Реферат на тему идеальная жидкость

Обновлено: 13.05.2024

1.1 Предмет гидравлики и краткая история её развития.

1.4 Общие уравнения сплошной среды

1.5 Потери напора при установившемся движении.

2. Объемные гидромашины.

2.1 Понятие объемной гидромашины. Насосы, гидродвигатели.

2.2 Величины характеризующие рабочий процесс ОГМ.

2.3 Роторные гидромашины. Классификация.

3. Основные сведения об оъемном гидроприводе.

3.1 Назначения и основные свойства

3.2 Основные параметры гидрооборудования.

3.3 Основные режимы работы и условия эксплуатации гидрооборудования.

Раздел механики, в котором изучают равновесие и движение жидкости, а также силовое взаимодействие жидкостью и обтекаемыми ею телами или ограничивающими её поверхностями, называется гидромеханикой.

Науку о законах равновесия и движения жидкостей и о способах приложения этих законов к решению практических задач называют гидравликой. В гидравлике рассматривают, главным образом, потоки жидкости, ограниченные и направленные твердыми стенками, т. е. течение в закрытых и открытых каналах.

Таким образом, можно сказать, что в гидравлике изучают в основном внутренние течения жидкостей и решают так называемую внутреннюю задачу в отличие от внешней, связанной с внешним обтеканием тел сплошной средой, которое имеет место при движении тела в жидкости или газе.

Историческое развитие механики жидкостей шло двумя различными путями:

- первый путь – теоретический, путь точного математического анализа, основанного на законах механики. Он привел к созданию теоретической гидромеханики, которая долгое время являлась самостоятельной дисциплиной, непосредственно не связанная с экспериментом. Однако на пути чистого теоретического исследования движения жидкости встречается множество трудностей, и методы теоретической гидромеханики не всегда дают ответы на вопросы, выдвигаемые практикой.

- второй путь – путь широкого применения эксперимента и накопления опытных данных для использования их в инженерной практике – привел к созданию гидравлики.

Жидкость – физическое тело, молекулы которого слабо связаны между содой. Поэтому незначительные силы способны легко изменить форму жидкости, которая способна сохранить объем, но не форму. В гидравлике жидкость рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков, т.е. отвлекаются от молекулярного строения жидкости и её частицы, даже бесконечно малые, считают состоящими из большого числа молекул.

Реальной жидкостью называют жидкость, обладающую вязкостью (свойство жидкости сопротивляться сдвигу ее слоев).

Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости.

Гост

ГОСТ

Так, основными из направлений являются следующие:

  • гидродинамика идеальной жидкости;
  • гидродинамика жидкости в критическом состоянии;
  • гидродинамика вязкой жидкости.

Гидродинамика идеальной жидкости

Основы гидродинамики. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Основы гидродинамики. Автор24 — интернет-биржа студенческих работ

Идеальная жидкость в гидродинамике представляет собой воображаемую несжимаемую жидкость, в которой вязкость будет отсутствовать. Также в ней не будет наблюдаться присутствие теплопроводности и внутреннего трения. В связи с отсутствием в идеальной жидкости внутреннего трения, в нем также не будут фиксироваться касательные напряжения между двумя соседствующими слоями жидкости.

Моделью идеальной жидкости можно воспользоваться в физике в случае теоретического рассмотрения задач, в которых вязкость не будет являться определяющим фактором, что позволяет ею пренебречь. Подобная идеализация, в частности, может быть допустимой во многих случаях течения, которые рассматривает гидроаэромеханика, где при этом дается качественное описание реальных течений жидкостей, достаточно удаленных от поверхностей раздела с неподвижной средой.

Уравнения Эйлера-Лагранжа (полученные Л.Эйлером и Ж.Лагранжем в 1750 г.) представлены в физике в формате основных формул вариационного исчисления, посредством привлечения которых ведется поиск стационарных точек и экстремумов функционалов. В частности, подобные уравнения известны своим широким использованием в рассмотрении задач оптимизации, и также (в совокупности с принципом наименьшего действия) применяются с целью вычисления траекторий в механике.

В теоретической физике уравнения Лагранжа представлены в виде классических уравнений движения в контексте их получения из написанного явно выражения для действия (что называется лагранжиана).

Готовые работы на аналогичную тему

Уравнение Эйлера-Лагранжа. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Уравнение Эйлера-Лагранжа. Автор24 — интернет-биржа студенческих работ

Применение таких уравнений с целью определения экстремума функционала в некотором смысле подобно задействованию теоремы дифференциального исчисления, согласно утверждениям которой, лишь в точке обращения первой производной в ноль гладкая функция обретает способность иметь экстремум (при векторном аргументе к нулевому значению приравнивается нулю градиент функции, иными словами - производная по векторному аргументу). Соответственно, это представляет прямое обобщение рассматриваемой формулы на случай функционалов (функций бесконечно мерного аргумента).

Гидродинамика жидкости в критическом состоянии

Следствия из уравнения Бернулли. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Следствия из уравнения Бернулли. Автор24 — интернет-биржа студенческих работ

В случае исследования околокритического состояния среды, ее течению будет уделяться значительно меньше внимания в сравнении с акцентом на физические свойства, несмотря на невозможность обладать свойством неподвижности для реальной жидкой субстанции.

Провокаторами перемещения отдельных частей относительно друг друга выступают:

  • температурные неоднородности;
  • перепады давления.

В случае описания динамики вблизи критической точки, оказывается несовершенными традиционные гидродинамические модели, сориентированные на обычные среды. Это обусловлено порождением новых законов движения новыми физическими свойствами.

Выделяются также динамические критические явления, обнаруживаемые в условиях перемещения массы и переноса тепла. В частности, процесс рассасывания (или релаксации) температурных неоднородностей, обусловленный механизмом теплопроводности, будет происходить крайне медленно. Так, если, например, в околокритической жидкости будет изменена температура хотя бы на сотые доли градуса, на установление прежних условий уйдут многие часы, а, возможно, даже и несколько суток.

В качестве еще одной значимой особенности околокритических жидкостей можно назвать их удивительную подвижность, которую можно объяснить за счет высокой гравитационной чувствительности. Так, в экспериментах, осуществляемых в условиях космического полета, удалось выявить способность к инициированию весьма заметных конвективных движений даже у остаточных неоднородностей теплового поля.

В ходе движения околокритических жидкостей начинают возникать эффекты разновременных масштабов, зачастую описываемые различными моделями, что позволило сформировать (с развитием представлений о моделировании в данной области) целую последовательность усложняющихся моделей, обладающих так называемой иерархической структурой. Так, в данной структуре могут рассматриваться:

  • модели конвекции несжимаемой жидкости, учитывая разность плотностей только в архимедовой силе (модель Обербека-Буссинеска, наиболее всего она распространена для простых жидких и газовых сред);
  • полные гидродинамические модели (с включением нестационарных уравнений динамики и теплопереноса и учетом свойства сжимаемости и переменных теплофизических свойств среды) в совокупности с уравнением состояния, предполагающим присутствие критической точки).

В настоящее время, таким образом, можно говорить о возможности активного развития нового направления в механике сплошных сред, таком, как гидродинамика околокритических жидкостей.

Гидродинамика вязкой жидкости

Вязкость (или внутреннее трение) является свойством реальных жидкостей, выраженным в оказании их сопротивления перемещениям одной части жидкости относительно другой. В момент перемещения одних слоев реальной жидкости относительно других будут возникать силы внутреннего трения, направленные к поверхности таких слоев по касательной.

Действие подобных сил выражается в том, что со стороны движущегося быстрее слоя на то слой, который движется медленнее, оказывает непосредственное воздействие ускоряющая сила. Наряду с тем, со стороны более медленно движущегося слоя в отношении быстродвижущегося окажет свое воздействие тормозящая сила.

Идеальная жидкость (жидкость, исключающая свойство трения) представляет собой абстракцию. Вязкость (в большей или меньшей степени) присуща всем реальным жидкостям. Проявление вязкости выражено в том, что возникшее в жидкости или газе движение (после устранения вызвавших его причин и их последствий) постепенно прекращает свою работу.

Основное свойство жидкости: изменение формы под действием механического воздействия. Идеальные и реальные жидкости. Понятие ньютоновских жидкостей. Методика определения свойств жидкости. Образование свободной поверхности и поверхностное натяжение.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 07.12.2010
Размер файла 860,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Изучение некоторых свойств жидкости

1. Введение: жидкость окружает везде и всегда. Сами люди состоят из жидкости, вода дает нам жизнь, из воды мы вышли и к воде всегда возвращаемся. Но что же такое жидкость, с научной точки зрения жидкость это - одно из агрегатных состояний вещества. Основным свойством жидкости является, то, что она способна менять свою форму под действием механического воздействия. Жидкости бывают идеальные и реальные. Идеальные - невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные - вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений.

2. Характеристика жидкого состояния: Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкости бывают идеальные и реальные. Идеальные - невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные - вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений. Реальные жидкости могут быть ньютоновскими и неньютоновскими (бингамовскими).

3. Ньютоновские и Неньютоновские жидкости: Если в движущейся жидкости её вязкость зависит только от её природы и температуры и не зависит от градиента скорости, то такие жидкости называют ньютоновскими. К ним относятся однородные жидкости. Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при её течении вязкость зависит от градиента скорости. Такие жидкости называют неньютоновскими. Неньютоновские жидкости не поддаются законам обычных жидкостей, эти жидкости меняют свою плотность и вязкость при воздействии на них физической силой, причем не только механическим воздействие, но и даже звуковыми волнами. Если воздействовать механически на обычную жидкость то чем большее будет воздействие на нее, тем больше будет сдвиг между плоскостями жидкости, иными словами чем сильнее воздействовать на жидкость, тем быстрее она будет течь и менять свою форму. Если воздействовать на Неньютоновскую жидкость механическими усилиями, мы получим совершенно другой эффект, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело, связь между молекулами жидкости будет усиливаться с увеличением силы воздействия на нее, в следствии мы столкнемся с физическим затруднением сдвинуть слои таких жидкостей. Вязкость неньютоновских жидкостей возрастает при уменьшение скорости тока жидкости

4. Свойства жидкости: Как у всего сущего на земле, у жидкости есть свои свойства, такие как вязкость, плотность, текучесть, температура кипения и замерзания и многие другие. Данная работа больше основана на изучении вязкости жидкости, но стоит упомянуть и о других ее свойствах

a. Вязкость - это способность оказывать сопротивление перемещению одной из части относительно другой - то есть как внутреннее трение.

b. Плотность - физическая величина, определяемая для однородного вещества массой его единичного объёма. Плотность воды при температуре 4 о С равна 1г/см 3 .

c. Кипение - процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

5. Методика определения свойств жидкости

a. определение вязкости: Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с-1, заменяя капиллярный диаметр и приложенное давление. Типы капиллярных вискозиметров и их режимы работы: Стеклянный капиллярный вискозиметр (ASTM D 445) - Жидкость проходит через отверстие устанавливаемого - диаметра под влиянием силы тяжести. Скорость сдвига - меньше чем 10 с-1. Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами. Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) - Фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с-1. Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150°C и 106 с-1. HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683

6. Образование свободной поверхности и поверхностное натяжение. Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар), и, возможно, другие газы, например, воздух. Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться. Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится "окружить" себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться. Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости. Маленькие объекты с плотностью, большей плотности жидкости, способны "плавать" на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности.

Эксперимент №1

Цель: изучение некоторых свойств неньютоновских жидкостей

Реактивы: крахмал картофельный, вода

Посуда: глубокая чашка (кристаллизатор), металлическая палочка

Ход работы:

1. Взять крахмал и насыпать его в кристаллизатор

2. Налить небольшое количество воды и размешать с помощью металлической палочки (не использовать стеклянные палочки, из-за их хрупкости)

3. Постепенно подливать воды и мешать, пока не получится однородная масса

Получившуюся жидкость можно налить в руку и попробовать скатать шарик, при воздействии на жидкость, пока мы будем катать шарик, в руках будет твердый шар из жидкости, причем, чем быстрее и сильнее мы будем на него воздействовать, тем плотнее и тверже будет наш шарик. Как только мы разожмем руки, твердый до этого времени шар тут же растечется по руке. Связанно это будет с тем, что, после прекращения воздействия на него, жидкость снова примет свойства жидкой фазы.

Если налить получившейся жидкости в высокий резервуар, и положить

сверху бросок дерева, в него свободно можно будет забить гвоздь. Так же можно просто свободно без усилий погрузить палец в данный раствор, но если попробовать быстро ткнуть в него, палец остановится именно на поверхности раствора, не проникнув внутрь, и чем быстрее и сильнее пробовать пробить верхнюю мембрану, тем большее сопротивление мы будем получать в замен.

Применение Неньютоновских жидкостей: в мире как ни странно очень популярны данные жидкости. В США на основе данных жидкостей, министерство обороны начало выпуск бронежилетов для военных. Данные бронежилеты по своим характеристикам даже лучше обычных, так как легче по весу и проще в изготовлении.

Так же Неньютоновские жидкости используются в автопроме, моторные масла синтетического производства на основе неньютоновских жидкостей уменьшают свою вязкость в несколько десятков раз, пи повышении оборотов двигателя, позволяя при этом уменьшить трение в двигатели.

Магнитные мелкодисперсные неньютоновские жидкости, еще один представитель данного чуда природы. Состоят они из мелкодисперсных кристаллов магнетита, взвешенных в синтетическом масле, при воздействии на такую жидкость магнитным полем, жидкость увеличивает плотность в 100 раз, но все равно остается гибкой. Данные жидкости применяют в новейших технологиях для амортизации некоторых элементов транспортного оборудования или механических машин

Данный эксперимент позволяет нам не только познакомится с неньютоновскими жидкостями, но и изучить некоторые свойства данных жидкостей, а так позволяют наглядно продемонстрировать свойства жидкости, что помогает в работе со студентами, наглядные примеры помогают лучше запомнить данную преподавателем теорию.

"Эффект Кайе"

Введение: В 1963 году ученый химик и физик Артур Кайе проводил опыты на основе неньютоновских жидкостей и наблюдал интересные изменения. Ученый заметил, что если жидкость вливать с небольшой высоты в такую же жидкость или в жидкость с одинаковой плотностью и вязкостью, то струйка не растворяется в жидкости, а как бы отскакивает от самой себя. Связанно данное явление с тем, что струя жидкости, падающая вниз не может пробить поверхностное натяжение верхнего слоя и отскакивает в сторону. Это явление назвали "Эффект Кайе".

Цель: изучение образования слоя поверхностного натяжения

Реактивы: жидкое мыло (шампунь)

Посуда: глубокая, широкая чашка (кристаллизатор), бюретка, штатив, металлическая пластина

Ход работы:

1. установить штатив на ровную поверхность и закрепить на ней бюретку на высоте 20-25 см от поверхности стола

2. под бюретку установить кристаллизатор

3. налить в кристаллизатор исследуемую жидкость слоем в 3-5 см

4. аккуратно заполнить бюретку исследуемой жидкостью, ровным слоем, без образования воздушных пузырьков

После того как жидкость через бюретку падает с высоты 20 см вниз в себе подобную жидкость, мы можем наблюдать интересное явление связанное с поверхностным натяжением. Струйка жидкости, падающая вниз, начинает отскакивать от поверхности жидкости находящейся внизу. Объяснить это можно тем что, проникая внутрь жидкости, находящейся в кристаллизаторе, струйка несет в себе запас кинетической энергии, а поскольку жидкость имеет высокую плотность и вязкость, и по закону сохранения энергии, кинетическая энергия, внесенная в уравновешенную систему, должна, куда-то перейти, и выстреливает такой же струйкой из жидкости. Если поставить под струйку металлическую пластину под углом примерно 45 0 и смочить ее тем же жидким мылом, то струйка падающая вниз будет по наклонной траектории падать отскакивая пару раз от пластины.

Данный опыт дает представление о кинетической энергии и уравновешенных системах, так же данный опыт очень эффектно выглядит и запоминается надолго, что позволяет лучше воспринять пройденный теоретический материал.

Подобные документы

Свойства жидкостей и их поверхностное натяжение. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества. Явления смачивания и несмачивания. Краевой угол. Капиллярный эффект. Капиллярные явления в природе и технике.

контрольная работа [1,5 M], добавлен 06.04.2012

Механика жидкостей, физическое обоснование их главных свойств и характеристик в различных условиях, принцип движения. Уравнение Бернулли. Механизм истечения жидкости из отверстий и насадков и методика определения коэффициентов скорости истечения.

реферат [175,5 K], добавлен 19.05.2014

Определение водородной связи. Поверхностное натяжение. Использование модели капли жидкости для описания ядра в ядерной физике. Процессы, происходящие в туче. Вода - квантовый объект. Датчик внутриглазного давления. Динамика идеальной несжимаемой жидкости.

презентация [299,5 K], добавлен 29.09.2013

Реологические свойства жидкостей в микро- и макрообъемах. Законы гидродинамики. Стационарное движение жидкости между двумя бесконечными неподвижными пластинами и движение жидкости между двумя бесконечными пластинами, двигающимися относительно друг друга.

контрольная работа [131,6 K], добавлен 31.03.2008

Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

презентация [220,4 K], добавлен 28.09.2013

Реальное течение капельных жидкостей и газов на удалении от омываемых твердых поверхностей. Уравнение движения идеальной жидкости. Уравнение Бернулли для несжимаемой жидкости. Истечение жидкости через отверстия. Геометрические характеристики карбюратора.

презентация [224,8 K], добавлен 14.10.2013

Поле вектора скорости: определение. Теорема о неразрывности струн. Уравнение Бернулли. Стационарное течение несжимаемой идеальной жидкости. Полная энергия рассматриваемого объема жидкости. Истечение жидкости из отверстия.

Жидкость– физическое тело, молекулы которого слабо связаны между собой. Поэтому незначительные силы способны легко изменить форму жидкости, которая способна сохранить объем, но не форму. В гидравлике жидкость рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков, т.е. отвлекаются от молекулярного строения жидкости и её частицы, даже бесконечно малые, считают состоящими из большого числа молекул.

Реальной жидкостью называют жидкость, обладающую вязкостью (свойство жидкости сопротивляться сдвигу ее слоев).

Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости.


5.Физические свойства жидкостей

Физические свойства характеризуются температурным расширением, сжимаемостью, упругостью, испаряемостью и вязкостью.

Температурное расширение – это свойство жидкости изменять свой объем при изменении температуры

Сжимаемость жидкостей– это свойство жидкостей изменять свой объем при изменении давления

Упругость жидкостей – это способность жидкости принимать свой прежний объем после снятия внешней нагрузки. Такое свойство жидкости характеризуется коэффициентом упругости e= 1/bp. Свойство упругости определяет использование жидкости в качестве рабочего тела во многих гидравлических устройствах и в машинах и характеризуется модулем упругости К, Н/м.

Испаряемость. Испаряемость присуща всем жидкостям, но в различной степени, причем она сильно зависит от условий, в которых находится жидкость. Одной из характеристик испаряемости является температура кипения при нормальном атмосферном давлении. Но атмосферное давление – это лишь частный случай давления в гидросистеме, поэтому более полной характеристикой испаряемости являетсядавление (упругость) насыщенных паровpн.п.. Чем выше pн.п, тем более летучая жидкость. С ростом температуры оно возрастает, но для разных жидкостей в различной степени. Поэтому даже сухой воздух в квартире зимой при контакте с предметом, занесенным с мороза, при остывании становится влажным, и из него конденсируются капельки воды. Это хорошо знают люди, носящие очки. Образование конденсата можно наблюдать на поверхности труб, по которым подается холодная вода, на оконных стеклах и т.п.

Вязкость жидкостейэто свойство жидкостей оказывать сопротивление перемещению слоев жидкости относительно друг друга. Вязкость есть свойство противоположное текучести: более вязкие жидкости (глицерин, масла и т.п.) являются менее текучими и наоборот.

При течении вязкой жидкости вдоль твердой стенки происходит торможение потока, обусловленное вязкостью жидкости. Скорость потока отдельных слоев уменьшается по мере приближения слоя жидкости к стенке.

Вязкость капельных жидкостей в значительной мере зависит от температуры. Например, с повышением температуры вязкость капельной жидкости уменьшается, а воздуха увеличивается.

Абсолютная и относительная плотность жидкости

Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является плотность жидкости. Под плотностью жидкости понимается масса единицы объёма жидкости:


где: М - масса жидкости,

W - объём, занимаемый жидкостью.

Исключительными особенностями обладает вода, максимальная плотность которой отмечается при 4 °С


Кроме абсолютной величины плотности капельной жидкости, на практике пользуют­ся и величиной её относительной плотности, которая представляет собой отношение величины абсолютной плотности жидкости к плотности чистой воды при температуре 4 °С: . Относительная плотность жидкости - величина безразмерная.

Относительной плотностью вещества называют отношение плотности исследуемого вещества к плотности эталонного вещества. В качестве эталонной жидкости чаще всего используют дистиллированную воду, плотность которой при +20 °C равна 998,203 кг/м3, а при температуре максимальной плотности (+4 °C) составляет 999,973 кг/м3.

Определяют относительную плотностьпри помощи пикнометра, взвешивая сначала пустой пикнометр, затем пикнометр с дистиллированной водой, а потом пикнометр с исследуемой жидкостью.

7. Сжимаемость.Сжимаемость –это свойство жидкости изменять свой объем под действием давления. Сжимаемость характеризуется двумя величинами: коэффициентом объемного сжатия bp и объемным модулем упругости K.

Коэффициент объемного сжатия – это относительное изменение объема жидкости, приходящееся на единицу давления


.


Знак “минус” в этом выражении введен для того, чтобы этот коэффициент имел положительные значения, так как производная всегда отрицательная.


Если принять, что , то можно приближенно рассчитать объем и плотность жидкости при изменении давления:

Величина, обратная коэффициенту объемного сжатия, называется объемным модулем упругости



то есть изменение объема жидкости при столь существенном изменении давления составило 0,67%. По этой причине в гидравлике очень часто жидкость считают несжимаемой.

8. Температурное расширение.Температурное расширение– это свойство жидкости изменять свой объем при изменении температуры. Характеризуется коэффициентом температурного расширения bT , который представляет собой относительное изменение объема, приходящееся на 1 градус:


Для воды коэффициент при увеличении температуры возрастает. Рост давления при низких температурах приводит к увеличению , а при температурах выше 50°С – к его снижению. Для большинства других капельных жидкостей с ростом давления уменьшается.

В конечной форме при bT = const (при малом изменении температуры)

; ,

где DT = T – T0 – изменение температуры жидкости.

Изменение объема при нагревании жидкостей весьма ощутимо, поэтому его необходимо учитывать при проектировании гидравлических устройств, в которых жидкость существенно нагревается.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.004)

Читайте также: