Реферат на тему характеристики компьютерных систем

Обновлено: 02.07.2024

В основе функциональной организации ЭВМ всех поколений лежит общий принцип программного управления (в пятидесятые годы теоретически предлагается принцип микропрограммного управления, практическая реализация которого приходится на следующее десятилетие; обычно этот фундаментальный принцип организации подсистемы управления ЭВМ связывают с работами Уилкса (Wilkes M.V.), выполненными в 1951 году) и двоичного представления информации. Реализация программного управления достигается различными структурными схемами, отличающимися функциональными свойствами и производительностью. Эти принципы, разработанные очень давно, еще до появления, если так можно выразиться, первых достаточно полноценных компьютеров, определили весь последующий облик компьютерных систем. Следование этим принципам позволяет создать универсальные и по возможности более простые аппаратные (как впрочем и программные) средства обеспечения вычислительных машин.

В процессе развития систем определенного класса сохраняется совокупность их основных (базовых) функций. Применительно к компьютерным системам можно утверждать: каждое новое компьютерное поколение сохраняет (воспроизводит) совокупность основных функций, реализуемых компьютерами предшествующего поколения. Какие это функции? PMTC – Processing (обработка), Memory (хранение), Transfer (передача), Control (управление). Все это сохраняется на протяжении всех поколений компьютерных систем. Наиболее интенсивным изменениям подвергаются сервисные функции. Эти изменения направлены на увеличение производительности и совершенствование интерфейса пользователя с системой.

Действительно, ни один из существующих типов КС не выполняет каких-либо функций, кроме вышеуказанных. Единственные изменения, которые происходят с появлением новой КС – это все лучшее выполнение этих функций: новый РС все быстрее производит обработку данных, полученных с устройств ввода, новый сервер имеет все более емкую дисковую систему, больший объем памяти и производительный CPU, новый коммуникационный стандарт обеспечивает большую пропускную способность и надежность.

Основные показатели КС – характеристики производительности, энергетические характеристики, характеристики надежности и эффективности систем, экономические показатели – взаимосвязаны и взаимозависимы. Улучшение одной группы показателей качества, например увеличение производительности, ведет к ухудшению других – усложнению структуры, увеличению стоимости, снижению надежности и т. д.

Приведем примеры взаимосвязи и взаимозависимости показателей. В конце 40-х годов Г. Грош сформулировал эмпирический закон, согласно которому пропорциональность КС пропорциональна квадрату стоимости. Следовательно, для того чтобы выполнить некоторую вычислительную работу в два раза дешевле, ее надо выполнить в четыре раза быстрее (К. Е. Найт экспериментально подтвердил справедливость этого закона для первых трех поколений компьютеров). Другой пример взаимозависимости общей производительности векторной супер-ЭВМ от двух режимов ее работы. Известно, что программы, которые могут быть векторизованы компилятором, выполняются в векторном режиме с высокой скоростью, а программы, не содержащие векторного параллелизма (или которые компилятор не обнаруживает), выполняются с низкой скоростью в скалярном режиме. В 1967 г. Дж. Амдал вывел закон, согласно которому в такой системе низкоскоростной режим доминирует в общей производительности.

И напоследок еще один более близкий и современный нам пример. Не секрет, что процессоры Intel Pentium-4 первого поколения (под Socket-423) имеют высокое энергопотребление, большую теплоотдачу и довольно-таки внушительные размеры. Недавно в сети даже ходили шуточки насчет того, что если так пойдет и дальше, то в недалеком будущем компьютеры в обязательном порядке будут поставляться с портативной атомной электростанцией и радиатором водяного охлаждения в комплекте, а материнская плата будет свариваться из стального проката (в том смысле, что иначе она рассыплется от тяжести комплектующих). Конечно, не все так плохо, но определенный резон в этих замечаниях действительно присутствует. Поэтому Intel вскоре перевела процессор на более тонкий техпроцесс, в результате чего удалось сделать его очень маленьким (гораздо меньше, чем CPU предыдущих поколений), экономичным в плане потребления энергии и выделяющим мало тепла. Но с другой стороны, примерно до 10% повысилась стоимость изделия (и это несмотря на то, что площадь чипа, напрямую влияющая на стоимость, уменьшилась). И в чисто технологическом плане изменения не дались даром: новый процессор получился более требовательным к устойчивости параметров питания, так что пришлось оснастить его новым (Socket-478) интерфейсом, где дополнительные контакты обеспечивают нужную стабильность напряжения, подаваемого на процессор.

Или, еще, сравним архитектуры все тех же CPU от AMD и от Intel. Про вторую мы только что упоминали, поэтому рассмотрим продукцию первой. Известно, что эту самую продукцию (CPU Athlon различных модификаций) отличает весьма небольшая по сравнению с Pentium стоимость при примерно равной производительности. Чем этого удалось добиться? Ответ: применением менее высоких (и поэтому более дешевых), чем у Intel, технологий изготовления чипов и усовершенствованием внутренней архитектуры процессора: изощренные алгоритмы кэширования, оптимизированный конвейер и проч. Примерно то же можно сказать и о DDR SDRAM. DDR (Double Data Rate) SDRAM по многим параметрам и способам изготовления мало чем отличается от обычной SDRAM: та же синхронизация шины памяти с системной шиной, практически то же производственное оборудование, энергопотребление, почти не отличающееся от SDRAM, площадь чипа больше лишь на несколько процентов. Изменения заключаются только в применении популярной в последнее время в компонентах PC технологии передачи данных одновременно по двум фронтам сигнала, когда за один такт передаются сразу два пакета данных. В случае с используемой 64-битной шиной это дает 16-байтный за такт. Или, в случае со 133 мегагерцами, уже не 1064, а 2128 Mb/s. Это позволило сразу без значительных материальных и временных издержек создать новую быстродействующую память, причем по цене, мало отличающейся от обычной SDRAM (кстати, DDR SDRAM еще иногда именуют SDRAM-II). То есть мы видим, что новая память при ближайшем рассмотрении есть усовершенствованная старая. В результате стоимость готовой системы процессор+память+системная плата от AMD ниже аналогичной от Intel раза чуть ли не в два, но, очевидно, ее структурная сложность существенно выше.

Похожие страницы:

Основные характеристики ЭВМ

Основные характеристики ЭВМ . стали одними из основных составляющих мирового научно-технического . управления автоматических и автоматизированных систем. Математическая база этой . в рам­ках ANSI (стратегической компьютерной инициативы) новой супер­ЭВМ, которая .

Основные характеристики ЭВМ. Классификация средств электронной вычислительной техники

Основные характеристики ЭВМ. . . ОС микропроцессорных систем и локально-вычислительных систем. Центральное место . Объём ОС и число составляющих её программ в значительной . . 1997. № 5. 3. Трахтенгенрц Э.А. Компьютерный анализ в динамике принятия решений. Приборы .

Основные подходы исследования систем управления

. Характеристика исследования систем управления 2. Основные подходы к исследованию систем управления… Диалектический подход к исследованию систем . Рисунок 1 - Основные составляющие процесса исследования Часто . разрабатываемых советующих компьютерных программ; .

Основные характеристики современных организаций

. определении основных характеристик современных организаций. К основным задачам . соответствие характеристик его важнейших составляющих условиям . инновационного потенциала - компьютерные, лазерные, . экологическая безопасность производственных систем и крупных .

Защита информации и информационных компьютерных систем

. Защита информации и информационных (компьютерных) систем. Оглавление. Введение в информационную . , методы и основные направления достижения информационной . зависимости от следующих характеристик: обеспечивает ли . к информации, составляющую коммерческую тайну. .

Электронно-вычислительные машины (ЭВМ), или, как их теперь чаще называют, компьютеры, - одно из самых удивительных творений человека. В узком смысле ЭВМ - это приспособления, выполняющие разного рода вычисления или облегчающие этот процесс. Простейшие устройства, служащие подобным целям, появились в глубокой древности, несколько тысячелетий назад. По мере развития человеческой цивилизации они медленно эвоционировали, непрерывно совершенствуясь. Однако только в 40-е годы нашего столетия было положено начало созданию компьютеров современной архитектуры и с современной логикой. Именно эти годы можно по праву считать временем рождения современных ( естественно, электронных ) вычислительных машин.

В своем историческом докладе, опубликованном в 1945 году, Джон фон Нейман выделил и детально описал пять ключевых компонентов того, что ныне называют " архитектурой фон Неймана " современного компьютера.

Чтобы компьютер был и эффективным , и универсальным инструментом, он должен включать следующие структуры: центральное арифметико-логическое устройство (АЛУ), центральное устройство управления (УУ), " дирижирующее " операциями, запоминающее устройство, или память, а также устройства ввода-вывода информации.

Фон Нейман отмечал, что эта система должна работать с двоичными числами, быть электронным, а не механическим устройством и выполнять операции последовательно, одну за другой.

Принципы, сформированные фон Нейманом, стали общепринятыми и положены в основу как больших ЭВМ первых поколений, так и более поздних мини- и микро-ЭВМ. И хотя в последнее время идут активные поиски вычислительных машин, построенных на принципах, отличных от классических, большинство компьютеров построено согласно принципам, определенным Нейманом.

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.


Структура компьютера — это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) — одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд — программа. Это однопроцессорный компьютер. К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.


Периферийные устройства ( принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры — устройства управления периферийными устройствами.

Контроллер — устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Многопроцессорная архитектура . Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Структура такой машины, имеющей общую оперативную память и несколько процессоров, представлена на рисунке.

Архитектура многопроцессорного компьютера

Многомашинная вычислительная система . Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

Архитектура с параллельными процессорами . Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе — то есть по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных. Структура таких компьютеров представлена на рисунке.

Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных выше.

Современный персональный компьютер состоит из нескольких основных конструктивных компонентов:

  • системного блока;
  • монитора;
  • клавиатуры;
  • манипуляторов.

Системный блок – самый главный блок компьютера. К нему подключаются все остальные блоки, называемые внешними или периферийными устройствами. В системном блоке находятся основные электронные компоненты компьютера. ПК построен на основе СБИС (сверхбольших интегральных схем), и почти все они находятся внутри системного блока, на специальных платах (плата - пластмассовая пластина, на которой закреплены и соединены между собой электронные компоненты - СБИСы, микросхемы и др.). Самой важной платой компьютера является системная плата. На ней находятся центральный процессор, сопроцессор, оперативное запоминающее устройство – ОЗУ и разъемы для подключения плат-контроллеров внешних устройств.

В системном блоке размещаются:

  • блок питания - устройство, преобразующее переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и внутренних устройств. Блок питания содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока.
  • системная плата (материнская плата);
  • магистраль (системная шина);
  • процессор;
  • звуковая карта;
  • видеокарта (графическая карта);
  • накопители на жёстких магнитных дисках;
  • накопители на гибких магнитных дисках;
  • оптические, магнитооптические и пр. накопители;
  • накопитель CD-ROM, DVD-ROM;

Основной частью любой компьютерной системы является материнская плата с главным процессором и поддерживающими его микросхемами. Функционально материнскую плату можно описать различным образом. Иногда такая плата содержит всю схему компьютера (одноплатные). В противоположность одноплатным, в шиноориентированых компьютерах системная плата реализует схему минимальной конфигурации, остальные функции реализуются с помощью многочисленных дополнительных плат. Все компоненты соединяются шиной. В системной плате нет видеоадаптера, некоторых видов памяти и средств связи с дополнительными устройствами. Эти устройства (платы расширения) добавляются к системной плате путем присоединения к шине расширения, которая является частью системной платы.


Первая материнская плата была разработана фирмой IBM, и показана в августе 1981 года (PC-1). В 1983 году появился компьютер с увеличенной системной платой (PC-2). Максимум, что могла поддерживать PC-1 без использования плат расширения - 64К памяти. PC-2 имела уже 256К, но наиболее важное различие заключалось в программировании двух плат. Системная плата PC-1 не могла без корректировки поддерживать наиболее мощные устройства расширения, таких, как жесткий диск и улучшенные видеоадаптеры.

Материнская плата — это комплекс различных устройств поддерживающий работу системы в целом. Обязательными атрибутами материнской платы являются базовый процессор, оперативная память, системный BIOS, контролер клавиатуры, разъемы расширения.

Материнская плата внутри компьютера - главная монтажная деталь, к которой крепятся остальные компоненты.



При нормальной работе материнской платы о ней не вспоминают, пока не понадобится усовершенствовать компьютер. Обычно хотят поставить более быстрый процессор, что и ведет к замене материнской платы. Нельзя, например, заменить старый Pentium MMX на Pentium III без новой материнской платы.

По внешнему виду материнской платы можно определить, какие нужны процессор, память и дополнительные устройства, вставляемые во внешние порты и гнезда компьютера.

По размерам материнские платы в общем случае можно разделить на три группы. Раньше все материнские платы имели размеры 8,5/11 дюймов. В XT размеры увеличились на 1 дюйм в AT размеры возросли еще больше. Часто речь может идти о “зеленых” платах (green mothеrboard). Сейчас выпускаются только такие платы. Данные системные платы позволяют реализовать несколько экономичных режимов энергопотребления (в том числе, так называемый “sleep”, при котором отключается питание от компонентов компьютера, которые в данный момент не работают).


Американское агентство защиты окружающей среды (EPA) сосредоточила свое внимание на уменьшении потребления энергии компьютерными системами. Оборудование, удовлетворяющее ее (EPA) требованиям должно в среднем (в режиме холостого хода) потреблять не более 30Вт, не использовать токсичные материалы и допускать 100% утилизацию. Поскольку современные микропроцессоры используют напряжение питания 3,3-4В, а на плату подается 5В, на системных
платах монтируют преобразователи напряжение.

Частота процессора, системной шины и шин периферийных устройств

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате устанавливаются специальные микросхемы (чипсеты), включающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост).


Рис.1. Логическая схема системной платы

К северному мосту подключается шина PCI (Peripherial Component Interconnect bus - шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше - 33 МГц. Контроллеры периферийных устройств (звуковая плата, сетевая плата, SCSI-контроллер, внутренний модем) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP (Accelerated Graphic Port - ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI.

Южный мост обеспечивает обмен информацией между северным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски, CD-ROM, DVD-ROM) подключаются к южному мосту по шине UDMA (Ultra Direct Memory Access - прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают электрические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются последовательные порты как COM1 и COM2, а
аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LTP, а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB (Universal Serial Bus - универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств. Клавиатура подключается обычно с помощью порта PS/2.

Быстродействие ЭВМ рассматривается в двух аспектах. С одной стороны, оно характеризуется количеством элементарных операций, выполняемых центральным процессором в секунду. Под элементарной операцией понимается любая простейшая операция типа сложения, пересылки, сравнения п т. д. С другой стороны, быстродействие ЭВМ существенно зависит от организации ее памяти. Время, затрачиваемое на поиск необходимой информации в памяти, заметно сказывается на быстродействии ЭВМ.

Емкость, или объем, памяти определяется максимальным количеством информации, которое можно разместить в памяти ЭВМ. Обычно емкость памяти измеряется в байтах. Как уже отмечалось, память ЭВМ подразделяется на внутреннюю и внешнюю. Внутренняя, или оперативная память, по своему объему у различных классов машин различна и определяется системой адресации ЭВМ. Емкость внешней памяти из-за блочной структуры и съемных конструкций накопителей практически неограничена.

Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ комплектуются 32- или 64-разрядными микропроцессорами, что вполне достаточно для обеспечения высокой точности расчетов в самых разнообразных приложениях. Однако, если этого мало, можно использовать удвоенную или утроенную разрядную сетку.

Система команд — это перечень команд, которые способен выполнить процессор ЭВМ. Система команд устанавливает, какие конкретно операции может выполнять процессор, сколько операндов требуется указать в команде, какой вид (формат) должна иметь команда для ее распознания. Количество основных разновидностей команд невелико. С их помощью ЭВМ способны выполнять операции сложения, вычитания, умножения, деления, сравнения, записи в память, передачи числа из регистра в регистр, преобразования из одной системы счисления в другую и т. д. При необходимости выполняется модификация команд, учитывающая специфику вычислений. Обычно в ЭВМ используется от десятков до сотен команд (с учетом их модификации). На современном этапе развития вычислительной техники используются два основных подхода при формировании системы команд процессора. С одной стороны, это традиционный подход, связанный с разработкой процессоров с полным набором команд, — архитектура CISC (Complete Instruction Set Computer — компьютер с полным набором команд). С другой стороны, это реализация в ЭВМ сокращенного набора простейших, но часто употребляемых команд, что позволяет упростить аппаратные средства процессора и повысить его быстродействие — архитектура RISC (Reduced Instruction Set Computer — компьютер с сокращенным набором команд).

Стоимость ЭВМ зависит от множества факторов, в частности от быстродействия, емкости памяти, системы команд и т. д. Большое влияние на стоимость оказывает конкретная комплектация ЭВМ и, в первую очередь, внешние устройства, входящие в состав машины. Наконец, стоимость программного обеспечения ощутимо влияет на стоимость ЭВМ.

Надежность ЭВМ — это способность машины сохранять свои свойства при заданных условиях эксплуатации в течение определенного промежутка времени. Количественной оценкой надежности ЭВМ, содержащей элементы, отказ которых приводит к отказу всей машины, могут служить следующие показатели:

• вероятность безотказной работы за определенное время при данных условиях эксплуатации;
• наработка ЭВМ на отказ;
• среднее время восстановления машины и др.

1. Букчин Л.В., Безрукий Ю.Л. Дисковая система IBM - совместимых компьютеров. - М.: Бином, 1993. - 284 с.

2. Лагутенко О.И. Модемы. Справочник пользователя. - СПб.: Лань, 1997. - 364

3. Информатика. Базовый курс

5. Угринович Н.Д. Информатика и информационные технологии. Учебное пособие для 10-11 классов. Углубленный курс. - М.: Лаборатория Базовых Знаний, 2000.

Конфигурация и основные характеристики компьютерных систем [10.10.12]

Использование ПЭВМ приводит к коренной перестройке технологии производства практически во всех отраслях промышленности, коммерческой и финансово-кредитной деятельности и, как следствие, к производительности и улучшению условий труда людей. Именно поэтому современный специалист должен владеть техническими навыками использования вычислительной техники, и других средств управления для решения различных экономических задач.

В теоретической части курсовой работы рассматривается конфигурация компьютера, а также основные характеристики компьютерных систем.

Цель работы – изучить особенности конфигурации компьютерных систем.

1)рассмотреть понятие конфигурации компьютерных систем,
2)изучить основные характеристики компьютерных систем,
3) изучить классификацию компьютерных систем.

Объект исследования – компьютерные системы.

Предмет исследования - конфигурация и основные характеристики компьютерных систем.

1. Теоретическая часть

1.1.Конфигурация компьютерных систем

1.1.1. Базовая аппаратная конфигурация персонального компьютера

Персональный компьютер – универсальная техническая система. Его конфигурация (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется для массового пользования. Понятие базовой конфигурации может меняться. В настоящее время в базовой конфигурации рассматривают четыре устройства, а именно, системный блок, монитор, клавиатура и мышь [3, с.39]. Монитор – устройство вывода на экран и визуального отражения информации. Клавиатура - устройство для ввода команд и управляющих воздействий. Мышь – устройство для перемещения и управления курсором на экране.

1.1.2. Системный блок

Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, - внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода и хранения данных, также называют периферийными.

По внешнему виду системные блоки различаются формой корпуса. Корпуса персональных компьютеров выпускаются в горизонтальном (desktop) и вертикальном (tower) исполнении. Корпуса, имеющие вертикальное исполнение, различают по габаритам: полноразмерный (big tower), среднеразмерный (midi tower) и малоразмерный (mini tower). Среди корпусов, имеющих горизонтальное исполнение, выделяют плоские и особо плоские (slim).

Кроме формы, для корпуса важен параметр, называемый форм-фактором. От него зависят требования к размещаемым устройствам. Прежним стандартом корпуса персональных компьютеров был форм-фактор АТ, в настоящее время в основном используются корпуса форм-фактора АТХ. Форм-фактор корпуса должен быть обязательно согласован с форм-фактором главной (системной) платы компьютера, так называемой материнской платы.

Корпуса персональных компьютеров поставляются вместе с блоком питания и, таким образом, мощность блока питания также является одним из параметров корпуса. Для массовых моделей достаточной является мощность блока питания 250-300 Вт. [1,с.56]

1.1.3. Монитор

Монитор – устройство визуального представления данных. Это не единственно возможное, но главное устройство вывода. Его основными потребительскими параметрами являются: тип, размер и шаг маски экрана, максимальная частота регенерации изображения, класс защиты.

Сейчас наиболее распространены мониторы двух основных типов: на основе электронно-лучевой трубки (ЭЛТ) и плоские жидкокристаллические (ЖК). ЭЛТ-мониторы обеспечивают лучшее качество изображения, но в пользу жидкокристаллических мониторов говорит их компактность, небольшой вес, идеально плоская поверхность экрана.

Размеры монитора измеряются между противоположными углами видимой части экрана по диагонали. Единица измерения – дюймы. Стандартные размеры: 14, 15, 17, 19, 20, 21. В настоящее время наиболее универсальными являются мониторы размером 15 (ЖК) и 17 (ЭЛТ), а для операций с графикой желательно мониторы размеров 19-21 дюйм (ЭЛТ).

Частота регенерации (обновления) изображения показывает, сколько раз в течение секунды монитор может полностью сменить изображение. Этот параметр зависит не только от монитора, но и от свойств и настроек видеоадаптера, хотя предельные возможности определяет все-таки монитор.

Частоту регенерации изображения измеряют в герцах (Гц). Чем она выше, тем четче и устойчивее изображение, тем меньше утомление глаз, тем больше времени можно работать с компьютером непрерывно. При частоте регенерации порядка 60 Гц мелкое мерцание изображения может быть заметно невооруженным глазом. Сегодня такое значение считается недопустимым. Для ЭЛТ-мониторов минимальным считают значение 75 Гц, нормальным – 85 Гц и комфортным – 100 Гц и более. У ЖК-мониторов изображение более инертно, так что мерцание подавляется автоматически. Для них частота обновления в 75 Гц уже считается комфортным.

Большинство параметров изображения, полученного на экране монитора, можно управлять программно. Программные средства, предназначенные для этой цели, обычно входят в системный комплект программного обеспечения. [1, с.57-58]

1.1.4. Клавиатура

Клавиатура – клавишное устройство управления персональным компьютером. Служит для ввода алфавитно-цифровых (знаковых) данных, а также команд управления. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя. С помощью клавиатуры управляют компьютерной системой, а с помощью монитора получают от нее отклик.

Принцип действия. Клавиатура относится к стандартным средствам персонального компьютера. Ее основные функции не нуждаются в поддержке специальными системными программами (драйверами). Необходимое программное обеспечение для начала работы с компьютером уже имеются в микросхеме ПЗУ в составе базовой системы ввода-вывода (BIOS), и поэтому компьютер реагирует на нажатия клавиш сразу после включения. [1, с.58]

1.1.5. Мышь

Мышь – устройство управления манипуляторного типа. Представляет собой плоскую коробочку с несколькими кнопками. Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта (указателя мыши) на экране монитора.

Стандартная мышь имеет только две кнопки, хотя существуют нестандартные мыши с тремя и более кнопками. Сегодня наиболее распространены мыши, в которых роль третьей кнопки играет вращающееся колесико-регулятор. Функции дополнительных органов управления определяются тем программным обеспечением, которое поставляется вместе с устройством. [1, с.59]

1.2.Основные характеристики компьютерных систем

  • непосредственно компьютер с установленным на него системным и прикладным программным обеспечением, а также электронные носители данных;
  • локальные и глобальные компьютерные сети.

Как для любой системы, можно выделить четыре базовых характеристики компьютерных систем:

  1. отношение стоимость/производительность;
  2. надежность и отказоустойчивость;
  3. совместимость и мобильность программного обеспечения.

Составляющие компьютерной системы, как информационной, могут выполнять 5 основных функций (одну или несколько сразу):

  1. получение информации из внешних источников;
  2. выдача информации;
  3. хранение информации;
  4. передача информации;
  5. обработка информации.

Рассмотрим отдельно компьютеры, локальные и глобальные сети.

1.2.2.Классификация Компьютерных систем

В настоящее время накоплен большой практический опыт в разработке и использовании компьютерных (вычислительных) систем самого разнообразного применения. Эти системы очень сильно отличаются друг от друга своими возможностями и характеристиками. Существует большое количество признаков, по которым классифицируют компьютерные системы: по целевому назначению и выполняемым функциям, по типам и числу ЭВМ или процессоров, по архитектуре системы, режимам работы, методам управления элементами системы, степени разобщенности элементов компьютерных систем и др. Однако основными из них являются признаки структурной и функциональной организации компьютерных систем.

По назначению ВС делят на универсальные, проблемно-ориентированные и специализированные. Универсальные предназначаются для решения широкого класса задач. Проблемно-ориентированные используются для решения определенного круга задач в сравнительно узкой сфере. Специализированные ориентированы на решение узкого класса задач. Специализация ВС может устанавливаться различными средствами [4, С.30]:

• во-первых, сама структура системы (количество параллельно работающих элементов, связи между ними и т.д.) может быть ориентирована на определенные виды обработки информации: матричные вычисления, решение алгебраических, дифференциальных и интегральных уравнений и т.п.

• во-вторых, специализация ВС может закладываться включением в их состав специального оборудования и специальных пакетов обслуживания техники.

По типу ВС различаются на многомашинные и многопроцессорные. Многомашинные (ММС) появились исторически первыми. Уже при использовании ЭВМ первых поколений возникали задачи повышения производительности, надежности и достоверности вычислений. Многопроцессорные (МПС) строятся при комплексировании нескольких процессоров . В качестве общего ресурса они имеют общую оперативную память (ООП). Параллельная работа процессоров и использование ООП обеспечиваются под управлением единой общей операционной системы.

По типу ЭВМ или процессоров, используемых для построения ВС, различают однородные и неоднородные системы. Однородные предполагают комплексирование однотипных ЭВМ (процессоров), неоднородные – разнотипных [6, С.15]. В однородных системах значительно упрощаются разработка и обслуживание технических и программных (в основном ОС) средств. В них обеспечивается возможность стандартизации и унификации соединений и процедур взаимодействия элементов системы. Упрощается обслуживание систем, облегчаются модернизация и их развитие. Вместе с тем существуют и неоднородные ВС, в которых комплексируемые элементы очень сильно отличаются по своим техническим и функциональным характеристикам. Обычно это связано с необходимостью параллельного выполнения многофункциональной обработки. Так, при построении ММС, обслуживающих каналы связи, целесообразно объединять в комплекс связанные, коммуникационные машины и машины обработки данных. В таких системах коммуникационные ЭВМ выполняют функции связи, контроля получаемой и передаваемой информации, формирования пакетов задач и т.д. ЭВМ обработки данных не занимаются не свойственными им работами по обеспечению взаимодействия в сети, а все их ресурсы переключаются на обработку данных. Неоднородные системы находят применение и в МПС. Многие ЭВМ, в том числе и ПЭВМ, могут использовать сопроцессоры: десятичной арифметики, матричные и т.п.

По степени территориальной разобщенности вычислительных модулей ВС делятся на системы совмещенного (сосредоточенного) и распределенного (разобщенного) типов. Обычно такое деление касается только ММС. Многопроцессорные системы относятся к системам совмещенного типа. Более того, учитывая успехи микроэлектроники, это совмещение может быть очень глубоким. При появлении новых сверхбольших интегральных схем (СБИС) появляется возможность иметь в одном кристалле несколько параллельно работающих процессоров.

Совмещенные и распределенные ММС сильно различаются оперативностью взаимодействия в зависимости от удаленности ЭВМ. Время передачи информации между соседними ЭВМ, соединенными простым кабелем, может быть много меньше времени передачи данных по каналам связи. Как правило, все выпускаемые в мире ЭВМ имеют средства прямого взаимодействия и средства подключения к сетям ЭВМ. Для ПЭВМ такими средствами являются нуль-модемы, модемы и сетевые карты как элементы техники связи.

По методам управления элементами ВС различают централизованные, децентрализованные и со смешанным управлением. Помимо параллельных вычислений, производимых элементами системы, необходимо выделять ресурсы на обеспечение управления этими вычислениями. В централизованных за это отвечает главная, или диспетчерская, ЭВМ (процессор). Ее задачей являются распределение нагрузки между элементами, выделение ресурсов, контроль состояния ресурсов, координация взаимодействия. Централизованный орган управления в системе может быть жестко фиксирован или эти функции могут передаваться другой ЭВМ (процессору), что способствует повышению надежности системы. Централизованные системы имеют более простые ОС. В децентрализованных функции управления распределены между ее элементами. Каждая ЭВМ (процессор) системы сохраняет известную автономию, а необходимое взаимодействие между элементами устанавливается по специальным наборам сигналов. С развитием ВС и, в частности, сетей ЭВМ интерес к децентрализованным системам постоянно растет. В системах со смешанным управлением совмещаются процедуры централизованного и децентрализованного управления. Перераспределение функций осуществляется в ходе вычислительного процесса исходя из сложившейся ситуации.

По принципу закрепления вычислительных функций за отдельными ЭВМ (процессорами) различают системы с жестким и плавающим закреплением функций. В зависимости от типа ВС следует решать задачи статического или динамического размещения программных модулей и массивов данных, обеспечивая необходимую гибкость системы и надежность ее функционирования.

По режиму работы ВС различают системы, работающие в оперативном и неоперативном временных режимах. Первые, как правило, используют режим реального масштаба времени. Этот режим характеризуется жесткими ограничениями на время решения задач в системе и предполагает высокую степень автоматизации процедур ввода-вывода и обработки данных. Наибольший интерес у исследователей всех рангов (проектировщиков, аналитиков и пользователей) вызывают структурные признаки ВС. От того, насколько структура ВС соответствует структуре решаемых на этой системе задач, зависит эффективность применения ЭВМ в целом. Структурные признаки, в свою очередь, отличаются многообразием: топология управляющих и информационных связей между элементами системы, способность системы к перестройке и перераспределению функций, иерархия уровней взаимодействия элементов. В наибольшей степени структурные характеристики определяются архитектурой системы [5, С.6-12].

ПРАКТИЧЕСКАЯ ЧАСТЬ

2.1 Постановка задачи

2.1.1 Цель решения задачи

Цель решения данной задачи состоит в расчете платежей по кредиту клиента банка.

2.1.2 Условие задачи

Ежемесячное погашение кредита осуществляется равными (аннуитетными) платежами. Данные для выполнения расчетов представлены на рис.1

Для решения задачи необходимо следующее:

1. Построить таблицы по данным, приведенным на рис.1

2. Произвести расчет платежа по кредиту клиента банка (рис.1)

3. Результаты округлить до целого, используя функцию ОКРУГЛ().

4 По данным таблицы (рис.1.) построить гистограмму с отражением платежей по кредиту по месяцам.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

1. Составляющие и основные характеристики компьютерных систем

2. Импортирование данных из других источников (БД, электронные таблицы, текстовые файлы). Экспорт данных.

Составляющие и основные характеристики компьютерных систем.

Локальные и глобальные сети.

непосредственно компьютер с установленным на него системным и прикладным программным обеспечением, а также электронные носители данных;

локальные и глобальные компьютерные сети.

Как для любой системы, можно выделить четыре базовых характеристики компьютерных систем:

надежность и отказоустойчивость;

совместимость и мобильность программного обеспечения.

Составляющие компьютерной системы, как информационной, могут выполнять 5 основных функций (одну или несколько сразу):

получение информации из внешних источников;

обработка информации 0 .

Рассмотрим отдельно компьютеры, локальные и глобальные сети.

По областям применения и соответственно предъявляемым требованиям компьютеры можно классифицировать:

Персональные компьютеры и рабочие станции.

Первоначальная ориентация рабочих станций на профессиональных пользователей привела к тому, что рабочие станции - это хорошо сбалансированные системы, в которых высокое быстродействие сочетается с большим объемом оперативной и внешней памяти, высокопроизводительными внутренними магистралями, высококачественной и быстродействующей графической подсистемой и разнообразными устройствами ввода/вывода.

Представляют собой комбинацию бездисковых рабочих станций и стандартных терминалов. Занимают промежуточное положение между персональными компьютерами и рабочими станциями.

Типовой X-терминал включает следующие элементы: экран высокого разрешения; микропроцессор: на базе Motorola, RISC и т.д.; отдельный графический сопроцессор; базовые системные программы; программное обеспечение сервера; переменный объем локальной памяти; порты для подключения клавиатуры и мыши; переферийные устройства.

С другой стороны существует классификация серверов, определяющаяся масштабом сети, в которой они используются: сервер рабочей группы, сервер отдела или сервер масштаба предприятия (корпоративный сервер).

Современные серверы характеризуются: наличием двух или более центральных процессоров; многоуровневой шинной архитектурой, а также множество стандартных шин ввода/вывода; поддержкой технологии дисковых массивов RAID; поддержкой режима симметричной многопроцессорной обработки, которая позволяет распределять задания по нескольким центральным процессорам или режима асимметричной многопроцессорной обработки, которая допускает выделение процессоров для выполнения конкретных задач; работают под управлением операционных систем UNIX, Windows; высокой степенью расширяемости, гибкости и адаптируемости 0 .

Кластерная система определяется как группу объединенных между собой вычислительных машин, представляющих собой единый узел обработки информации.

Обладает следующими основными характеристиками: высокая готовность; высокая пропускная способность; удобство обслуживания системы: общие базы данных могут обслуживаться с единственного места, прикладные программы могут инсталлироваться только однажды на общих дисках кластера и разделяться между всеми компьютерами кластера; расширяемость: увеличение вычислительной мощности кластера достигается подключением к нему дополнительных компьютеров.

Главная особенность структуры ЭВМ заключается в том, все устройства ЭВМ обмениваются информацией через системную шину. К системной шине подключён центральный процессор (или несколько процессоров), оперативная, постоянная и кеш-память, которые выполнены в виде микросхем. Упомянутые компоненты монтируются на материнской плате. К материнской плате присоединяются платы внешних устройств: видеоадаптер, звуковая плата, сетевая плата и др. В зависимости от сложности устройств на этих платах могут располагаться другие специализированные процессоры: математический, графический и др. С помощью проводов к материнской плате подключены жёсткий диск, гибкий диск и устройство чтения оптических дисков.

Любой персональный компьютер содержит следующие основные элементы:

процессор - устройство, непосредственно осуществляющее процесс обработки данных, основные характеристики: тактовая частота, длина слова, архитектура;

системная шина: система объединённых проводов для передачи информации между подключёнными к ней устройствами ЭВМ, по шине передаётся информация трёх типов: данные, адреса данных, команды;

материнская плата с чипсетом;

внутренняя память: конструктивно выполняется в виде модулей, представляющих собой несколько микросхем на небольшой плате и предназначено для хранения промежуточных данных, к которым необходим максимально быстрый доступ, основные характеристики памяти: ёмкость, время доступа, стоимость хранения единицы информации;

внешние устройства: делятся на устройства ввода, устройства вывода и внешние запоминающие устройства, основной обобщающей характеристикой внешних устройств может служить скорость передачи данных:

Направление передачи данных

Скорость передачи, Кбайт/с

В качестве внешней памяти в ПЭВМ применяются носители, использующие различные физические принципы:

магнитные диски - это основные носители, отличаются наибольшей скоростью передачи данных, однако надёжность хранения информации на магнитных дисках не слишком высока;

гибкие магнитные диски: низкая стоимость и надёжность;

компакт диски: высокая ёмкость, низкая цена, высокая надёжность…

Монитор. Средство отображения графической и тестовой информации.

В качестве общих характеристик можно выделить такие, как:

Быстродействием компьютера называется скорость, с которой он выполняет определенную последовательность запросов (определяется скоростью работы процессора, пропускной способностью шины данных или скоростью обмена с внутренними и внешними устройствами).

По отношению к современным компьютерам трудно применима, так как мощность компьютеров растет как за счет повышения производительности, так и за счет усложнения архитектуры 0 .

Основу для сравнения различных типов компьютеров между собой дают стандартные методики измерения производительности.

Единицей измерения производительности компьютера является время: компьютер, выполняющий тот же объем работы за меньшее время является более быстрым. Время выполнения любой программы измеряется в секундах. Часто производительность измеряется как скорость появления некоторого числа событий в секунду, так что меньшее время подразумевает большую производительность.

Для измерения времени работы процессора на данной программе используется специальный параметр - время ЦП (CPU time), которое не включает время ожидания ввода/вывода или время выполнения другой программы. Очевидно, что время ответа, видимое пользователем, является полным временем выполнения программы, а не временем ЦП. Время ЦП может далее делиться на время, потраченное ЦП непосредственно на выполнение программы пользователя и называемое пользовательским временем ЦП, и время ЦП, затраченное операционной системой на выполнение заданий, затребованных программой, и называемое системным временем ЦП.

Время ЦП для некоторой программы может быть выражено двумя способами: количеством тактов синхронизации для данной программы, умноженным на длительность такта синхронизации, либо количеством тактов синхронизации для данной программы, деленным на частоту синхронизации.

Важной характеристикой, часто публикуемой в отчетах по процессорам, является среднее количество тактов синхронизации на одну команду.

Таким образом, производительность ЦП зависит от трех параметров: такта синхронизации, среднего количества тактов на команду и количества выполняемых команд. Когда сравниваются две машины, необходимо рассматривать все три компоненты, чтобы понять относительную производительность.

Альтернативные единицы измерения

MIPS - миллион команд в секунду. В общем случае – это скорость операций в единицу времени, т.е. для любой данной программы MIPS есть просто отношение количества команд в программе к времени ее выполнения. Однако использование MIPS в качестве метрики для сравнения наталкивается на три проблемы: зависимость от набора команд процессора, зависимость от программы, может меняться по отношению к производительности в противоположенную сторону.

MFLOPS. Обычно для научно-технических задач производительность процессора оценивается в MFLOPS (миллионах чисел-результатов вычислений с плавающей точкой в секунду, или миллионах элементарных арифметических операций над числами с плавающей точкой, выполненных в секунду). Как единица измерения, MFLOPS, предназначена для оценки производительности только операций с плавающей точкой, и поэтому не применима вне этой ограниченной области.

Тесты: INPACK (Ливерморские циклы) - это набор фрагментов фортран программ, каждый из которых взят из реальных программных систем; LINPACK - это пакет фортран-программ для решения систем линейных алгебраических уравнений; SPECint92 и SPECfp92 - базируются на реальных прикладных программах широкого круга пользователей и т.д.

Пропускная способность системы - определяет пиковую производительность мультипрограммной системы, измеряемую количеством выполненных заданий в минуту. Приводящийся в отчете график пропускной способности системы показывает, как она работает при различных нагрузках.

Надёжность: время наработки на отказ и временем эксплуатации.

Стоимость и удобство работы.

Количество процессоров, объём оперативной памяти, объем внешней памяти.

Поддерживаемое прикладное и системное программное обеспечение.

Локальные и глобальные сети.

Вычислительная сеть - это совокупность ЭВМ, объединённых средствами передачи данных.

В зависимости от удалённости ЭВМ, входящих в ВС, сети условно разделяют на локальные и глобальные:

Локальная сеть - это группа связанных друг с другом ЭВМ, расположенных в ограниченной территории, например, в здании. Расстояния между ЭВМ в локальной сети может достигать нескольких километров. Локальные сети развёртываются обычно в рамках некоторой организации, поэтому их называют также корпоративными сетями.

Большие сети называются глобальными. Глобальная сеть может включать в себя другие глобальные сети, локальные сети и отдельные ЭВМ. Глобальные сети практически имеют те же возможности, что и локальные. Но они расширяют область их действия.

Для характеристики архитектура сети используют понятия логической и физической топологии:

Физическая топология - это физическая структура сети, способ физического соединения всех аппаратных компонентов сети. Существует несколько видов физической топологии:

Шинная топология. Наиболее простая, которой кабель идёт от ЭВМ к ЭВМ, связывая их в цепочку. Такие сети более дёшевы, однако если узлы сети расположены по всему зданию, то гораздо более удобным оказывается использование звездообразной топологии.

При физической звездообразной топологии каждый сервер и рабочая станция подключаются к специальному устройству – центральному концентратору, который осуществляет соединение пары узлов сети – коммутацию.

Если сеть имеет много узлов, причём многие располагаются на большом удалении друг от друга, то расход кабеля при использовании звездообразной топологии будет большим. Кроме того, к концентратору можно подключить лишь ограниченное число кабелей. В таких случаях применяется распределённая звездообразная топология, при которой несколько концентраторов соединяются друг с другом.

Кроме рассмотренных видов соединений может применяться также кольцеобразная топология, при которой рабочие станции соединены в кольцо. Такая топология практически не используется для локальных сетей, но может применяться для глобальных.

Логическая топология сети определяет способ, в соответствии с которым устройства сети передают информацию от одного узла к следующему. Различают два вида логической топологии: шинную и кольцевую 0 .

Сеть в общем случае можно представить как совокупность следующих элементов:

Узлов обработки информации:

Сервера и суперсервера: выполняют различные сервисные функции. Существуют серверы различных типов, которые определяются типом предоставляемых услуг:

Файловый сервер предоставляет доступ к данным, которые хранятся во внешней памяти сервера. Таким образом, на файловый сервер возложены все задачи по безопасности хранения данных, поиску данных, архивированию и др. Внешняя память сервера становится распределяемым ресурсом, так как её могут использовать несколько клиентов.

Сервер печати организует совместное использование принтера.

Модемный пул представляет собой ЭВМ, снабжённую особой сетевой платой, к которой можно подключить несколько модемов. Таким образом, достигается определённая экономия, когда, например, десять ЭВМ работают, используя три модема.

Прокси-сервер не только использует единственное соединение с Internet, но и предоставляет свою память для хранения временных файлов, что ускоряет работу с сетью.

Сервер приложений используется для выполнения программ, которые по каким-то причинам нецелесообразно или невозможно выполнить на других сетевых ЭВМ. Очевидной причиной может быть недостаточная производительность клиентских ЭВМ. Другая причина – использование каких-нибудь стандартных библиотек, копирование которых на каждую клиентскую ЭВМ трудоёмко и, кроме того, создаёт возможность несогласованности версии библиотеки. Такой сервер должен иметь большой объём основной и внешней памяти и высокую производительность.

Сервера баз данных.

Каналы связи (среда обмена данными между узлами):

Беспроводные оптические линии связи.

Волоконно – оптические линии связи.

Радиоканалы, в том числе и спутниковые.

На основе медного кабеля: экранированная и неэкранированная витая пара, толстый и тонкий коаксиал и т.д. Основными характеристиками сетевого кабеля являются скорость передачи данных и максимально допустимая длина. Обе характеристики определяются физическими свойствами кабеля.

В построении современной информационной среды предприятия большую роль играет наличие соответствующей кабельной системы, которая должна быть создана в соответствии с принятыми стандартами, быть универсальной, масштабируемой, иметь гибкую структуру и высоконадежной.

В начале 90-х годов была принята концепция Структурированной Кабельной Системы, предоставляющей комплекс услуг по передаче данных, голосовой и видеоинформации. Необходимость в определении стандартов была вызвана стремлением обеспечить взаимодействие оборудования от различных производителей и, в целом, защитить средства, инвестируемые в создание коммуникационной инфраструктуры.

Аппаратура коммутации (можно также назвать узлами обработки информации, но на уровне транспорта):

Розетки, разъёмы, панели и т.д.

Модемы. Это устройство связи ЭВМ по телефонным линиям. По телефонной сети любые данные могут передаваться лишь в аналоговой форме. Данные от ЭВМ поступают в цифровом виде. Задача модема заключается в преобразовании цифровых данных в аналоговую форму и наоборот.

Сетевые карты. Представляют собой дополнительные платы, устанавливаемые на материнскую плату ПЭВМ. К сетевой плате подключаются сетевые кабели. Сетевая плата определяет тип локальной сети.

Основными характеристиками сетей являются:

Производительность сети. Представляет собой суммарную производительность серверов.

Стоимость обработки данных. Стоимость обработки данных определяется как стоимостью средств, используемых для обработки, так и временем доставки и производительностью сети.

Тип сети. Определяется строением и принципами работы сети передачи данных, которые описываются протоколом. Протокол - это система правил, определяющих формат и процедуры передачи данных по сети.

Скорость передачи данных. В настоящее время для локальных сетей широко используются два основных значения скорости функционирования сети – 10 Mbit/s в соответствии со стандартом IEEE 802.3 (10Base-T) и 100 Mbit/s в соответствии со стандартом IEEE 802.12 (100Base-TX), а также 1000 Mbit/s (1Gbit/s) в соответствии со стандартом IEEE 802.3ab (1000Base-TX).

Надёжность работы сети 0 .

Импортирование данных из других источников (БД, электронные таблицы, текстовые файлы). Экспорт данных.

В связи с возрастающим значением и роли информации в жизни современного общества, значительно увеличившимся объёмом хранимой, получаемой и обрабатываемой информации, возникла базовая задача структурирования данных (информация, представленная в виде, позволяющем автоматизировать ее сбор, хранение и дальнейшую обработку человеком или информационным средствам).

Термин структурирование означает приведение к единым представлениям и форматам.

Так как задачи и предъявляемые требования к автоматизированным системам различны, то были разработаны и используются различные формы представления информации.

Можно выделить следующие формы, используемые в информационных системах (в порядке усложнения):

Электронные таблицы. Представляют собой совокупность однородных структур, имеющих одинаковые по смыслу поля.

Файлы баз данных. Строятся на основе электронных таблиц, связанных между собой, на уровне файловых систем представлены одним или множеством файлов.

Для эффективной работы с информацией необходимо обеспечить обмен данными между текстовыми файлами, электронными таблицами и базами данных, а также обеспечить вывод на печать и зрительное восприятие.

Обмен данных состоит из импорта и экспорта:

Импорт данных – предоставление информационной системой необходимых данных внешней среде в определённом формате.

Экспорт данных – получение и интегрирование данных из внешней среды информационной системой в понятном для неё формате с соблюдением целостности.

В этом случае очень важно, чтобы источник и получатель информации использовали одни и те же форматы представления данных, иначе графика будет воспринята как текст, музыка как видео, что повлечёт за собой нарушение целостности системы, которая попытается неправильно использовать эти данные. В условиях современных банков данных это может повлечь за собой огромный ущерб.

Поэтому эта проблема сегодня решается двумя способами:

Разработка стандартов на представление информации как на уровне государства, так на уровне общеиспользуемых приложений и СУБД, например:

Разработка объектных технологий.

1. Внутри Internet Методы поиска информации, Кузнецов С.Д., - Познавательная книга +. - М. – 2001.

2. Глобальные телесети новостей на информационном рынке, Орлова В.В., - РИП-Холдинг. –М. - 2003

3. Глобальный бизнес и информационные технологии. Современная практика и рекомендации, Попов В.М., Маршавин Р.А., - Финансы и статистика. –М. - 2001.

4. Информатика. Учебник. –М. - 1999 .

0 . Глобальный бизнес и информационные технологии. Современная практика и рекомендации, Попов В.М., Маршавин Р.А., - Финансы и статистика. –М. - 2001.

0 Информатика. Учебник. –М. - 1999 .

0 Информатика. Учебник. –М. - 1999 .

0 Глобальные телесети новостей на информационном рынке, Орлова В.В., - РИП-Холдинг. –М. - 2003

0 Внутри Internet Методы поиска информации, Кузнецов С.Д., - Познавательная книга +. - М. – 2001.

Читайте также: