в 20 тыс. т тринитротолуола. Диаметр огненного шара составлял 17 м, температура — 300 тыс. градусов. В результате атомной бомбардировки погибло свыше 240 тыс. жителей Хиросимы (в момент бомбардировки население составляло около 400 тыс. человек. Вашингтон издал приказ — в течение 9 дней информировать население Японии о судьбе Хиросимы: составить на японском языке листовки с описанием результатов атомной бомбардировки и фотографиями разрушенного города, а затем сбросить их над территорией Японии. В листовках говорилось: «Мы обладаем мощным оружием, которого никогда не знали люди. Если у вас есть сомнения на этот счет, посмотрите, что произошло в Хиросиме, когда одна-единственная бомба была сброшена на этот город. Прежде чем мы применим еще одну такую бомбу, мы

Поражающие факторы ядерного взрыва

В зависимости от типа заряда и условий взрыва энергия взрыва распределяется по-разному. Например, при взрыве обычного ядерного заряда без повышенного выхода нейтронного излучения или радиоактивного загрязнения может быть следующее соотношение долей энергетического выхода на различных высотах [1] :


Ядерное оружие – это оружие массового поражения взрывного действия, основанное на использовании энергии деления тяжелых ядер некоторых изотопов урана и плутония, или при термоядерных реакциях синтеза легких ядер изотопов водорода дейтерия и трития, в более тяжелые, например, ядра изотопов гелия

Содержимое разработки

История появления ядерного оружия

История появления

ядерного оружия

Ядерное оружие – это оружие массового поражения взрывного действия, основанное на использовании энергии деления тяжелых ядер некоторых изотопов урана и плутония, или при термоядерных реакциях синтеза легких ядер изотопов водорода дейтерия и трития, в более тяжелые, например, ядра изотопов гелия.

Ядерное оружие – это оружие массового поражения взрывного действия, основанное на использовании энергии деления тяжелых ядер некоторых изотопов урана и плутония, или при термоядерных реакциях синтеза легких ядер изотопов водорода дейтерия и трития, в более тяжелые, например, ядра изотопов гелия.

Ядерными зарядами могут быть снабжены боевые части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины. По мощности различают ядерные боеприпасы сверхмалые (менее 1 кт), малые (1-10 кт), средние (10-100 кт), крупные (100-1000 кт) и сверхкрупные (более 1000 кт).

Ядерными зарядами могут быть снабжены боевые части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины. По мощности различают ядерные боеприпасы сверхмалые (менее 1 кт), малые (1-10 кт), средние (10-100 кт), крупные (100-1000 кт) и сверхкрупные (более 1000 кт).

В зависимости от решаемых задач возможно применение ядерного оружия в виде подземного, наземного, воздушного, подводного и надводного взрывов. Особенности поражающего действия ядерного оружия на население определяются не только мощностью боеприпаса и видом взрыва, но и типом ядерного устройства. В зависимости от заряда различают: атомное оружие, в основе которого лежит реакция деления; термоядерное оружие - при использовании реакции синтеза; комбинированные заряды; нейтронное оружие.

В зависимости от решаемых задач возможно применение ядерного оружия в виде подземного, наземного, воздушного, подводного и надводного взрывов. Особенности поражающего действия ядерного оружия на население определяются не только мощностью боеприпаса и видом взрыва, но и типом ядерного устройства. В зависимости от заряда различают: атомное оружие, в основе которого лежит реакция деления; термоядерное оружие - при использовании реакции синтеза; комбинированные заряды; нейтронное оружие.

В начале 1939 года французский физик Фредерик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии как обычное взрывчатое вещество. Это заключение стало толчком для разработок по созданию ядерного оружия. Европа была накануне второй мировой войны, и потенциальное обладание таким мощным оружием давало любому его обладателю огромные преимущества. Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Физик Фредерик Жолио-Кюри

В начале 1939 года французский физик Фредерик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии как обычное взрывчатое вещество. Это заключение стало толчком для разработок по созданию ядерного оружия. Европа была накануне второй мировой войны, и потенциальное обладание таким мощным оружием давало любому его обладателю огромные преимущества. Над созданием атомного оружия трудились физики Германии, Англии, США, Японии.

Физик Фредерик Жолио-Кюри

К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия

К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия "Малыш" и "Толстяк". Первая бомба весила 2722 кг и была снаряжена обогащенным Ураном-235.

Бомба

Бомба "Толстяк" с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг.

Президент США Г. Трумэн стал первым политическим руководителем, кто принял решение на применение ядерных бомб. Первыми целями для ядерных ударов были выбраны японские города (Хиросима, Нагасаки, Кокура, Ниигата). С военной точки зрения необходимости таких бомбардировок густонаселенных японских городов не было.

Президент США Г. Трумэн стал первым политическим руководителем, кто принял решение на применение ядерных бомб. Первыми целями для ядерных ударов были выбраны японские города (Хиросима, Нагасаки, Кокура, Ниигата). С военной точки зрения необходимости таких бомбардировок густонаселенных японских городов не было.

Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолетов(один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба

Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолетов(один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба "Малыш". 9 августа еще одна бомба была сброшена над городом Нагасаки.

Общие людские потери и масштабы разрушений от этих бомбардировок характеризуются следующими цифрами: мгновенно погибло от теплового излучения (температура около 5000 градусов С) и ударной волны - 300 тысяч человек, еще 200 тысяч получили ранения, ожоги, лучевую болезнь. На площади 12 кв. км были полностью разрушены все строения. Только в одной Хиросиме из 90 тысяч строений было уничтожено 62 тысячи.

Общие людские потери и масштабы разрушений от этих бомбардировок характеризуются следующими цифрами: мгновенно погибло от теплового излучения (температура около 5000 градусов С) и ударной волны - 300 тысяч человек, еще 200 тысяч получили ранения, ожоги, лучевую болезнь. На площади 12 кв. км были полностью разрушены все строения. Только в одной Хиросиме из 90 тысяч строений было уничтожено 62 тысячи.

После американских атомных бомбежек по распоряжению Сталина 20 августа 1945 года был образован специальный комитет по атомной энергии под руководством Л. Берия. В комитет вошли видные ученые А.Ф. Иоффе, П.Л. Капица и И.В. Курчатов. Большую услугу советским атомщикам оказал коммунист по убеждениям, ученый Клаус Фукс - видный работник американского ядерного центра в Лос-Аламосе. Он в течение 1945 -1947 годов четыре раза передавал сведения по практическим и теоретическим вопросам создания атомной и водородных бомб, чем ускорил их появление в СССР.

После американских атомных бомбежек по распоряжению Сталина 20 августа 1945 года был образован специальный комитет по атомной энергии под руководством Л. Берия. В комитет вошли видные ученые А.Ф. Иоффе, П.Л. Капица и И.В. Курчатов. Большую услугу советским атомщикам оказал коммунист по убеждениям, ученый Клаус Фукс - видный работник американского ядерного центра в Лос-Аламосе. Он в течение 1945 -1947 годов четыре раза передавал сведения по практическим и теоретическим вопросам создания атомной и водородных бомб, чем ускорил их появление в СССР.

Поражающими факторами ядерного взрыва являются : ударная волна, световое излучение, проникающая радиация, радиоактивное заражение и электромагнитный импульс.

Поражающими факторами ядерного взрыва являются :

ударная волна, световое излучение, проникающая радиация, радиоактивное заражение и электромагнитный импульс.

Ударная волна. Основной поражающий фактор ядерного взрыва. На нее расходуется около 60% энергии ядерного взрыва. Она представляет собой область резкого сжатия воздуха, распространяющуюся во все стороны от места взрыва. Поражающее действие ударной волны характеризуется величиной избыточного давления. Избыточное давление - это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед ним.

Ударная волна. Основной поражающий фактор ядерного взрыва. На нее расходуется около 60% энергии ядерного взрыва. Она представляет собой область резкого сжатия воздуха, распространяющуюся во все стороны от места взрыва. Поражающее действие ударной волны характеризуется величиной избыточного давления. Избыточное давление - это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед ним.

Световое излучение - это поток лучистой энергии, включающий видимые ультрафиолетовые и инфракрасные лучи. Его источник - светящаяся область, образуемая раскаленными продуктами взрыва. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного взрыва до 20 с. Сила его такова, что, несмотря на кратковременность, оно способно вызывать пожары, глубокие ожоги кожи и поражение органов зрения у людей. Световое излучение не проникает через непрозрачные материалы, поэтому любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги. Значительно ослабляется световое излучение в запыленном (задымленном) воздухе, в туман, дождь.

Световое излучение - это поток лучистой энергии, включающий видимые ультрафиолетовые и инфракрасные лучи.

Его источник - светящаяся область, образуемая раскаленными продуктами взрыва. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного взрыва до 20 с. Сила его такова, что, несмотря на кратковременность, оно способно вызывать пожары, глубокие ожоги кожи и поражение органов зрения у людей.

Световое излучение не проникает через непрозрачные материалы, поэтому любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Значительно ослабляется световое излучение в запыленном (задымленном) воздухе, в туман, дождь.

Проникающая радиация. Это поток гамма-излучения и нейтронов. Воздействие длится 10-15 с. Появление в крови продуктов распада радиочувствительных тканей и патологического обмена веществ при воздействии высоких доз ионизирующего излучения является основой формирования токсемии - отравления организма, связанного с циркуляцией в крови токсинов. Основное значение в развитии радиационных поражений имеют нарушения физиологической регенерации клеток и тканей, а также изменения функций регуляторных систем.

Проникающая радиация.

Это поток гамма-излучения и нейтронов. Воздействие длится 10-15 с. Появление в крови продуктов распада радиочувствительных тканей и патологического обмена веществ при воздействии высоких доз ионизирующего излучения является основой формирования токсемии - отравления организма, связанного с циркуляцией в крови токсинов. Основное значение в развитии радиационных поражений имеют нарушения физиологической регенерации клеток и тканей, а также изменения функций регуляторных систем.

Радиоактивное заражение местности Основными её источниками являются продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате приобретения радиоактивных свойств элементами из которых изготовлен ядерный боеприпас и входящих в состав грунта. Из них образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, и с воздушными массами переносится на значительные расстояния. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения (след), длина которой может достигать нескольких сот километров. Наибольшую опасность радиоактивные вещества представляют в первые часы после выпадения, так как их активность в этот период наивысшая.

Радиоактивное заражение местности

Основными её источниками являются продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате приобретения радиоактивных свойств элементами из которых изготовлен ядерный боеприпас и входящих в состав грунта. Из них образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, и с воздушными массами переносится на значительные расстояния. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения (след), длина которой может достигать нескольких сот километров. Наибольшую опасность радиоактивные вещества представляют в первые часы после выпадения, так как их активность в этот период наивысшая.


Электромагнитный импульс. Это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Следствием его воздействия является перегорание или пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры. Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с проводными линиями.

Электромагнитный импульс.

Это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Следствием его воздействия является перегорание или пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры. Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с проводными линиями.

Источники https ://studfiles.net/preview/2705293/page:2 / https:// studwood.ru/680575/bzhd/istoriya_sozdaniya_razvitiya_yadernogo_oruzhiya


-75%

Ядерное оружие - это самое опасное оружие массового поражения, известное миру на сегодняшний день. Ядерные ракеты, несущие на себе смертоносный запал, весят тонны, а иногда и десятки тонн. Они обладают огромным запасом топлива, что позволяет им облететь Землю несколько раз и попасть в заданную точку с любого конца нашей планеты. Обладая огромной скоростью, они становятся неуязвимыми для многих систем противоракетной обороны (ПРО) стран мира. Ядерное оружие, как и любое другое, обладает рядом факторов, делающих его универсальным в своем роде.

Поражающий фактор

Данный фактор заключается в площади, которая подвергнется удару и будет заражена радиацией. У каждой ядерной ракеты этот фактор различный. Поражающий фактор напрямую зависит от мощности ядерной ракеты, которая характеризуется в тротиловом эквиваленте.

Рис. 1. Взрыв однофазной ядерной бомбы мощностью 23 кт. Полигон в Неваде. 1953 год

  • Ядерная волна
  • Световое излучение
  • Электромагнитный импульс

Ядерная волна

Данная волна представляет собой движение воздушных масс параллельно поверхности земли. Вызвана она огромным выбросом энергии. Ядерная волна - это один из самых страшных подпунктов поражающего фактора. Даже перед ядерной волной самой маленькой ракеты не устоит ни одно здание. Волна взрыва распространяется на огромные расстояния, начиная с нескольких километров и заканчивая несколькими десятками, в исключительных случаях в радиусе 100 километров не остается ничего живого. Все превращается в прах.

Световое излучение

Второй по мощности подпункт поражающего фактора. Он является кратковременным и возникает только в момент соприкосновения боеголовки с землей. После контакта происходит выброс энергии невероятной силы. Он сопровождается яркой вспышкой света, которая сравнивается с яркостью солнца. Казалось бы, ничего страшного в этом нет. Однако свет такой яркости способен сжечь все вокруг себя в радиусе нескольких десятков километров.

Рис. 2. Тополь-М на Тверской улице Москвы во время репетиции парада Если в момент взрыва человек, находившийся в 15 километрах от него, смотрел в ту сторону, то ему гарантированно сожжет сетчатку глаза. Скорость света огромна - почти 300000000 м/с. С такой же скоростью он распространяется и в момент взрыва. Световой поток состоит из таких излучений, как инфракрасное, видимое и даже ультрафиолетовое.

Излучение радиации (проникающая радиация)

Так как ядерная бомба состоит из химических элементов, которые излучают радиацию, в частности это уран и цезий, соответственно - взрыв такого оружия будет вызывать моментальное распространение радиации на огромные территории. Такая радиация представляет собой поток направленных гамма-лучей, а также нейтронов. Длительность проникающей радиации, как правило, составляет 10-15 секунд. Данный тип радиации опасен тем, что он способен проникать в любые помещения и здания. Однако чем прочнее материал, через который она проходит, тем меньше будет ее сила. Так, например, пройдя через сталь толщиной 2,8 см, сила радиации ослабевает примерно в 2 раза.

Важно! Количество нейтронов в обычных ядерных бомбах составляет около 30% от общей массы. А если бомбы или ракеты нейтронного характера , тогда это число повышается до 70-80%. Для того чтобы обезопасить мирное население в период ядерной войны, создаются специальные сооружения, которые позволяют ослабить проникающую радиацию приблизительно в 5000 раз.

Рис. 3. PC-24 Ярс

Радиоактивное заражение

  1. Зона А . Она располагается дальше всех от эпицентра взрыва. Допустимая доза в ней составляет от 40 до 400 рад. Такая зона называется зоной умеренного заражения.
  2. Зона Б . Статус зоны сильного заражения носит участок, где допустимая радиация находится в промежутке от 400 до 1200 рад.
  3. Зона В. Называется зоной опасного заражения. Допустимые значения радиации на этом участке могут находится от 1200 до 4000 рад.
  4. Зона Г. Считается чрезвычайно опасной. Здесь доза излучения может достигать 7000 рад.

Важно! Смертельная для человека доза составляет от 600 до 1000 рад. При мощности излучения, превышающей отметку в 7000 рад, смерть наступает мгновенно. Человек просто сгорает заживо.

Электромагнитный импульс

Данный импульс возникает в процессе ионизации при гамма-излучении. Его длительность не превышает пару миллисекунд. Однако этот импульс распространяется со сверхзвуковой скоростью. Поэтому нескольких миллисекунд ему хватит, чтобы в радиусе нескольких десятков километров вывести всю электронику из строя.

Именно по этой простой причине вся военная техника оснащена не бензиновыми, а дизельными силовыми агрегатами. Для того, чтобы воспламенилось бензиновое топливо, необходима искра. В двигатель она поступает только в том случае, если повернуть замок зажигания. Но он не сможет выдать необходимое количество электричества, так как электромагнитный импульс вывел его из строя. Дизель же воспламеняется за счет сжатия. Для того чтобы мотор запустился, достаточно просто толкнуть автомобиль.

Рис. 4. Ракета Р-36М Сатана

Вес, длина и способ запуска

  1. Бомбы. Их необходимо сбрасывать непосредственно с авиации.
  2. Ракеты , в том числе и баллистические. Они имеют в своем строении определенный запас топлива, который позволяет летать им очень далеко и долго. В свою очередь они делятся на два класса:
    • Запускаемые с техники , которые может быстро передвигаться и менять место своей дислокации. Однако, для полной боеготовности к запуску таким ракетам требуется время с продолжительностью около 5 минут.
    • Базирующиеся в шахтах . Данный тип ракет уникален тем, что никто, кроме президента и министра обороны не знает их расположение, а также число. Для их развертывания требуется приблизительно столько же времени, но ракеты такого типа могут облететь весь земной шар несколько раз.
  • Тополь-М . Признана самой мобильной ядерной установкой. Производство осуществляется с 1994 года. Вес составляет 46,5 тонн. Длина - 17,5 метра. Является основой ядерного щита России.
  • Ярс РС-24 . Самая защищенная ракета. Масса около 47 тонн. Длина приблизительно 23 метра.
  • Р-36М Сатана . Признана самой тяжелой ядерной ракетой в нашей стране. Ее вес составляет 211 тонн. Длина - 34,3 метра.
  • РС-28 Сармат . Длина составляет 30-35 метров. Вес более 200 тонн.

История применения ядерного оружия

  • Вооруженные силы США сбросили на Хиросиму ядерную ракету “Малыш”, мощность которой составляла около 15 килотонн в тротиловом эквиваленте.
  • На Нагасаки была сброшена бомба “Толстяк”. Ее мощность составила более 21 килотонны тротила.

Важно! За всю длительную историю строения ядерного оружия абсолютным рекордсменом стала советская ракета “Царь-бомба”, чья мощность составляла 101,5 мегатонны.

Шуруповерты

Предпосылки разработки ядерных бомб


Первым значимым научным событием, которое открыло путь к ведению исследований в области создания атомных зарядов стало открытие радиоактивности урана. Оно произошло в конце девятнадцатого столетия. Его автором стал знаменитый французский ученый Беккерель. Его работа в итоге стала основой в разработке атомных зарядов.

На рубеже девятнадцатого и двадцатого столетий многие исследователи обнаружили множество радиоактивных изотопов. Тогда был сформулирован закон радиоактивного распада. В то время началось серьезное исследование ядерной изометрии. В тридцатых годах прошлого столетия ученые открыли позитрон и нейтрон. Далее был подвергнут расщеплению атом урана.

Прогресс в разработке мощного оружия создал своеобразный исторический феномен. Страна, обладающая ядерным зарядом, могла обеспечить себе максимальную безопасность и существенно снизить военные возможности обычного вооружения.

Как работает ядерная бомба?

В основе действия атомных зарядов находится энергия ядер. Она выделяется в процессе цепной реакции. Процесс заключается в делении тяжелых или синтезе легких ядер. Выделение значительного объема энергии в минимальное время на маленьком участке пространства сделало атомный заряд оружием ужасной разрушительной силы.

В ходе протекания ядерного подрыва создается:


Центр. Место, где собственно происходит взрыв.

Эпицентр. Представляет собой проекцию рассматриваемого процесса на окружающее пространство.

Во время атомного взрыва выделяет колоссальный объем энергии. Это приводит к серьезнейшим последствиям. При проекции ее на грунт создаются мощные сейсмические толчки. Причем они распространяются на огромные расстояния. Взрыв наносит невероятный урон окружающей среде. Причем вред наносится территориям, находящихся на значительном расстоянии.

Атомные заряды создают сразу несколько видов поражающего действия. Каждый из них наносит урон огромной силы. После совершения атомного взрыва пространство вокруг поражается:

Подрыв ядерного заряда создает вспышку, возникающую в результате высвобождения значительного объема тепла и света. По уровню мощности упомянутая вспышка во множество раз превосходит яркость лучей солнца. Она представляет опасность на расстоянии нескольких километров.


Радиация также несет в себе угрозу для всего живого. В течении одной минуты ее мощность максимальная. В этот момент она уничтожает всю окружающую биологическую жизнь.

Ударная волна несет разрушение огромной силы. Она способна не только уничтожить любые строения, но и изменить рельеф окружающей местности. Ради ударной волны изначально и разрабатывалось это страшное оружие.

Проникающая радиация несет смерть любым формам жизни. Она вызывает возникновение лучевой болезни у людей. Последняя приводит к тяжелым последствиям для здоровья человека. Тяжелая форма этой болезни приводит к мучительной смерти.

Электромагнитный импульс воздействует на электронику, выводя ее из строя. Этот эффект позволяет в считанные минуты уничтожить работу многих объектов и техники.

Создание ядерного заряда в Советском Союзе

Как проходило испытание первого атомного заряда в Советском Союзе?


Ядерный заряд впервые испытали 29 августа 1949 года. Данное событие произошло на Семипалатинском полигоне. Руководитель проекта Курчатов распорядился провести подрыв в восемь утра. К месту испытания привезли бомбу и нейтронные запалы, необходимые для взрыва. В полночь устройство РДС-1 собрали в единый механизм. Процесс сборки закончили к трем часам ночи.

В шесть утра готовую бомбу подняли на испытательную башню. В результате того, что погода стала портиться Курчатов решил перенести подрыв на один час раньше изначально назначенного времени.

В семь часов утра началось испытание. Произошел взрыв разрушительной силы. Спустя двадцать минут к месту испытания была отправлена разведка. Ее задача состояла в изучении обстановки в месте подрыва атомного заряда. Полученные сведения ошеломили всех присутствующих. Все стоявшие постройки были разрушены до основания. Грунт заражен и превратился в сплошную корку. Мощность смертоносного оружия составляла двадцать две килотонны.

Вывод

Создание атомных зарядов было естественным следствием научно-технического прогресса. Военно-политическая обстановка в мире лишь ускорила этот процесс. Испытание ядерного заряда в СССР стало началом новой эпохи. Создание ядерного заряда изменило существующий баланс сил на всей планете.

Читайте также: