Реферат на тему химические соединения

Обновлено: 03.07.2024

Основная масса азота на Земле находится в газообразном состоянии и составляет свыше 3/4 атмосферы (78,09% по объему, или 75,6% по массе). Практически на нашей планете за - пас азота неисчерпаем - 3,8*10^15 т. Азот - довольно инертный элемент, поэтому редко встречается в связанном состоянии. Это один из основных биофильных элементов, не - обходимый компонент главных полимеров живых клеток - структурных белков, белков - ферментов, нуклеиновых и аде - нозинтрифосворных кислот. Никакой другой элемент так не лимитирует ресурсы питательных веществ в агроэкосистемах, как азот. Он может стать доступным для живых организмов только в связанной форме, то есть в результате азотофиксации.

Азотофиксация - биологический процесс, и единственными организмами, способными его осуществлять, служат прокариоты (бактерии, цианобактерии, актиномицеты и архебактерии).

Небиологические процессы фиксации азота (грозовые разряды, воздействие УФ-лучей, работа электрического оборудования и двигателей внутреннего сгорания) в количественном отношении весьма несущественны, так как вместе дают не более 0.5% связанного азота. Даже вклад заводов азотных удобрений, производящих синтетический аммиак составляет лишь 5%.

Следовательно, свыше 90% всей фиксации молекулярного азота атмосферы осуществляется вследствие метаболической активности определённых микроорганизмов.

Впервые бактерии рода азотобактер, а точнее Azotobacter chroococcum были открыты голландским микробиологом М. Бейеринк в 1901 году.

Азот (общие сведения)

АЗОТ (лат. Nitrogenium - рождающий селитры), N (читается "эн") - химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде - газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N2, обладающих высокой прочностью. Относится к неметаллам.

Природный азот состоит из стабильных нуклидов 14N (содержание в смеси 99,635% по массе) и 15N. Конфигурация внешнего электронного слоя 2 s 2 3. Радиус нейтрального атома азота 0,074 нм, радиус ионов: N3 - 0,132, N3+ - 0,030 и N5+ - 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53, 29,60, 47,45, 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05.

Соединения азота

НИТРАТЫ - соли азотной кислоты HNO3, твердые хорошо растворимые в воде вещества. Традиционное русское название некоторых нитратов щелочных и щелочноземельных металлов и аммония - селитры (аммонийная селитра NH4NO3, калийная селитра КNO3, кальциевая селитра Са (NO3) 2 и др.

НИТРИДЫ - химические соединения азота с более электроположительными элементами. Нитриды алюминия, бора, кремния, вольфрама, титана (AlN, BN, Si3N4, W2N, TiN) и многие другие - тугоплавкие, химические стойкие кристаллические вещества. Компоненты жаропрочных сплавов используются в полупроводниковых приборах (напр., полупроводниковых лазерах, светоизлучающих диодах), как абразивы. Действием азота или аммиака на металлы при 500-600 °С получают нитридные покрытия (высокотвердые, износо- и коррозионностойкие).

АЗОТА ОКСИДЫ: гемиоксид N2O и монооксид NO (бесцветные газы), сесквиоксид N2O3 (синяя жидкость), диоксид NO2 (бурый газ, при обычных условиях смесь NO2 и его димера N2O4), оксид N2O5 (бесцветные кристаллы). N2O и NO - несолеобразующие оксиды, N2O3 с водой дает азотистую кислоту, N2O5 - азотную, NO2 - их смесь. Все оксиды азота физиологически активны. N2O - средство для наркоза ("веселящий газ"), NO и NO2 - промежуточные продукты в производстве азотной кислоты, NO2 - окислитель в жидком ракетном топливе, смесевых ВВ, нитрующий агент.

Аммиак

Встречается при очистке воды, керосина и некоторых минеральных масел; на сахарных заводах; при дублении кожи; в воздухе помещений, где стоит скот; входит в состав клоачных газов (вместе с сероводородом); содержится в неочищенном ацетилене.

Применяется для производства азотной кислоты, нитрата и сульфата аммония, жидких удобрений (аммиакатов), мочевины, соды, в органическом синтезе, при крашении тканей, светокопировании (на диазониевой бумаге), в качестве хладагента в холодильниках, при серебрении зеркал.

Получается прямым синтезом из газообразных водорода и азота при давлении обычно 280-350 ат и 450-500° (в присутствии катализаторов). В меньших количествах получается при коксовании каменного угля перегонкой с известью "аммиачной воды" (первая фракция при сухой перегонке угля).

Нитрит натрия

NaNO2 М = 69,00

Применяется в производстве органических красителей; в пищевой промышленности; для пассивирования стальных изделий; в резиновой и текстильной промышленности, в гальванотехнике. Получается абсорбцией раствором соды нитрозных газов производства азотной кислоты и очисткой, упариванием и кристаллизацией полученной емки нитрита и нитрата натрия.

Физические и химические свойства. Бесцветные или желтоватые кристаллы. Т. плавл.271°; плоти.2,17: выше 320° разл., не доходя до кипения; раств. в воде 81,8 г/ЮО г (20°).163 г/ЮО г *О). Токсическое действие. Вызывает расширение сосудов вследствие пареза сосуда - двигательного центра (при больших дозах - и вследствие непосредственного действия на кровеносные сосуды), а также образование в крови метгемоглобина.

Натриевая селитра, чилийская селитра.

Применяется как удобрение; в пищевой, стекольной, металлообрабатывающей промышленности; для получения взрывчатых веществ, ракетного топлива и пиротехнических смесей.

Получается из природных залежей выщелачиванием горячей водой и кристаллизацией; абсорбцией раствором соды окислов азота; обменным разложением кальциевой или аммиачной селитры с сульфатом, хлоридом или карбонатом натрия.

Физические и химические свойства. Бесцветные кристаллы. Т. плавл.309,5°; плоти.2,257; разл. при 380°на нитрит и кислород; раств. в воде 88 г/100 г (20°), 176 г/100 г (100°).

Нитрит калия

Применяется в производстве азотокрасителей и некоторых органических соединений.

Получается восстановлением расплавленного KNО2 свинцом; пропусканием SO2 через нагретую смесь KNO3 и СаО.

Физические и химические свойства. Бесцветные или желтоватые кристаллы, расплывающиеся на воздухе. Т. плавл.387°; плоти.1,915; раств. в воде 280 г/100г (0°); 413 г/100 г (100°).

Токсическое действие, по-видимому, сходно с действием NaNO2.

Применяется как удобрение, а также в производстве порохов, в пиротехнике, в пищевой и стекольной промышленности. Получается конверсией NaNO3 и KCl при 80-122°С.

Физические и химические свойства. Бесцветные кристаллы.Т. плавл.334°; плоти.2,11; разл. выше 338° на нитрит н кислород; раств. в воде 31,5 г/100 г (20°), 245 г/100 г (100°).

Нитрат кальция

(Кальциевая селитра, норвежская селитра)

Применяется как удобрение.

Получается на основе нитрозных газов производства азотной кислоты.

Физические и химические свойства. Т. плаил.561°; разл. при 500°; плота.2,36; растя, в воде 126 г/ЮО г (20°), 363 г/ЮО г (100°). Безводная соль и кристаллогидраты очень гигроскопичны.

Токсическое действие. Имеет значение лишь раздражающее и прижигающее действие технического продукта, выражающееся в покраснении кожи, зуде, изъязвлениях, иногда глубоких и занимающих обширную поверхность, медленно заживающих и оставляющих большие рубцы. Поражаются участки кожи, на которых имеются хотя бы незначительные ранки, царапины и другие нарушения ее целостности.

Физические свойства

Плотность газообразного азота при 0°C 1,25046 г/дм3, жидкого азота (при температуре кипения) - 0,808 кг/дм3. Газообразный азот при нормальном давлении при температуре -195,8°C переходит в бесцветную жидкость, а при температуре -210,0°C - в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже -237,54°C устойчива форма с кубической решеткой, выше - с гексагональной.

Критическая температура азота -146,95°C, критическое давление 3,9МПа, тройная точка лежит при температуре -210,0°C и давлении 125,03 гПа, из чего следует, что азот при комнатной температуре ни при каком, даже очень высоком давлении, нельзя превратить в жидкость.

Теплота испарения жидкого азота 199,3 кДж/кг (при температуре кипения), теплота плавления азота 25,5 кДж/кг (при температуре -210°C).

Энергия связи атомов в молекуле N2 очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Это свидетельствует о том, что связь между атомами азота тройная. Высокая прочность молекулы N2 может быть объяснена в рамках метода молекулярных орбиталей. Энергетическая схема заполнения молекулярных орбиталей в молекуле N2 показывает, что электронами в ней заполнены только связывающие s - и p-орбитали. Молекула азота немагнитна (диамагнитна).

Из-за высокой прочности молекулы N2процессы разложения различных соединений азота (в том числе и печально знаменитого взрывчатого вещества гексогена) при нагревании, ударах и т.д. приводят к образованию молекул N2. Так как объем образовавшегося газа значительно больше, чем объем исходного взрывчатого вещества, гремит взрыв.

Химические свойства

Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием с образованием твердого нитрида лития

В соединениях проявляет различные степени окисления (от -3 до +5). С водородом образует аммиак NH3. (3H+N=NH3) Косвенным путем (не из простых веществ) получают гидразин N2H4 и азотистоводородную кислоту HN3. Соли этой кислоты - азиды. Азид свинца Pb (N3) 2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов.

Известно несколько оксидов азота. С галогенами азот непосредственно не реагирует, косвенными путями получены NF3, NCl3, NBr3 и NI3, а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF3).

Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые - при хранении) на простые вещества. Так, NI3 выпадает в осадок при сливании водных растворов аммиака и йодной настойки. Уже при легком сотрясении сухой NI3 взрывается:

Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.

При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М3N2 (3M+N2=M3N2), которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:

Са3N2 + 6pO = 3Ca (OH) 2 + 2N +3 H3.

Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe2N и Fe4N (N2+6Fe=Fe2N+Fe4N). При нагревании азота с ацетиленом C2p может быть получен цианистый водород HCN (N2+C2H2=2HCN).

Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота HNO3, ее соли нитраты, а также азотистая кислота HNO2 и ее соли нитриты.

Получение

В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (-195,8°C), чем другого компонента воздуха - кислорода (-182,9°C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись "азот". Хранят жидкий азот в сосудах Дьюара.

В лаборатории чистый ("химический") азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH4Cl к твердому нитриту натрия NaNO2:

NaNO2 + NH4Cl = NaCl + N2 + 2pO.

Можно также нагревать твердый нитрит аммония:

NH4NO2 = N2 + 2pO.

Распространенность в природе

Азот - один из самых распространенных элементов на Земле, причем основная его масса (около 4*1015 т) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N2) составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание азота в литосфере 1,9*10-3% по массе. Природные соединения азота - хлористый аммоний NH4CI и различные нитраты. Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитры были главным для связывания азота имеет промышленный синтез аммиака из азота воздуха и водорода). Небольшие количества связанного азота находятся в каменном угле (1 - 2,5%) и нефти (0,02 - 1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1%) и в живых организмах (0,3%).

Хотя название “азот" означает “не поддерживающий жизни", на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16 - 17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические.

Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота.

В природе осуществляется круговорот азота, главную роль в котором играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и др.

Однако в результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными. Дефицит азота характерен для земледелия почти всех стран, наблюдается дефицит азота и в животноводстве (“белковое голодание”). На почвах, бедных доступным азотом, растения плохо развиваются. Хозяйственная деятельность человека нарушает круговорот азота. Так, сжигание топлива обогащает атмосферу азотом, а заводы, производящие удобрения, связывают азот из воздуха. Транспортировка удобрений и продуктов сельского хозяйства перераспределяет азот на поверхности земли.

Применение

В промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют и в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения. В лаборатории азот легко может быть получен при нагревании концентрированного нитрита аммония: NH4NO2 (N2 + 2pO. Технический способ получения азота основан на разделении предварительно сжиженного воздуха, который затем подвергается разгонке.

Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т.д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания азота воздуха имеет разработанный в 1905 цианамидный метод, основанный на том, что при 10000С карбид кальция (получаемый накаливанием смеси известии угля в электрической печи) реагирует со свободным азотом: CaC2 + N2 (CaCN2 + C. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN2 + 3pO (CaCO3 + 2NH3.

Cвободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т.д. Жидкий азот находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный азот в сжатом виде - в баллонах. Широко применяют многие соединения азота. Производство связанного азота стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.

История открытия

Открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения ("удушливый воздух") и в отличие от CO2не поглощаемый раствором щелочи. Вскоре французский химик А.Л. Лавуазье пришел к выводу, что "удушливый" газ входит в состав атмосферного воздуха, и предложил для него название "azote" (от греч. azoos - безжизненный).

Соединения азота - селитра, азотная кислота, аммиак - были известны задолго до получения азота в свободном состоянии. В 1787 г.А. Лавуазье установил, что

“жизненный” и “удушливый” газы, входящие в состав воздуха, это простые вещества, и предложил название “азот". В 1784 г.Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азота

(от позднелатинского nitrum - селитра и греческого gennao - рождаю, произвожу), предложенное в 1790 году Ж.А. Шапталем. К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.

Вывод: краткое содержание

Основная масса азота на Земле находится в газообразном состоянии и составляет свыше 3/4 атмосферы (78,09% по объ - ему, или 75,6% по массе). Практически на нашей планете за - пас азота неисчерпаем - 3,8*10^15 т. Азот - довольно инертный элемент, поэтому редко встречается в связанном состоянии. Это один из основных биофильных элементов, не - обходимый компонент главных полимеров живых клеток - структурных белков, белков - ферментов, нуклеиновых и аде - нозинтрифосворных кислот. Никакой другой элемент так не лимитирует ресурсы питательных веществ в агроэкосистемах, как азот. Он может стать доступным для живых организмов только в связанной форме, то есть в результате азотофиксации.

Азотофиксация - биологический процесс, и единственными организмами, способными его осуществлять, служат прокариоты (бактерии, цианобактерии, актиномицеты и архебактерии).

Небиологические процессы фиксации азота (грозовые разряды, воздействие УФ-лучей, работа электрического оборудования и двигателей внутреннего сгорания) в количественном отношении весьма несущественны, так как вместе дают не более 0.5% связанного азота. Даже вклад заводов азотных удобрений, производящих синтетический аммиак составляет лишь 5%.

Следовательно, свыше 90% всей фиксации молекулярного азота атмосферы осуществляется вследствие метаболической активности определённых микроорганизмов.

Впервые бактерии рода азотобактер, а точнее Azotobacter chroococcum были открыты голландским микробиологом М. Бейеринк в 1901 году.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Введение Комплексные соединения составляют наиболее обширный и разнообразный класс неорганических соединений. К ним принадлежат также металлорганические соединения, связывающие неорганическую и органическую химию. Многие комплексные соединения – витамин В12, гемоглобин, хлорофилл и др. – играют большую роль в физиологических и биохимических процессах в организме. Исследование свойств и строения комплексных соединений оказалось чрезвычайно плодотворным для кристаллохимии, изучающей зависимость физико-химических свойств веществ от структуры, образуемых ими кристаллов, и породило новое представление о природе химической связи. К ценным результатам привело применение комплексных соединений и в аналитической химии. Не будет лишним сказать, что успехи теоретической и прикладной химии за последние годы во многом связаны именно с изучением комплексных соединений [8].

Комплексные соединения находят широкое применение в разнообразных областях науки и жизни и их значение для человечества трудно переоценить. На их основе создаются лекарственные препараты, синтезируются соединения со специфическими свойствами, необходимыми для той или иной области, они находят широкое применение во всех областях химической промышленности, их так же можно встретить в быту.

В ходе работы решались следующие задачи:

Изучение координационной теории А. Вернера; Изучение строения комплексных соединений с точки зрения метода валентных связей, метода молекулярных орбиталей, теории кристаллического поля и теории поля лигандов; Изучение основных характеристик комплексных соединений (внутри- и внешнеорбитальность, пара- и диамагнитность, гибридизация, высоко- и низкоспиновость, энергия расщепления); Изучение поведения в растворе;

1. Введение в химию комплексных соединений

Основные понятия комплексных соединений

Наиболее удачно свойства и строение комплексных соединений объясняет координационная теория, предложенная в 1883 г. А. Вернером. Согласно Вернеру в этих соединениях различают внутреннюю и внешнюю координационные сферы. Частица, образующая внутреннюю сферу, мало диссоциирует в растворе, и составляющие ее атомы связаны между собой ковалентными связями. Такую частицу часто называют комплексной. По характеру электрического заряда различают катионные – [Zn(NH3)4]2+, анионные – [Al(OH)6]3− и нейтральные – [Pt(NH3)2Cl2] комплексы. Комплексный ион как структурная единица входит в состав кристаллической решетки. Частицы, образующие внешнюю сферу, напротив, в растворе полностью диссоциируют. Рассмотрим на примере анионного комплексного соединения (далее – КС) гексацианоферрата(III) калия строение молекулы, диссоциацию и дадим названия его составляющих [1]: K3[Fe(CN)6] ⇄ 3K+ + [Fe(CN)6]3− [Fe(CN)6]3− Внешняя Внутренняя Комплексный Центральный Лиганд Координационное

Современная химия является одной из естественных наук и определяет собой систему отдельных дисциплин: общей и неорганической химии, аналитической химии, органической химии, физической и коллоидной химии, геохимии, космохимии и т. п.

Содержание

Введение
1. Определение оксидов
2. Классификация оксидов
3. Физические и химические свойства
4. Способы получения
Заключение
Список использованных источников

Введение

Современная химия является одной из естественных наук и определяет собой систему отдельных дисциплин: общей и неорганической химии, аналитической химии, органической химии, физической и коллоидной химии, геохимии, космохимии и т. п.

Химия – наука, изучающая процессы превращения веществ, сопровождающиеся изменением состава и структуры, а также взаимные переходы между этими процессами и другими формами движения материи.

Неорганическая химия – это химия элементов Периодической системы и образованных ими простых и сложных веществ.

Неорганическая химия неотделима от общей химии. Исторически при изучении химического взаимодействия элементов друг с другом были сформулированы основные законы химии, общие закономерности протекания химических реакций: теория химической связи, учение о растворах и многое другое, что составляет предмет общей химии. Таким образом, общая химия изучает теоретическое представление и концепции, составляющие фундамент всей системы химических знаний.

Таким образом, главным объектом химии являются вещества и их превращения.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Все вещества делятся на простые и сложные. Простые, в свою очередь, подразделяются на металлы и неметаллы.

В твердом состоянии большинство веществ имеют кристаллическое строение. Связь в кристаллической решетке металлов – металлическая. Это обуславливает их особые физические свойства: электропроводность, теплопроводность, пластичность. Атомы неметаллов связаны между собой с помощью неполярной ковалентной связи. Они могут иметь атомную (алмаз, графит, кремний) или молекулярную (белый фарфор, галогены, кристаллическая сера S8) кристаллическую решетки. Поэтому физические свойства неметаллов весьма различны.

Сложные вещества делятся на 4 класса: оксиды, основания, кислоты, соли.

1. Определение оксидов

Окси́д (о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, соединения, содержащие атомы кислорода, связанные химической связью друг с другом ( пероксиды, надпероксиды, озониды) например: пероксид натрия Na2O2 , надпероксид калия KO2 , озонид калия KO3 и соединения фтора с кислородом (OF2 , O2F2), которые следует называть не оксидами фтора, а фторидами кислорода, т. к. степень окисления кислорода в них положительная.

Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.

Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом, моноокисью или закисью, если два — диоксидом или двуокисью, если три — то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО2, триоксид серы SO3.

Также распространены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO3 и т. д.

2. Классификация оксидов

Несолеобразующие оксиды — оксиды, не проявляющие ни кислотных, ни основных, ни амфотерных свойств и не образующие соли. Раньше такие оксиды называли индифферентными или безразличными, но это неверно, так как по своей химической природе данные оксиды достаточно реакционноспособны. По сравнению с другими видами, количество несолеобразующих оксидов невелико, их как правило образуют одно — и двухвалентные неметаллы. Типичными представителями таких оксидов являются гемиоксид азота (закись азота) N2O, монооксид азота NO, монооксид углерода СО, монооксид кремния SiO.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Солеобразующие оксиды — это оксиды, которые образуют соли при взаимодействии с кислотами или основаниями. В зависимости от характера соответствующих гидратов оксидов все солеобразующие оксиды делятся па три типа: основные, кислотные, амфотерные.

Осно́вные оксиды – солеобразующие оксиды, проявляющие осно́вные свойства. К ним относятся:

  • оксиды металлов главной подгруппы первой группы (щелочные металлы)
  • оксиды металлов главной подгруппы второй группы (щелочноземельные металлы)
  • оксиды переходных металлов в низших степенях окисления

Кислотные оксиды (ангидриды) – оксиды, растворяющиеся только в щелочах, с образованием соли и воды. Образуются типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют валентность от IV до VII. Также они могут взаимодействовать с некоторыми основными оксидами, например: оксид кальция CaO, оксид натрия Na2О и оксид цинка ZnO.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют валентность II,III,IV.

Увеличение степени окисления элемента и уменьшение радиуса его иона (при этом происходит уменьшение эффективного отрицательного заряда на этоме кислорода) делают оксид более кислотным. Это и объясняет закономерное изменение свойств оксидов от основных к амфотерным и далее к кислотным.

1) В одном периоде при увеличении порядкового номера происходит усиление кислотных свойств оксидов и увеличение силы соответствующих им кислот.

2) В главных подгруппах периодической системы при переходе от одного элемента к другому сверху вниз наблюдается усиление новых свойств оксидов:

3) При повышении степени окисления элемента усиливаются кислотные свойства оксида и ослабевают основные.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

3. Физические и химические свойства

Физические и химические свойства оксидов очень отличаются. При комнатной температуре большинство оксидов являются твердыми веществами, например, меди (II) оксид CuO черного цвета, кальций оксид CaO белого цвета, хром (III) оксид Cr2O3 темно-зеленого цвета. Некоторые оксиды являются жидкостями, например, водород оксид (вода) H2O и Cl2O7 являются бесцветными жидкостями, а некоторые — газообразными веществами, например карбон (IV) оксид CO2 является газом без цвета, а азот (IV) оксид NO2являются бурым газом. Некоторые оксиды являются веществами с молекулярным строением, другие имеют ионную строение.

Основные и кислотные оксиды проявляют разные свойства. Основные оксиды при нагревании могут вступать в реакции с кислотными и амфотерными оксидами, с кислотами. С водой непосредственно реагируют оксиды щелочных металлов (оксиды лития, натрия, калия, рубидия и цезия) и окислы щелочноземельных металлов (оксиды кальция, стронция и бария).

Рассмотрим примеры уравнений типовых химических реакций, которые подтверждают указанные свойства основных оксидов.

1. Взаимодействие основного оксида с кислотным оксидом с образованием соли:
CaO+SiO2 -> CaSiO3

2. Взаимодействие основного оксида с амфотерными оксидом с образованием соли:

3. Взаимодействие основного оксида с водой с образованием основания:

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

4. Взаимодействие основного оксида с кислотой с образованием соли и воды:

Кислотные оксиды могут вступать в реакции с основными и амфотерными оксидами, с растворимыми в воде основаниями (щелочами). Многие кислотных оксидов взаимодействуют с водой (исключением является кремний (IV) оксид SiO2. Рассмотрим примеры уравнений типовых химических реакций, которые подтверждают указанные свойства кислотных оксидов.

1. Взаимодействие кислотного оксида с основным оксидом с образованием соли:

2. Взаимодействие кислотного оксида с амфотерными оксидом с образованием соли:

3. Взаимодействие кислотного оксида с водой с образованием кислоты:

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

4. Взаимодействие кислотного оксида со щелочью с образованием соли и воды:

Амфотерными оксидам присущи свойства как основных, так и кислотных оксидов. То есть они могут реагировать как с кислотными, так и с основными оксидами с образованием солей. Кроме того, амфотерные оксиды могут взаимодействовать как с кислотами, так и со щелочами с образованием солей и воды.

4. Способы получения

1. Окисление простых веществ кислородом (сжигание простых веществ):

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Метод не применим для получения оксидов щелочных металлов, т.к. при окислении щелочные металлы обычно дают не оксиды, а пероксиды(Na2O2, K2O2).

Не окисляются кислородом воздуха благородные металлы, напрмер, Аu, Аg, Рt.

2. Окисление сложных веществ (солей некоторых кислот и водородных соединений неметаллов):

2ZnS + 3O2 = 2ZnO + 2SO2

2Н2S + 3O2 = 2SO2 + 2Н2О

3. Разложение при нагревании гидроксидов (оснований и кислородсодержащих кислот):

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Нельзя пользоваться этим методом для получения оксидов щелочных металлов, так как разложение щелочей происходит при слишком высоких температурах.

4. Разложение некоторых солей кислородсодержащих кислот:

2Рb(NO3)2 2РbО + 4NO2 + O2

Следует иметь в виду, что соли щелочных металлов не разлагаются при нагревании с образованием оксидов.

Заключение

Одной из важнейших таких систем естествознания, на мой взгляд, является химическая наука. Современная химия развивается стремительными темпами, плодотворно сотрудничая с физикой, математикой, биологией и другими науками. Истоки химических знаний лежат в глубокой древности.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

В их основе — потребность человека получить необходимые вещества, объяснить взаимодействие веществ для своей жизнедеятельности. Химия очень тесно связана с производством материальных ценностей и является больше практической наукой. Современные достижения химии в ее практической деятельности вносят большой вклад в общее миропонимание, в развитие естественнонаучных знаний, существенно отражаются на состоянии взаимодействия общества с природой. Добавляемые химией и химической производственной практикой знания о природе, о вещах и превращениях веществ, являются основой для формирования мировоззрения человека, развития общих представлений о мире, о природе человека, его деятельности. Еще с древних времен и вплоть до наших дней в развитии научной, в том числе и химической мысли, почти по всем направлениям можно констатировать позитивный и безостановочный прогресс. Научные знания продолжают постоянно углубляться и совершенствоваться.

Для формирования у современного человека естественнонаучного способа мышления, целостного мировоззрения необходимы и знания основных положений химии, как одной из важнейших наук, ее исторического развития и современного понимания роли химии для жизни и деятельности человека. Роль вещества и знаний о веществе, природа химических знаний, пути и средства их формирования в историческом развитии — вот то, с чего в можно начать изучение влияния химии на формирование и развитие современного естествознания.

Список использованных источников

1. Кипер Р.А. Свойства веществ: Справочник. — Хабаровск, 2009. — 387 с.
2. Коренев Ю.М., Овчаренко ., В.П., Егоров Е.Н. Общая и неорганическая химия часть 3, М.: Московский университет 2000. — 36с.
3. Третьяков Ю.Д., Неорганическая химия, том 1, М.: Академия, 2004. -240с.
4. Ахметов, Н. С. Общая и неорганическая химия / Н. С. Ахметов. – 5-еизд.,перераб. идоп. – М.: Высш. шк., 2003. – 744 с.
5. Карапетьянц, М. Х. Общая и неорганическая химия: учебник для вузов / М. Х. Карапетьянц, С. И. Дракин. – 4-еизд., стереотип. – М.: Химия, 2000. – 592 с.

В 19 веке валентная связь изображалась чёрточкой между символами двух химических элементов. Природа этой связи была совершенно неизвестна. После открытия электрона делались многочисленные попытки развить электронную теорию химической связи. Наиболее успешными были работы Г. Н. Льюиса, который в 1916 году предложил рассматривать образование химической связи, называемой теперь ковалентной связью, как результат того, что пара электронов становится общей для двух атомов. Разработка квантовой механики (1925) и использование многих экспериментальных методов (молекулярной спектроскопии, рентгенографии кристаллов, газовой электронографии, методов изучения магнитных свойств) для определения длин связей (межатомных расстояний), углов между связями, числа неспаренных электронов и других структурных параметров молекул и кристаллов привели к более глубокому пониманию природы химических связей.

Основными параметрами химической связи является её длина, прочность и валентные углы, характеризующие строение веществ, которые образованы из отдельных атомов.

Длина связи - это межъядерное расстояние между химическими связанными атомами.

Угол между воображаемыми прямыми, проходящими через ядра химически связанных атомов, называется валентным углом. Энергия связи - энергия, необходимая для разрыва такой связи.

При образовании химической связи происходит перераспределение в пространстве электронных плотностей, первоначально принадлежавших разным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то этим электронам принадлежит главная роль в образовании химической связи. Количество химических связей, образованных данным атомом в соединении, называют валентностью. Электроны, принимающие участие в образовании химической связи, называются валентными: у s- и р элементов -- это внешние электроны, у d- элементов -- внешние (последние) s-электроны и предпоследние d-электроны. С энергетической точки зрения наиболее устойчивым является атом, на внешнем уровне которого содержится максимальное число электронов (2 и 8 электронов). Такой уровень называют завершенным. Завершенные уровни отличаются большой прочностью и характерны для атомов благородных газов, поэтому при обычных условиях они находятся в состоянии химически инертного одноатомного газа.

Под химической связью в химии понимается взаимное сцепление атомов в молекуле и кристаллической решетке, в результате действия силы притяжения, существующей между атомами. Именно благодаря химическим связям происходит образование различных химических соединений, в этом заключается природа химической связи.


  1. Виды химической связи

    1. Металлическая связь

    При сближении двух атомов металла, например, Li - образуется ковалентная связь, при этом происходит расщепление каждого энергетического уровня валентного электрона на два. Когда N атомов Li образуют кристаллическую решетку, перекрывание электронных облаков соседних атомов приводит к тому, что каждый энергетический уровень валентного электрона расщепляется на N уровней, расстояния между которыми из-за большой величины N настолько малы, что их совокупность может считаться практически непрерывной зоной энергетических уровней, имеющей конечную ширину. Поскольку каждый атом участвует в образовании большего числа связей, чем, например, в двухатомной молекуле при том же числе валентных электронов, то минимум энергии системы (или максимум энергии связи) достигается при расстояниях больших, чем в случае двуцентровой связи в молекуле. Межатомные расстояния в металлах заметно больше, чем в соединениях с ковалентной связью (металлический радиус атомов всегда больше ковалентного радиуса), а координационное число (число ближайших соседей) в кристаллических решетках металлов обычно 8 или больше 8. Для наиболее часто встречающихся кристаллических структур координационные числа равны 8 (объёмно-центрированная кубическая), 12 (гранецентрированная кубическая и гексагональная плотноупакованная). Расчеты параметров металлических решеток с использованием ковалентных радиусов дают заниженные результаты. Так, расстояние между атомами Li в молекуле Li2 (ковалентная связь) равно 0,267 нм, в металле Li-0,304 нм. Каждый атом Li в металле имеет 8 ближайших соседей, а на расстоянии, в 6 раз больше. Энергия связи в расчете на один атом Li в результате увеличения числа ближайших соседей увеличивается с 0,96.10-19 Дж для Li2 до 2,9.10-19 Дж для кристаллического Li.

    В этом случае анионы и катионы образуют устойчивую электронную конфигурацию с заполненной внешней электронной оболочкой. Типичные ионные связи образуются из катионов Т и II групп периодической системы и анионов неметаллических элементов VI и VII групп (16 и 17 подгрупп — соответственно, халькогенов и галогенов). Связи у ионных соединений ненасыщенные и ненаправленные, поэтому возможность электростатического взаимодействия с другими ионами у них сохраняется. На рис. 2 и 3 показаны примеры ионных связей, соответствующих модели электронного переноса Косселя.


    Рис. 1. Ионная связь


    Рис. 2. Ионная связь в молекуле поваренной соли (NaCl)

    Здесь уместно напомнить о некоторых свойствах, объясняющих поведение веществ в природе, в частности, рассмотреть представление о кислотах и основаниях.

    Водные растворы всех этих веществ являются электролитами. Они по-разному изменяют окраску индикаторов. Механизм действия индикаторов был открыт Ф.В. Оствальдом. Он показал, что индикаторы представляют собой слабые кислоты или основания, окраска которых в недиссоциированном и диссоциированном состояниях различается. Основания способны нейтрализовать кислоты. Не все основания растворимы в воде (например, нерастворимы некоторые органические соединения, не содержащие ОН-групп, в частности, триэтиламин N (С 2 Н 5 ) 3 ); растворимые основания называют щелочами.

    Водные растворы кислот вступают в характерные реакции:

    а) с оксидами металлов — с образованием соли и воды;

    б) с металлами — с образованием соли и водорода;

    в) с карбонатами — с образованием соли, СO 2 и Н 2 O.

    Свойства кислот и оснований описывают несколько теорий. В соответствие с теорией С.А. Аррениуса, кислота представляет собой вещество, диссоциирующее с образованием ионов Н + , тогда как основание образует ионы ОН. Эта теория не учитывает существования органических оснований, не имеющих гидроксильных групп.

    В соответствие с протонной теорией Бренстеда и Лоури, кислота представляет собой вещество, содержащее молекулы или ионы, отдающие протоны (доноры протонов), а основание — вещество, состоящее из молекул или ионов, принимающие протоны (акцепторы протонов). Отметим, что в водных растворах ионы водорода существуют в гидратированной форме, то есть в виде ионов гидроксония H 3 O + . Эта теория описывает реакции не только с водой и гидроксидными ионами, но и осуществляющиеся в отсутствие растворителя или с неводным растворителем.

    Например, в реакции между аммиаком NH 3 (слабым основанием) и хлороводородом в газовой фазе образуется твердый хлорид аммония, причем в равновесной смеси двух веществ всегда присутствуют 4 частицы, две из которых - кислоты, а две другие - основания:


    Эта равновесная смесь состоит из двух сопряженных пар кислот и оснований:

    Здесь в каждой сопряженной паре кислота и основание различаются на один протон. Каждая кислота имеет сопряженное с ней основание. Сильной кислоте соответствует слабое сопряженное основание, а слабой кислоте — сильное сопряженное основание.

    Теория Бренстеда-Лоури позволяет объяснить уникальность роли воды для жизнедеятельности биосферы. Вода, в зависимости от взаимодействующего с ней вещества, может проявлять свойства или кислоты, или основания. Например, в реакциях с водными растворами уксусной кислоты вода является основанием, а с водными растворами аммиака — кислотой.

    1) СН 3 СООН + Н 2 O ↔ Н 3 O + + СН 3 СОО. Здесь молекула уксусной кислоты доминирует протон молекуле воды;

    2) NH 3 + Н 2 O ↔ NH 4 + + ОН. Здесь молекула аммиака акцептирует протон от молекулы воды.

    Таким образом, вода может образовывать две сопряженные пары:

    1) Н 2 O (кислота) и ОН (сопряженное основание)

    2) Н 3 О + (кислота) и Н 2 O (сопряженное основание).

    В первом случае вода доминирует протон, а во втором — акцептирует его.

    Такое свойство называется амфипротонностью. Вещества, способные вступать в реакции в качестве и кислот, и оснований, называются амфотерными. В живой природе такие вещества встречаются часто. Например, аминокислоты способны образовывать соли и с кислотами, и с основаниями. Поэтому пептиды легко образуют координационные соединения с присутствующими ионами металлов.

    Сила этих взаимодействий зависит от природы молекул.

    Выделяют взаимодействия трех типов: постоянный диполь — постоянный диполь (диполь-дипольное притяжение); постоянный диполь — индуцированный диполь (индукционное притяжение); мгновенный диполь — индуцированный диполь (дисперсионное притяжение, или лондонские силы)


    Рис. 3. Вандерваальсовая связь

    Диполь-дипольным моментом обладают только молекулы с полярными ковалентными связями (HCl, NH 3, SO 2, Н 2 O, C 6 H 5 Cl), причем сила связи составляет 1-2 Дебая (1Д = 3,338 × 10 30 кулон-метра — Кл × м).

    В биохимии выделяют еще один тип связи - водородную связь, являющуюся предельным случаем диполь-дипольного притяжения. Эта связь образована притяжением между атомом водорода и электроотрицательным атомом небольшого размера, чаще всего - кислородом, фтором и азотом. С крупными атомами, обладающими аналогичной электроотрицательностью (например, с хлором и серой), водородная связь оказывается значительно более слабой. Атом водорода отличается одной существенной особенностью: при оттягивании связывающих электронов его ядро — протон — оголяется и перестает экранироваться электронами.

    Поэтому атом превращается в крупный диполь.



    Рис.4. Водородная связь

    Водородная связь, в отличие от вандерваальсовой, образуется не только при межмолекулярных взаимодействиях, но и внутри одной молекулы — внутримолекулярная водородная связь. Водородные связи играют в биохимии важную роль, например, для стабилизации структуры белков в виде а-спирали, или для образования двойной спирали ДНК (рис. 4).


      1. Водородная связь

        1. Ковалентная связь

        • Ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

        • Ковалентная связь тем прочнее, чем в большей степени перекрываются электронные облака.

        • Прочность ковалентной связи -- это свойства характер длинной связи (межъядерное пространство) и энергии энергией связи.

        • Насыщаемость ковалентной связи -- это способность атома участвовать только в определенном числе ковалентной связи, насыщаемость характеризует валентностью атома. Количественные меры валентности являются число не спаренных электронов у атома в основном и в возбужденном состоянии.

        • Гибридизация ковалентной связи -- при гибридизации происходит смещение атомных орбиталей, т.е. происходит выравнивание по энергии и по форме. Существует sp, sp2, sp3 --гибридизация. sp -- форма молекулы линейная (угол 1800), sp2 -- форма молекулы плоская треугольная (угол 1200), sp3 - форма тетраэдрическая (угол 109028).

        • Кратность ковалентной связи или делоколизация связи -- Число связей, образующихся между атомами, называется кратностью (порядком) связи. С увеличением кратности (порядка) связи изменяется длина связи и ее энергия.

        1. Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

        1. Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).


        Рис. 6. Ковалентная полярная связь

        Маррел Дж., Кеттл С., Теддер Дж. Химическая связь. М.: Мир, 1980. 384 с.

        Пиментел Г., Спратли Р. Как квантовая механика объясняет химическую связь. Пер. с англ. М.: Мир, 1973. 332 с.

        Рюденберг К. Физическая природа химической связи. М.: Мир, 1964. 164 c.

        Яцимирский К. Б., Яцимирский В. К. Химическая связь. Киев: Вища школа, 1975. 304 c.

        Краснов К. С. Молекулы и химическая связь. 2-ое изд. М: Высшая школа, 1984. 295 с.

        Татевский В. М. Квантовая механика и теория строения молекул. М.: Изд-во МГУ, 1965. 162 с. (§§ 30-31)

        Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001. 532 c. ISBN 5-03-003363-7 Глава 7. Модели химической связи.

        Читайте также: