Реферат на тему инверторы

Обновлено: 05.07.2024

1. Назначение, классификация, принцип действия и основные эксплуатационные характеристики инверторов.

2. Электромагнитные процессы и основные расчетные соотношения в транзисторном инверторе.

3. Электромагнитные процессы в тиристорном автономном инверторе тока.

1. Бушуев В. М., Деминский В. А. Электропитание устройств и систем телекоммуникаций: учеб. пособие для вузов. - М.: Горячая линия - Телеком, 2011. - с. 7 – 56.

Назначение, классификация, принцип действия

и основные эксплуатационные характеристики инверторов

Назначение инверторов. На практике часто возникает задача преобразования постоянного напряжения в переменное напряжение. Процесс преобразования постоянного тока в переменный получил наименование инвертирования, а устройства, осуществляющие это преобразование, называются инверторами. Термин “инвертирование” происходит от латинского слова invercio - переворачивание, перестановка. Впервые этот термин в преобразовательной технике был применен для обозначения процесса, обратного выпрямлению, и характеризовал процесс, при котором поток электрической энергии источника постоянного тока поочередно изменял свое направление на обратное таким образом, что в приемнике протекал переменный ток. Таким образом, устройства, преобразующие электрическую энергию постоянного тока в электрическую энергию переменного тока с постоянной или регулируемой частотой, называются инверторами.

Необходимость применения такого типа устройства возникает в следующих случаях:

- когда единственным источником электрической энергии в РЭС является химический источник тока, а некоторые приемники требуют для электропитания только переменного тока;

- при необходимости преобразовать переменное напряжение одной частоты в переменное напряжение другой частоты (более высокой);

- при необходимости повысить качество выпрямленного напряжения путем преобразования выпрямленного напряжения промышленной частоты в переменное напряжение повышенной частоты с последующим его выпрямлением для уменьшения коэффициента пульсаций (в ППН).

Физическая сущность процесса инвертирования постоянного тока состоит в том, что посредством применения полупроводниковых переключателей, соединенных в схему инвертирования, и соответствующим чередованием замкнутого и разомкнутого их состояния осуществляется такое подключение резистора нагрузки к источнику постоянного тока, которое обеспечивает изменение направления тока в этом резисторе, подобное протеканию по нему переменного тока. Путем такого преобразования создается возможность электропитания приемников переменного тока от первичного источника электрической энергии постоянного тока.

Классификация инверторов.Инверторы принято классифицировать по ряду признаков:

- по числу импульсов противоположной полярности за период выходного напряжения;

- по схеме преобразования (инвертирования);

- по числу фаз вторичной обмотки трансформатора;

- по типу применяемых переключающих вентильных устройств (ключей);

- по способу управления или коммутации переключающими устройствами.

По числу импульсов противоположной полярности за период выходного напряжения различают однотактные и двухтактные инверторы. В однотактных инверторах в приемник за период изменения выходного напряжения из первичной сети постоянного напряжения передается один импульс. В двухтактных инверторах за один период изменения выходного напряжения таких импульсов напряжения передается два.

Под схемой преобразования (инвертирования) понимают схему соединения вентильных элементов и элементов для их коммутации, а также трансформатора и в отдельных случаях входного или выходного фильтра. Работа инвертора и его технико-экономические показатели в основном определяются схемой инвертирования, от которой зависят: форма кривой выходного напряжения; форма кривой потребляемого тока; внешняя (или нагрузочная) характеристика; КПД инвертора; допустимое изменение коэффициента мощности нагрузки (указываемого обычно по основной гармонике напряжения на нагрузке); максимальное или мгновенное значения тока нагрузки, определяющие для большинства схем порог устойчивой работы инвертора.

На практике находят применение следующие схемы инвертирования:

- однофазная однотактная (рис. 5.1);

- однофазная двухтактная (рис. 5.2);

- однофазная мостовая (рис. 5.3);

- трехфазная однотактная с нулевым выводом (рис. 5.4, а);

- трехфазная мостовая (рис. 5.4, б).

В зависимости от требований, предъявляемых к инверторам со стороны их приемников, они могут быть с трансформаторным и бестрансформаторным (гальваническим) выходами. Как правило, трансформаторная схема применяется в тех случаях, когда необходимо изменить величину выходного напряжения относительно напряжения источника питания или обеспечить электрическую развязку цепей постоянного и переменного тока. Примеры схем обоих типов приведены на рис. 5.2, а, б.

По числу фаз вторичной обмотки трансформатора различают однофазные, двухфазные и трехфазные инверторы.

По типу переключающих вентильных устройств (ключей) различают транзисторные и тиристорные инверторы. Транзисторные инверторы применяют для получения выходной мощности от 20. 50 Вт до 1000 Вт. При большей выходной мощности (от 1 до 100 кВт и более), особенно при большом первичном напряжении применяются тиристорные инверторы.

В зависимости от способа управления или коммутации переключающими устройствами различают два основных класса инверторов:

- инверторы с самовозбуждением или автономные инверторы;

- инверторы с независимым возбуждением (ведомые сетью).

Автономный инвертор - это полупроводниковый инвертор, в котором коммутация полупроводниковых приборов осуществляется под действием напряжения, обусловленного элементами, входящими в состав полупроводникового инвертора (ГОСТ 23414-84).

Ведомый инвертор - это полупроводниковый инвертор, в котором коммутация полупроводниковых приборов осуществляется под действием напряжения, обусловленного внешними по отношению к полупроводниковому инвертору источниками электрической энергии (ГОСТ 23414-84).

Принцип инвертирования и схемы инвертирования. На схемах инверторов (рис.5.1,а – рис. 5.4) цифрами обозначены условные номера ключей-прерывателей. В однофазной однотактной схеме (рис. 5.1,а) при замыкании ключа S1 источник питания подключается непосредственно к нагрузке. При периодическом замыкании и размыкании ключа на приемнике получим импульсы напряжения прямоугольной формы (рис. 5.1,б). Длительность импульсов напряжения и их частота следования полностью определяется режимом работы ключа. Для выделения переменной составляющей напряжения в такой схеме целесообразно применить трансформатор.



Рисунок 5.1 - Однофазная однотактная схема инвертора (а)

и временная диаграмма выходного напряжения (б)


Аналогичным образом работает однофазная двухполупериодная схема с нулевым выводом (рис. 5.2, а, б). Различия состоят только в том, что ключи S1 и S2 замыкаются не одновременно, а поочередно таким образом, когда замкнутому состоянию ключа S1 соответствует разомкнутое состояние ключа S2 и наоборот, т.е. ключи работают в противофазе.

Рисунок 5.2 - Однофазные двухтактные схемы с нулевым выводом:

а) бестрансформаторная; б) трансформаторная;

в) временная диаграмма выходного напряжения

Если интервалы времени замкнутого и разомкнутого состояния ключей S1 и S2 одинаковы, то в нагрузке получим переменное напряжение прямоугольной формы.

В мостовой схеме инвертора (рис. 5.3) для получения переменного напряжения на выходе необходима одновременная коммутация двух ключей S1 и S4 или S2 и S3.


Рисунок 5.3 - Однофазная мостовая схема


Рисунок 5.4. Трехфазные схемы инвертирования:

а – с нулевым выводом; б- трехфазная мостовая схема

На рис. 5.4 представлены более сложные схемы, обеспечивающие преобразование постоянного напряжения в трехфазное.

Автономные инверторы тока и напряжения.В зависимости от характера протекания электромагнитных процессов в схемах автономных инверторов их дополнительно подразделяют на три основных типа:

Это разделение носит условный характер. За определяющий признак при этом принимается проводимость цепи постоянного тока со стороны непосредственно преобразующей части (например, со стороны тиристоров) относительно переменной составляющей выходного напряжения. Рассматривая далее простейшие схемы автономных инверторов (рис.8.5), нужно помнить, что на них показаны как бы механические ключи. Реально же используются электронные ключи, автоматически обеспечивающие самовозбуждение инверторов.

Рассмотрим автономные инверторы тока и напряжения, получающие питание от источника постоянного напряжения Ud (рис. 5.5). В цепи постоянного тока первого инвертора (рис. 5.5,а) включен дроссель Ld с большой индуктивностью. Наличие такого дросселя обеспечивает электромагнитную инерционность процесса изменения тока в неразветвленной части схемы в паузах между переключениями ключевых элементов S1. S4 ток можно условно считать неизменным, постоянным, а бросками тока в моменты переключения можно пренебречь.

Процесс коммутации в этих условиях и воспринимается как инвертирование тока, а само преобразовательное устройство называется инвертором тока.

В схеме (рис.5.5,б) источник постоянного напряжения подключен непосредственно к ключевым элементам, которые периодически с изменением полярности автоматически подключают это напряжение к приемнику. В результате приемник питается как бы от источника переменного напряжения. Такая схема классифицируется как инвертор напряжения. Ток приемника в этом случае должен носить обычно активный либо индуктивный характер (если на выходе инвертора не установлены специальные фильтры с конденсаторами). При емкостном характере нагрузки из-за скачкообразного изменения напряжения имеют место всплески токов, что ухудшает работу инвертора.

В резонансных инверторах, содержащих и конденсаторы, приемник, имеющий большую индуктивность, образует с емкостными элементами схемы инвертора колебательный контур с резонансом напряжений. При этом собственная частота контура должна быть выше или равна рабочей частоте инвертора. Такие инверторы имеют близкую к синусоидальной форму напряжения и тока в приемнике и применяются для получения переменного напряжения или тока повышенной частоты (более 1000 Гц).


Рисунок 5.5 - Автономные мостовые инверторы:

а - инвертор тока; б – инвертор напряжения;

в, г – временные диаграммы

Таким образом, сущность процесса инвертирования заключается в как бы периодическом подключении приемника или первичной обмотки трансформатора к источнику постоянного тока с одной и той же полярностью в однотактных или с противоположной полярностью в двухтактных схемах инверторов.

Характеристики инверторов. Основными характеристиками, которые позволяют сравнивать между собой различные схемы инверторов, являются:

а) зависимость величины выходного напряжения инвертора от величины напряжения питания постоянного тока при заданном токе приемника:

Uвых = f (Ud) при Iвых = const;

б) зависимость частоты выходного напряжения инвертора от величины напряжения питания при заданном токе нагрузки:

f = j(Ud) при Iвых = const;

в) внешняя характеристика инвертора - зависимость выходного напряжения инвертора от величины тока приемника при неизменном напряжении питания:

Uвых = f (Iвых) при Ud = const;

г) выходное сопротивление инвертора (внутреннее), которое определяется по внешней характеристике инвертора:

где DUвых - изменение напряжения на выходе инвертора;

DIвых - изменение тока приемника инвертора.

д) величина выходной мощности инвертора Pвых;

е) коэффициент полезного действия инвертора.

Все указанные характеристики для реального инвертора могут быть получены экспериментальным путем.

Инверторы напряжения позволяют устранить или по крайней мере ослабить зависимость работы информационных систем от качества сетей переменного тока. Например, в персональных компьютерах, информационных центрах на базе ПК при внезапном отказе сети с помощью резервной аккумуляторной батареи и инвертора можно обеспечить работу компьютеров для корректного завершения решаемых задач. В более сложных и ответственных системах инверторные устройства могут работать в длительном контролируемом режиме параллельно с сетью или независимо от неё.

Как и любое другое силовое устройство, ИН должен иметь высокий КПД, обладать высокой надежностью и иметь приемлимые массо-габаритные характеристики. Кроме того, ИН должен иметь допустимый уровень высших гармонических составляющих в кривой выходного напряжения (допустимое значение коэффициента гармоник) и не создавать при работе недопустимый для других потребителей уровень пульсации на зажимах источника энергии.


Модуль переключения Ms преобразует напряжение постоянного тока источника энергии Е в знакопеременное напряжение прямоугольной формы с регулируемой паузой на нуле. Трансформатор в структуре обеспечивает гальваническую развязку источника энергии и нагрузки, а также согласование уровней напряжения на выходе модуля переключения (u1) и нагрузки (u2). Фильтр (Ф) предназначен для снижения уровня паразитных гармоник в спектре выходного напряжения. Во многих случаях, ориентированных на электропитание компьютеров, фильтром подавляются только высшие гармоники радиочастотного спектра. Форма выходного напряжения инвертора при этом остается близкой к прямоугольной. Не критичность компьютеров к форме питающего напряжения обусловлена тем, что входной сетевой выпрямитель компьютерного блока питания преобразует выходное напряжение инвертора в напряжение постоянного тока. Если потребители энергии в своем составе имеют асинхронные двигатели, элементы электроники, чувствительные к уровню низкочастотных гармоник напряжения, или инвертор выступает в качестве автономного источника переменного тока с жесткими требованиями к качеству электрической энергии, то применяют инверторы с синусоидальной формой выходного напряжения. Во всех случаях основным методом формирования выходного напряжения является метод широтно-импульсной модуляции (ШИМ).

Используемая литература: Электропитание устройств и систем телекоммуникаций:
Учебное пособие для вузов / В. М. Бушуев, В. А. Демянский,
Л. Ф. Захаров и др. — М.: Горячая линия—Телеком, 2009. —
384 с.: ил.

Электрическая схема, рабочие фазы и формы выходных сигналов последовательного инвертора изображены на рис. 1. Такая схема называется последовательным инвертором, поскольку в ней нагрузочное сопротивление включено последовательно с емкостью. R - нагрузочное сопротивление, L и С - коммутационные элементы. Такой тип инвертора содержит два тиристора. Рассмотрим подробнее фазы работы такой схемы.

Фаза I . Тиристор Т1 включается в момент времени to . Начинается заряд конденсатора от источника питания. Последовательная цепь R , L и С формирует синусоидальный ток через нагрузочное сопротивление и выполняет функцию демпфирующей цепи. Когда ток в цепи уменьшается до нуля, тиристор Т1 запирается. Напряжение на нагрузочном сопротивлении находится в фазе с током тиристора. Формы напряжений VL и Vc можно получить с помощью теоремы Кирхгофа: ( VL + Vc = E ), величины VL и Vc должны удовлетворять условиям этого уравнения.

Фаза II . Тиристор Т2 не должен включаться сразу после того, как ток через тиристор Г, уменьшится до нуля. Для лучшего запирания тиристора Т1 , к нему необходимо приложить небольшое обратное напряжение. Если тиристор Т2 включается без запаздывания, или мертвая зона отсутствует, напряжение источника питания замыкается через открытые тиристоры Т1 и Тг .. Если оба тиристора находятся в закрытом состоянии, то V R = 0, VL = 0, следовательно, L di / dt = 0 и конденсатор С остается незаряженным.

Фаза III . В момент времени t 2 тиристор Т2 включается и инициирует отрицательный полупериод. Конденсатор разряжается через L , R иТ2 . Следует заметить, что электрический ток через нагрузочное сопротивление R протекает в противоположном направлении. В момент времени, когда этот ток уменьшается до нуля, тиристор Т2 выключается. Формы напряжений VL и Vc можно получить с помощью теоремы Кирхгофа: (VL + Vc = 0), величины VL и Vc должны удовлетворять условиям этого уравнения.



. 1 - . .

б)Фазы работы схемы;

в)Формы напряжений и токов в цепях последовательного
инвертора

Если тиристор Т1 запустить с задержкой на величину мертвого времени, вышеупомянутые процессы повторятся.

Преимущества:

1. Простая конструкция.

2. Выходное напряжение близко к синусоидальному.

1. Индуктивность L и конденсатор С имеют большие габариты.

2. Источник питания используется только в течение положительного полупериода.

3. В выходном напряжении имеются высшие гармоники из-за наличия мертвой зоны.

Последовательный инвертор лучше всего подходит для высокочастотных устройств, так как для требуемых значений 1 и С уменьшаются их габариты. Время периода для одного цикла составляет:

T 0 = T + 2 td . где Г = l / ft и t 6 - мертвое время.

Выходная частота последовательного инвертора всегда меньше резонансной частоты вследствие наличия мертвой зоны. Значение выходной частоты может варьироваться путем изменения мертвого времени.



. 1?. -. . . . .

Параллельный инвертор

Базовая схема параллельного инвертора изображена на рис.2а. Когда ключ 1 замкнут, помеченные точкой выводы обмоток A, D и С имеют положительный потенциал. Выходное напряжение - положительное. Во второй половине периода ключ 1 размыкается и замыкается ключ 2. Помеченные точкой выводы обмоток A, D и С имеют отрицательный потенциал и выходное напряжение - отрицательное.

Электрическая схема, рабочие фазы и формы выходных сигналов параллельного инвертора изображены на рис.2. Параллельные инверторы применяются в низкочастотных устройствах. В них используются трансформатор с отводом из центра первичной обмотки, два тиристора и коммутирующий конденсатор. Источник питания включается между центральным выводом и общей точкой катодов тиристоров. Эквивалентное нагрузочное сопротивление, пересчитанное в цепь первичной обмотки, подключено параллельно коммутационному конденсатору. Следовательно, инвертор такого типа является параллельным.

В момент времени t = tx тиристор Т1 включается. Напряжение источника питания Е приложено к обмотке трансформатора А. Согласно закону самоиндукции такое же напряжение Е индуцируется на обмотке трансформатора В, но противоположной полярности. Поскольку обмотки А и В соединены последовательно, на них будет суммарное напряжение 2Е. Этим напряжением конденсатор предварительно заряжается до напряжения +2Е.

В момент времени t = t 2 тиристор Т2 включается. Полярность напряжений на обмотках А и В меняется на обратную, к конденсатору, и тем самым к тиристору Т1 , прикладывается обратное напряжение, за счет чего тиристор Т1 выключается. Полярность напряжения на конденсаторе меняется, и он перезаряжается до напряжения - 2Е. Также меняет на обратное направление ток во вторичной обмотке, то есть через нагрузочное сопротивление протекает переменный ток прямоугольной формы. Форма выходного напряжения аналогична форме напряжения на конденсаторе.



. 2 - ?) . . . . ;

б)Фазы работы схемы;

в)Формы напряжений и токов в цепях параллельного инвертора

1.Номинальное напряжение конденсатора должно быть 2Е.

2. Ток источника питания не является чистым постоянным током.

3.Колебания тока источника питания, являются причиной дополнительного выделения тепла в первичной цепи параллельного инвертора.

Мостовые инверторы. Однофазный полумостовой инвертор

Однофазный полумостовой инвертор состоит из двух источников питания и двух коммутаторов. Нагрузка подключена между общим выводом источников питания и общей точкой коммутаторов.

Электрическая схема, рабочие фазы и формы выходных сигналов параллельного инвертора изображены на рис. 2. Параллельные инверторы применяются в низкочастотных устройствах. В них используются трансформатор с отводом из центра первичной обмотки, два тиристора и коммутирующий конденсатор. Источник питания включается между центральным выводом и общей точкой катодов тиристоров. Эквивалентное… Читать ещё >

Инвертор. Принцип работы, разновидность, область применения ( реферат , курсовая , диплом , контрольная )

Инвертор. Принцип работы, разновидность, область применения

Последовательный инвертор

Электрическая схема, рабочие фазы и формы выходных сигналов последовательного инвертора изображены на рис. 1. Такая схема называется последовательным инвертором, поскольку в ней нагрузочное сопротивление включено последовательно с емкостью. R - нагрузочное сопротивление, L и С — коммутационные элементы. Такой тип инвертора содержит два тиристора. Рассмотрим подробнее фазы работы такой схемы.

Фаза I. Тиристор Т1 включается в момент времени to. Начинается заряд конденсатора от источника питания. Последовательная цепь R, L и С формирует синусоидальный ток через нагрузочное сопротивление и выполняет функцию демпфирующей цепи. Когда ток в цепи уменьшается до нуля, тиристор Т1 запирается. Напряжение на нагрузочном сопротивлении находится в фазе с током тиристора. Формы напряжений VL и Vc можно получить с помощью теоремы Кирхгофа: (VL+ Vc = E), величины VL и Vc должны удовлетворять условиям этого уравнения.

Фаза II. Тиристор Т2 не должен включаться сразу после того, как ток через тиристор Г, уменьшится до нуля. Для лучшего запирания тиристора Т1, к нему необходимо приложить небольшое обратное напряжение. Если тиристор Т2 включается без запаздывания, или мертвая зона отсутствует, напряжение источника питания замыкается через открытые тиристоры Т1 и Тг.. Если оба тиристора находятся в закрытом состоянии, то VR = 0, VL= 0, следовательно, L di/dt = 0 и конденсатор С остается незаряженным.

Фаза III. В момент времени t2 тиристор Т2 включается и инициирует отрицательный полупериод. Конденсатор разряжается через L, R и Т2. Следует заметить, что электрический ток через нагрузочное сопротивление R протекает в противоположном направлении. В момент времени, когда этот ток уменьшается до нуля, тиристор Т2 выключается. Формы напряжений VL и Vc можно получить с помощью теоремы Кирхгофа: (VL + Vc = 0), величины VL и Vc должны удовлетворять условиям этого уравнения.

Рис. 1 — Последовательный инвертор:

а) Электрическая схема;

б) Фазы работы схемы;

в) Формы напряжений и токов в цепях последовательного

инвертора Если тиристор Т1 запустить с задержкой на величину мертвого времени, вышеупомянутые процессы повторятся.

Преимущества:

1. Простая конструкция.

2. Выходное напряжение близко к синусоидальному.

Недостатки:

1. Индуктивность L и конденсатор С имеют большие габариты.

2. Источник питания используется только в течение положительного полупериода.

3. В выходном напряжении имеются высшие гармоники из-за наличия мертвой зоны.

Последовательный инвертор лучше всего подходит для высокочастотных устройств, так как для требуемых значений 1 и С уменьшаются их габариты. Время периода для одного цикла составляет:

Выходная частота последовательного инвертора всегда меньше резонансной частоты вследствие наличия мертвой зоны. Значение выходной частоты может варьироваться путем изменения мертвого времени.

Рис.1г. -Форма выходного напряжения последователного инвертора

Параллельный инвертор

Базовая схема параллельного инвертора изображена на рис.2а. Когда ключ 1 замкнут, помеченные точкой выводы обмоток A, D и С имеют положительный потенциал. Выходное напряжение — положительное. Во второй половине периода ключ 1 размыкается и замыкается ключ 2. Помеченные точкой выводы обмоток A, D и С имеют отрицательный потенциал и выходное напряжение — отрицательное.

Электрическая схема, рабочие фазы и формы выходных сигналов параллельного инвертора изображены на рис. 2. Параллельные инверторы применяются в низкочастотных устройствах. В них используются трансформатор с отводом из центра первичной обмотки, два тиристора и коммутирующий конденсатор. Источник питания включается между центральным выводом и общей точкой катодов тиристоров. Эквивалентное нагрузочное сопротивление, пересчитанное в цепь первичной обмотки, подключено параллельно коммутационному конденсатору. Следовательно, инвертор такого типа является параллельным.

В момент времени t= tx тиристор Т1 включается. Напряжение источника питания Е приложено к обмотке трансформатора А. Согласно закону самоиндукции такое же напряжение Е индуцируется на обмотке трансформатора В, но противоположной полярности. Поскольку обмотки, А и В соединены последовательно, на них будет суммарное напряжение 2Е. Этим напряжением конденсатор предварительно заряжается до напряжения +2Е.

Рис. 2 — а) Базовая схема параллельного инвертора;

б) Фазы работы схемы;

в) Формы напряжений и токов в цепях параллельного инвертора

Недостатки

Номинальное напряжение конденсатора должно быть 2Е.

Ток источника питания не является чистым постоянным током.

Колебания тока источника питания, являются причиной дополнительного выделения тепла в первичной цепи параллельного инвертора.

Мостовые инверторы. Однофазный полумостовой инвертор

Однофазный полумостовой инвертор состоит из двух источников питания и двух коммутаторов. Нагрузка подключена между общим выводом источников питания и общей точкой коммутаторов.

Полумостовой инвертор с RLC — нагрузкой

Рис. 5 — а) Схема полумостового инвертора с RLC-нагрузкой, б) Форма напряжения и тока полумостового инвертора Электрическая схема и форма выходного сигнала однофазного полумостового инвертора с RLС-нагрузкой изображены на рис. 5. Если инвертор питает RLС-нагрузку, отдельная цепь коммутирования не требуется. Это можно объяснить с помощью символического изображения на рис.5б. Рабочая частота инвертора должна быть выбрана такой, чтобы Хс > XL. При этих условиях в этой схеме ток опережает по фазе напряжение. Ток в нагрузке изменяется синусоидально. В промежутке времени от t0 до tl тиристор Т1 находится в проводящем состоянии. В момент времени t1 = t2 тиристор Т1, выключается, так как ток в цепи уменьшается до нуля. В промежутке времени от t1 до t2 диод D1 находится в проводящем состоянии и мощность передается от нагрузки к источнику питания. Диод D1 находится в проводящем состоянии до тех пор, пока на конденсаторе присутствует напряжение. Когда диод D1 находится в состоянии проводимости, тиристор Т1 смещен в обратном направлении. Таким образом, специальная цепь принудительной коммутации в этом случае не требуется. В этой схеме RLC-нагрузка обеспечивает коммутацию тиристоров. В течение отрицательного полупериода тиристор Т2 находится в проводящем состоянии, через некоторое время диод D2 начинает проводить, вследствие этого тиристор Т2 смещается в обратном направлении и запирается.

Инвертор Мак-Мюррея (инвертирующий преобразователь)

Принцип работы инвертора Мак-Мюррея основан на коммутировании тока. Полумостовой инвертор работает на индуктивную нагрузку, как изображено на рис. 6. Тиристоры ТА1 и ТА2 в этой схеме являются вспомогательными. Они используются для коммутации основных тиристоров Т1 и Т2. Индуктивность L и емкость С являются коммутирующими элементами. Конденсатор предварительно заряжен слева отрицательно, а справаположительно. Рабочие фазы этой схемы устройства следующие.

Фаза I. Тиристор Т1 запускается, тем самым инициируется положительный полупериод преобразования. Постоянный ток нагрузки протекает через тиристор Т1.

Фаза I I. В момент времени t1 запускается вспомогательный тиристор ТА1. По замкнутой цепи L, С, Т и ТА1 начинает протекать ток, при этом ток через конденсатор синусоидально нарастает, как показано на рис.6 В. В промежутке времени от t1 до t2 значение ic 0. В момент времени t= t2; tc = I0. Ток, текущий через тиристор Т1, становится равным нулю, и тиристор выключается. Следует заметить, что в этой фазе ток через тиристор Т1, уменьшается до нуля.

Фаза III. После выключения тиристора Т1 ток продолжает протекать через D1. Диод находится в состоянии проводимости до момента времени t3 до тех пор пока ic — I0 положительны. В момент времени t = t3 диод D1, перестает проводить, так как ток через него уменьшается до нуля.

Фаза IV. После того как диод D1 запирается, постоянный ток нагрузки протекает через конденсатор и дозаряжает его слева отрицательно, а справа положительно. Напряжение на конденсаторе изменяется линейно, так как через конденсатор протекает постоянный ток.

Фаза V. Ток через диод увеличивается, в то время как ток через конденсатор уменьшается. Когда ток через тиристор Ta уменьшается до нуля, тиристор выключается.

Фаза VI. На индуктивной нагрузке изменяется полярность напряжения, и диод D1 смещается в прямом направлении. Начинается процесс рециркуляции. Энергия, запасенная в нагрузке, передается обратно в источник питания Vr После запирания диода D1 запускается тиристор Т2. Чтобы выключить тиристор Т2 необходимо включить тиристор ТA2. Далее подобные процессы повторяются аналогично вышеизложенным.

Инвертор Мак-Мюррея — Бедфорда

Инвертор Мак-Мюррея содержит два вспомогательных тиристора. Инвертор Мак-Мюррея-Бедфорда не требует никаких вспомогательных тиристоров. Один основной тиристор в этой схеме коммутирует другой основной тиристор. Электрическая схема, рабочие фазы и форма выходного сигнала инвертора Мак-Мюррея — Бедфорда изображены на рис. 7. Рабочие фазы этой схемы устройства следующие.

Фаза I. Тиристор Т1 запущен. Постоянный ток протекает через тиристор Т1, и индуктивность L1. Напряжение на индуктивности L1 равно нулю, так как через нее протекает постоянный ток. Конденсатор С, замкнут через Т1 и L1. Конденсатор С2 заряжен до напряжения V1 + V2: верхняя обкладка заряжена положительно, а нижняя — отрицательно.

Рис. 7 — а) Схема инвертора Мак-Мюррея; б) Фазы работы схемы

Фаза II. После включения тиристора Т2 напряжение с конденсатора С2 подается на индуктивность L2. Это напряжение равно удвоенному напряжению питания. За счет взаимной индукции на индуктивности L1 появляется напряжение, равное напряжению на индуктивности L2. Напряжение на катоде тиристора Т1 равно учетверенному напряжению питания, а на аноде удвоенному напряжению питания. Таким образом, после включения тиристора Т2 тиристор Т1 выключается. Быстрое выключение тиристора L1 возможно благодаря тому, что энергия, запасенная в индуктивности L1 передается на индуктивность L2 поскольку общий магнитный поток должен оставаться постоянным. Из рис.7 В видно, что ток в схеме перераспределяется от тиристора Т1 на тиристор Т2 в начале фазы II. По цепи L2 и С2 начинает протекать ток. Диод D2 смещается в обратном направлении напряжением на конденсаторе С2.

Фаза III. Как только полярность напряжения на конденсаторе изменяется на обратную, диод D2 переходит в проводящее состояние и тем самым шунтирует конденсатор С2. Энергия, запасенная на индуктивности L2 поддерживает неизменное направление тока через тиристор Т2 и диод D2. Постепенно запасенная в индуктивности L2 энергия рассеивается на активном сопротивлении нагрузки, и тиристор Т2 выключается.

Фаза IV. Диод D2 по-прежнему смещен в прямом направлении за счет тока, протекающего через индуктивность нагрузки. Здесь имеет место процесс рециркуляции энергии, запасенной на индуктивности нагрузки. Диод D2 находится в проводящем состоянии до тех пор, пока запасенная энергия передается источнику питания V2.

Тиристор Т2 снова включается, тем самым инициируя аналогичный отрицательный полупериод инвертора. В конце отрицательного полупериода тиристор Т1 остается в проводящем состоянии и процесс, описанный выше, повторяется.

Читайте также: