Реферат на тему газообмен в легких жизненная емкость легких

Обновлено: 08.07.2024

Процесс дыхания, поступление кислорода в организм при вдохе и удаление из него углекислого газа и паров воды при выдохе. Строение респираторной системы. Ритмичность и различные типы дыхательного процесса. Регуляция дыхания. Разные способы дыхания.

Для нормального протекания обменных процессов в организме человека и животных в равной мере необходим как постоянный приток кислорода, так и непрерывное удаление углекислого газа, накапливающегося в ходе обмена веществ. Такой процесс называется внешним дыханием.

Дыхание – это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение углекислого газа.

Таким образом, дыхание – одна из важнейших функций регулирования жизнедеятельности человеческого организма. В организме человека функцию дыхания обеспечивает дыхательная (респираторная система).

В дыхательную систему входят легкие и респираторный тракт (дыхательные пути), который, в свою очередь, включает носовые ходы, гортань, трахею, бронхи, мелкие бронхи и альвеолы (смотри рисунок 1.5.3). Бронхи разветвляются, распространяясь по всему объему легких, и напоминают крону дерева. Поэтому часто трахею и бронхи со всеми ответвлениями называют бронхиальным деревом.

Кислород в составе воздуха через носовые ходы, гортань, трахею и бронхи попадает в легкие. Концы самых мелких бронхов заканчиваются множеством тонкостенных легочных пузырьков – альвеол (смотри рисунок 1.5.3).

Альвеолы – это 500 миллионов пузырьков диаметром 0,2 мм, где происходит переход кислородом в кровь, удаление углекислого газа из крови.

Здесь и происходит газообмен. Кислород из легочных пузырьков проникает в кровь, а углекислый газ из крови – в легочные пузырьки (рисунок 1.5.4).

Рисунок 1.5.4. Легочный пузырек. Газообмен в легких

Важнейший механизм газообмена – это диффузия, при которой молекулы перемещаются из области их высокого скопления в область низкого содержания без затраты энергии (пассивный транспорт). Перенос кислорода из окружающей среды к клеткам производится путем транспорта кислорода в альвеолы, далее в кровь. Таким образом, венозная кровь обогащается кислородом и превращается в артериальную. Поэтому состав выдыхаемого воздуха отличается от состава наружного воздуха: в нем содержится меньше кислорода и больше углекислого газа, чем в наружном, и много водяных паров (смотри рисунок 1.5.4). Кислород связывается с гемоглобином, который содержится в эритроцитах, насыщенная кислородом кровь поступает в сердце и выталкивается в большой круг кровообращения. По нему кровь разносит кислород по всем тканям организма. Поступление кислорода в ткани обеспечивает их оптимальное функционирование, при недостаточном же поступлении наблюдается процесс кислородного голодания (гипоксии).

Недостаточное поступление кислорода может быть обусловлено несколькими причинами как внешними (уменьшение содержания кислорода во вдыхаемом воздухе), так и внутренними (состояние организма в данный момент времени). Пониженное содержание кислорода во вдыхаемом воздухе, так же как и увеличение содержания углекислого газа и других вредных токсических веществ наблюдается в связи с ухудшением экологической обстановки и загрязнением атмосферного воздуха. По данным экологов только 15% горожан проживают на территории с допустимым уровнем загрязнения воздуха, в большинстве же районов содержание углекислого газа увеличено в несколько раз.

При очень многих физиологических состояниях организма (подъем в гору, интенсивная мышечная нагрузка), так же как и при различных патологических процессах (заболевания сердечно-сосудистой, дыхательной и других систем) в организме также может наблюдаться гипоксия.

Природа выработала множество способов, с помощью которых организм приспосабливается к различным условиям существования, в том числе к гипоксии. Так компенсаторной реакцией организма, направленной на дополнительное поступление кислорода и скорейшее выведение избыточного количества углекислого газа из организма является углубление и учащение дыхания. Чем глубже дыхание, тем лучше вентилируются легкие и тем больше кислорода поступает к клеткам тканей.

К примеру, во время мышечной работы усиление вентиляции легких обеспечивает возрастающие потребности организма в кислороде. Если в покое глубина дыхания (объем воздуха, вдыхаемого или выдыхаемого за один вдох или выдох) составляет 0,5 л, то во время напряженной мышечной работы она увеличивается до 2-4 л в 1 минуту. Расширяются кровеносные сосуды легких и дыхательных путей (а также дыхательных мышц), увеличивается скорость тока крови по сосудам внутренних органов. Активируется работа дыхательных нейронов. Кроме того, в мышечной ткани есть особый белок (миоглобин), способный обратимо связывать кислород. 1 г миоглобина может связать примерно до 1,34 мл кислорода. Запасы кислорода в сердце составляют около 0,005 мл кислорода на 1 г ткани и этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3-4 с.

Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок нарушается.

В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным.

Все эти факторы, включая усиление вентиляции легких, компенсируют кислородный “долг”, который наблюдается при физической работе. Естественно, увеличению доставки кислорода к работающим мышцам и удалению углекислого газа способствует согласованное увеличение кровообращения в других системах организма.

Саморегуляция дыхания. Организм осуществляет тонкое регулирование содержания кислорода и углекислого газа в крови, которое остается относительно постоянным, несмотря на колебания количества поступающего кислорода и потребности в нем. Во всех случаях регуляция интенсивности дыхания направлена на конечный приспособительный результат – оптимизацию газового состава внутренней среды организма.

Частота и глубина дыхания регулируются нервной системой – ее центральными (дыхательный центр) и периферическими (вегетативными) звеньями. В дыхательном центре, расположенном в головном мозге, имеются центр вдоха и центр выдоха.

Дыхательный центр представляет совокупность нейронов, расположенных в продолговатом мозге центральной нервной системы.

При нормальном дыхании центр вдоха посылает ритмические сигналы к мышцам груди и диафрагме, стимулируя их сокращение. Ритмические сигналы образуются в результате спонтанного образования электрических импульсов нейронами дыхательного центра.

Сокращение дыхательных мышц приводит к увеличению объема грудной полости, в результате чего воздух входит в легкие. По мере увеличения объема легких возбуждаются рецепторы растяжения, расположенные в стенках легких; они посылают сигналы в мозг – в центр выдоха. Этот центр подавляет активность центра вдоха, и поток импульсных сигналов к дыхательным мышцам прекращается. Мышцы расслабляются, объем грудной полости уменьшается, и воздух из легких вытесняется наружу (смотри рисунок 1.5.5).

Рисунок 1.5.5. Регуляция дыхания

Процесс дыхания, как уже отмечалось, состоит из легочного (внешнего) дыхания, а также транспорта газа кровью и тканевого (внутреннего) дыхания. Если клетки организма начинают интенсивно использовать кислород и выделять много углекислого газа, то в крови повышается концентрация угольной кислоты. Кроме того, увеличивается содержание молочной кислоты в крови за счет усиленного образования ее в мышцах. Данные кислоты стимулируют дыхательный центр, и частота и глубина дыхания увеличиваются. Это еще один уровень регуляции. В стенках крупных сосудов, отходящих от сердца, имеются специальные рецепторы, реагирующие на понижение уровня кислорода в крови. Эти рецепторы также стимулируют дыхательный центр, повышая интенсивность дыхания. Данный принцип автоматической регуляции дыхания лежит в основе бессознательного управления дыханием, что позволяет сохранить правильную работу всех органов и систем независимо от условий, в которых находится организм человека.

Ритмичность дыхательного процесса, различные типы дыхания. В норме дыхание представлено равномерными дыхательными циклами “вдох – выдох” до 12-16 дыхательных движений в минуту. В среднем такой акт дыхания совершается за 4-6 с. Акт вдоха проходит несколько быстрее, чем акт выдоха (соотношение длительности вдоха и выдоха в норме составляет 1:1,1 или 1:1,4). Такой тип дыхания называется эйпноэ (дословно – хорошее дыхание). При разговоре, приеме пищи ритм дыхания временно меняется: периодически могут наступать задержки дыхания на вдохе или на выходе (апноэ). Во время сна также возможно изменение ритма дыхания: в период медленного сна дыхание становится поверхностным и редким, а в период быстрого – углубляется и учащается. При физической нагрузке за счет повышенной потребности в кислороде возрастает частота и глубина дыхания, и, в зависимости от интенсивности работы, частота дыхательных движений может достигать 40 в минуту.

При смехе, вздохе, кашле, разговоре, пении происходят определенные изменения ритма дыхания по сравнению с так называемым нормальным автоматическим дыханием. Из этого следует, что способ и ритм дыхания можно целенаправленно регулировать с помощью сознательного изменения ритма дыхания.

Человек рождается уже с умением использовать лучший способ дыхания. Если проследить как дышит ребенок, становится заметным, что его передняя брюшная стенка постоянно поднимается и опускается, а грудная клетка остается практически неподвижной. Он “дышит” животом – это так называемый диафрагмальный тип дыхания.

Диафрагма – это мышца, разделяющая грудную и брюшную полости.Сокращения данной мышцы способствуют осуществлению дыхательных движений: вдоха и выдоха.

В повседневной жизни человек не задумывается о дыхании и вспоминает о нем, когда по каким-то причинам становится трудно дышать. Например, в течение жизни напряжение мышц спины, верхнего плечевого пояса, неправильная осанка приводят к тому, что человек начинает “дышать” преимущественно только верхними отделами грудной клетки, при этом объем легких задействуется всего лишь на 20%. Попробуйте положить руку на живот и сделать вдох. Заметили, что рука на животе практически не изменила своего положения, а грудная клетка поднялась. При таком типе дыхания человек задействует преимущественно мышцы грудной клетки (грудной тип дыхания) или области ключиц (ключичное дыхание). Однако как при грудном, так и при ключичном дыхании организм снабжается кислородом в недостаточной степени.

Недостаток поступления кислорода может возникнуть также при изменении ритмичности дыхательных движений, то есть изменении процессов смены вдоха и выдоха.

В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), клетками печени и корковым веществом почек; клетки скелетной мускулатуры, селезенка и белое вещество головного мозга потребляют в состоянии покоя меньший объем кислорода, то при физической нагрузке потребление кислорода миокардом увеличивается в 3-4 раза, а работающими скелетными мышцами – более чем в 20-50 раз по сравнению с покоем.

Интенсивное дыхание, состоящее в увеличении скорости дыхания или его глубины (процесс называется гипервентиляцией), приводит к увеличению поступления кислорода через воздухоносные пути. Однако частая гипервентиляция способна обеднить ткани организма кислородом. Частое и глубокое дыхание приводит к уменьшению количества углекислоты в крови (гипокапнии) и защелачиванию крови – респираторному алкалозу.

Подобный эффект прослеживается, если нетренированный человек осуществляет частые и глубокие дыхательные движения в течение короткого времени. Наблюдаются изменения со стороны как центральной нервной системы (возможно появление головокружения, зевоты, мелькания “мушек” перед глазами и даже потери сознания), так и сердечно-сосудистой системы (появляется одышка, боль в сердце и другие признаки). В основе данных клинических проявлений гипервентиляционного синдрома лежат гипокапнические нарушения, приводящие к уменьшению кровоснабжения головного мозга. В норме у спортсменов в покое после гипервентиляции наступает состояние сна.

Следует отметить, что эффекты, возникающие при гипервентиляции, остаются в то же время физиологичными для организма – ведь на любое физическое и психоэмоциональное напряжение организм человека в первую очередь реагирует изменением характера дыхания.

При глубоком, медленном дыхании (брадипноэ) наблюдается гиповентиляционный эффект. Гиповентиляция – поверхностное и замедленное дыхание, в результате которого в крови отмечается понижение содержание кислорода и резкое увеличение содержания углекислого газа (гиперкапния).

Количество кислорода, которое клетки используют для окислительных процессов, зависит от насыщенности крови кислородом и степени проникновения кислорода из капилляров в ткани.Снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов в тканях.

В 1931 году доктор Отто Варбург получил Нобелевскую премию в области медицины, открыв одну из возможных причин возникновения рака. Он установил, что возможной причиной этого заболевания является недостаточный доступ кислорода к клетке.

Используя простые рекомендации, а также различные физические упражнения, можно повысить доступ кислорода к тканям.

  • Правильное дыхание, при котором воздух, проходящий через воздухоносные пути, в достаточной степени согревается, увлажняется и очищается – это спокойное, ровное, ритмичное, достаточной глубины.
  • Во время ходьбы или выполнения физических упражнений следует не только сохранять ритмичность дыхания, но и правильно сочетать ее с ритмом движения (вдох на 2-3 шага, выдох на 3-4 шага).
  • Важно помнить, что потеря ритмичности дыхания приводит к нарушению газообмена в легких, утомлению и развитию других клинических признаков недостатка кислорода.
  • При нарушении акта дыхания уменьшается приток крови к тканям и понижается насыщение ее кислородом.

Необходимо помнить, что физические упражнения способствуют укреплению дыхательной мускулатуры и усиливают вентиляцию легких. Таким образом, от правильного дыхания в значительной мере зависит здоровье человека.

Через дыхательные органы до всех клеток проходит O2. Фильтруется в носовой полости, проходит через гортань, трахею, которая переходит в бронхи. Затем бронхи разветвляются и переходят в альвеолы, к которым подходят капилляры. Они собираются в артерии и доносят насыщенную кислородом кровь к левому предсердию и до артерий большого круга кровообращения, которые разветвляются на артериолы и капилляры. Они разносят кислород по всему организму ко всем клеткам и поглощают CO2; капилляры собираются в вены, которые проходят через правое предсердие и по малому кругу кровообращения в легкие, где снова происходит газообмен.

Содержание работы

Газообмен в лёгких
Жизненная ёмкость в лёгких
Показатели сердечной деятельности
Список литературы

Файлы: 1 файл

Реферат по математика.doc

Правительство Свердловской области

Министерство здравоохранения Свердловской области

ГБОУ СПО "Свердловский областной медицинский колледж"

"Газообмен в легких, жизненная ёмкость в легких и показатели сердечной деятельности"

Выполнила: Павлова Надежда, 291 группа

Проверила: Уткина Татьяна Анатольевна

  1. Газообмен в лёгких
  2. Жизненная ёмкость в лёгких
  3. Показатели сердечной деятельности

1. Газообмен в легких

Газообмен - процесс обмена газами между организмом и внешней средой. Основными показателями газообмена является использование кислорода, выделение углекислого газа и дыхательный коэффициент.

    • Поступления кислорода в легкие;
    • Газообмен между капиллярами и альвеолами;
    • Разнесение кислорода сосудами к тканям;
    • Газообмен между сосудами и клетками;
    • Поступление богатой CO2 крови к альвеолам.

    Кислород, который поступает в организм человека нужен для окисления продуктов, которые происходят от углеводов, белков и жиров. В результате этого образуется СО2, азотистые соединения, вода, энергия для нормальной работы организма и поддержания температуры тела. Нормальный дыхательный коэффициент (отношение СО2 и О2) равен 0,7 (окисление жиров), 0,8 (окисление белков), 1,0 (окисление углеводов). Калорический эквивалент кислорода на 1 литр потребленного кислорода при окислении углеводов 5 ккал, при окислении жиров 4,7 ккал.

    Через дыхательные органы до всех клеток проходит O2. Фильтруется в носовой полости, проходит через гортань, трахею, которая переходит в бронхи. Затем бронхи разветвляются и переходят в альвеолы, к которым подходят капилляры. Они собираются в артерии и доносят насыщенную кислородом кровь к левому предсердию и до артерий большого круга кровообращения, которые разветвляются на артериолы и капилляры. Они разносят кислород по всему организму ко всем клеткам и поглощают CO2; капилляры собираются в вены, которые проходят через правое предсердие и по малому кругу кровообращения в легкие, где снова происходит газообмен.

    Легкие - это большой парный орган. Они заполняют почти весь объем грудной полости. Правое легкое большее и состоит из трех частей, левое - из двух. Снаружи каждое легкое покрыто тоненькой плотной соединительнотканной оболочкой - легочной плеврой. Она состоит из двух листков: первый покрывает легкие, другой выстилает грудную полость. Между ними расположена плевральная полость, заполненная плевральной жидкостью, которая смачивает поверхности листьев и уменьшает трение между ними во время дыхательных движений. Вследствие этого легкого при дыхании свободно двигаются по внутренней стороне грудной полости.

    Остаточный объем воздуха не дает легким падать даже при интенсивном выдохе. По артериям малого круга кровообращения в легкие поступает венозная кровь, в которой содержится значительный процент углекислого газа. В воздухе, который вдыхает человек, кислорода больше, чем в венозной крови. Поэтому кислород в результате диффузии свободно проходит через стенки альвеол и капилляров в кровь. Здесь кислород соединяется с гемоглобином эритроцитов, создавая оксигемоглобин, и кровь становится артериальной. По легочным венам она поступает до левого предсердия, затем - до левого желудочка, оттуда - к большому кругу.

    2. Жизненная ёмкость в лёгких

    Жи́зненная ёмкость лёгких (ЖЕЛ)

    максимальное количество воздуха, выдыхаемое после самого глубокого вдоха. ЖЕЛ является одним из основных показателей состояния аппарата внешнего дыхания, широко используемым в медицине.

    Вместе с остаточным объемом, т.е. объемом воздуха, остающегося в легких после самого глубокого выдоха, ЖЕЛ образует общую емкость легких (ОЕЛ). В норме ЖЕЛ составляет около 3 /4 общей емкости легких и характеризует максимальный объем, в пределах которого человек может изменять глубину своего дыхания. При спокойном дыхании здоровый взрослый человек использует небольшую часть ЖЕЛ: вдыхает и выдыхает 300—500 мл воздуха (так называемый дыхательный объем). При этом резервный объем вдоха, т.е. количество воздуха, которое человек способен дополнительно вдохнуть после спокойного вдоха, и резервный объем выдоха, равный объему дополнительно выдыхаемого воздуха после спокойного выдоха, составляет в среднем примерно по 1500 мл каждый. Во время физической нагрузки дыхательный объем возрастает за счет использования резервов вдоха и выдоха.

    Определяют ЖЕЛ с помощью спирографии. Величина ЖЕЛ в норме зависит от пола и возраста человека, его телосложения, физического развития, а при различных заболеваниях она может существенно уменьшаться, что снижает возможности приспособляемости организма больного к выполнению физической нагрузки. Для оценки индивидуальной величины ЖЕЛ на практике принято сравнивать ее с так называемой должной ЖЕЛ (ДЖЕЛ), которую вычисляют по различным эмпирическим формулам. Так, исходя из показателей роста обследуемого в метрах и его возраста в годах (В), ДЖЕЛ (в литрах) можно рассчитать по следующим формулам: для мужчин ДЖЕЛ = 5,2×рост — 0,029×В — 3,2; для женщин ДЖЕЛ = 4,9×рост — 0,019×В — 3,76; для девочек от 4 до 17 лет при росте от 1 до 1,75 м ДЖЕЛ = 3,75×рост — 3,15; для мальчиков того же возраста при росте до 1,65 м ДЖЕЛ = 4,53×рост — 3,9, а при росте свыше 1,65 м —ДЖЕЛ = 10×рост — 12,85.

    Превышение должных значений ЖЕЛ любой степени не является отклонением от нормы, у физически развитых лиц, занимающихся физкультурой и спортом (особенно плаванием, боксом, легкой атлетикой), индивидуальные значения ЖЕЛ иногда превышают ДЖЕЛ на 30% и более. ЖЕЛ считается сниженной, если ее фактическая величина составляет менее 80% ДЖЕЛ.

    Снижение жизненной емкости легких чаще всего наблюдается при болезнях органов дыхания и патологических изменениях объема грудной полости; во многих случаях оно является одним из важных патогенетических механизмов развития дыхательной недостаточности. Предполагать снижение ЖЕЛ следует во всех случаях, когда выполнение больным умеренной физической нагрузки сопровождается значительным учащением дыхания, особенно если при осмотре выявлено снижение амплитуды дыхательных колебаний стенок грудной клетки, а по данным перкуссии грудной клетки установлено ограничение дыхательных экскурсий диафрагмы или (и) ее высокое стояние. Как симптом определенных форм патологии снижение ЖЕЛ в зависимости от его природы имеет различную диагностическую ценность. Практически важно различать снижение ЖЕЛ за счет возрастания остаточного объема легких (перераспределение объемов в структуре ОЕЛ) и снижение ЖЕЛ вследствие уменьшения ОЕЛ.

    Причинами снижения ЖЕЛ вследствие уменьшения ОЕЛ могут быть либо уменьшение емкости плевральной полости (торакодиафрагмальная патологи я), либо убыль функционирующей паренхимы легких и патологическая ригидность легочной ткани, что формулирует ограничительный, или рестриктивный, тип дыхательной недостаточности. В основе ее развития лежит уменьшение площади диффузии газов в легких в связи со снижением числа функционирующих альвеол. Вентиляция последних существенно не нарушается, т.к. отношение ЖЕЛ к объему вентилируемого пространства в этих случаях не снижается, а чаще возрастает (за счет одновременного снижения остаточного объема); учащение дыхания сопровождается гипервентиляцией альвеол с признаками гипокапнии. Из торакодиафрагмальной патологии снижение ЖЕЛ и ОЕЛ чаще всего обусловливают высокое стояние диафрагмы, например при Асците, ожирении, массивный плевральный выпот (при Гидрото раксе, Плеврите, мезотелиоме плевры) и обширные плевральные сращения, Пневмоторакс, выраженный кифосколиоз. Круг болезней легких, сопровождающихся рестриктивной дыхательной недостаточностью, невелик и включает в основном тяжелые формы патологии: фиброзы легких при бериллиозе, Саркоидозе, синдроме Хаммена — Рича, диффузных заболеваниях соединительной ткани, резко выраженный очагово-диффузный пневмоосклероз , отсутствие легкого (после пульмонэктомии) или его части (после резекции легкого).

    Уменьшение ОЕЛ — основной и наиболее достоверный функционально-диагностический симптом легочной рестрикции. Однако до измерения ОЕЛ, требующего специальной аппаратуры, редко используемой в поликлиниках и районных стационарах, основным показателем рестриктивных нарушений дыхания является снижение ЖЕЛ как отражение уменьшения ОЕЛ. О последнем следует думать, когда снижение ЖЕЛ выявляется при отсутствии выраженных нарушений бронхиальной проходимости, а также в случаях, когда оно сочетается с признаками уменьшения общей воздушной емкости легких (по данным перкуссии и рентгенологического исследования) и высоким стоянием нижних границ легких. Диагностика облегчаетс я при наличии у больного характерной для рестрикции инспираторной одышки с коротким затрудненным вдохом и быстрым выдохом при повышенной частоте дыхания.

    У больных со сниженной ЖЕЛ через определенные промежутки времени целесообразно повторять ее измерения с целью наблюдения за динамикой дыхательных функций и оценки проводимого лечения.

    II Жи́зненная ёмкость лёгких (ЖЕЛ)

    показатель внешнего дыхания, представляющий собой объем воздуха, выходящего из дыхательных путей при максимальном выдохе, произведенном после максимального вдоха.

    Жи́зненная ёмкость лёгких до́лжная (ДЖЕЛ) — расчетный показатель для оценки фактической Ж. ё. л., определяемый по данным о возрасте и росте обследуемого с помощью специальных формул.

    Жи́зненная ёмкость лёгких форси́рованная (ФЖЕЛ) — Ж. ё. л., определяемая при максимально быстром выдохе; в норме составляет 90—92% Ж. ё. л., определенной обычным способом.

    3. Показатели сердечной деятельности

    Частота сердечных сокращений

    ЧСС в покое. ЧСС - один из самых информативных показателей состояния не только сердечно-сосудистой системы, но и всего организма в целом. Начиная с рождения и до 20-30 лет ЧСС в покое снижается со 100-110 до 70 уд/мин у молодых нетренированных мужчин и до 75 уд/мин у женщин. В дальнейшем, с увеличением возраста, ЧСС незначительно возрастает: у 60-76-летних в покое по сравнению с молодыми на 5-8 уд/мин.

    ЧСС при мышечной работе. Единственной возможностью повысить доставку кислорода к работающим мышцам является увеличение объема крови, поступающей к ним в единицу времени. Для этого должен возрасти МОК. Поскольку ЧСС прямо влияет на величину МОК, то повышение ЧСС при мышечной работе является обязательным механизмом, направленным на удовлетворение значительно возрастающих нужд метаболизма.

    Если мощность циклической работы выразить через величину потребляемого кислорода (в процентах от величины максимального потребления кислорода - МПК), то ЧСС возрастает в линейной зависимости от мощности работы. У женщин при условии равного с мужчинами потребления Ог ЧСС обычно на 10-12 уд/мин выше.

    Наличие прямо пропорциональной зависимости между мощностью работы и величиной ЧСС делает частоту пульса важным информативным показателем в практической деятельности тренера и педагога. При многих видах мышечной деятельности ЧСС - точный и легкоопределяемый показатель интенсивности выполняемых физических нагрузок, физиологической стоимости работы, особенностей протекания периодов восстановления.

    Для практических нужд необходимо знать величину максимальной ЧСС у лиц разного пола и возраста. С возрастом максимальные величины ЧСС как у мужчин, так и у женщин снижаются. Точную величину ЧСС у каждого конкретного человека можно определить лишь опытным путем, регистрируя частоту пульса во время работы возрастающей мощности на велоэргометре. Практически для ориентировочного суждения о максимальной ЧСС человека (независимо от пола) используют формулу: ЧССмаКс = 220 - возраст (в годах).

    Систолический объем сердца

    Систолический (ударный) объем сердца - это количество крови, выбрасываемое каждым желудочком за одно сокращение. Наряду с ЧСС СО оказывает существенное влияние на величину МОК. У взрослых мужчин СО может меняться от 60-70 до 120-190 мл, а у женщин - от 40-50 до 90-150 мл.

    СО - это разность между конечно-диастолическим и конечно-систолическим объемами. Следовательно, увеличение СО может происходить как посредством большего заполнения полостей желудочков в диастолу (увеличение конечно-диастолического объема), так и посредством увеличения силы сокращения и уменьшения количества крови, остающейся в желудочках в конце систолы (уменьшение конечно-систолического объема). Изменения СО при мышечной работе. В самом начале работы из-за относительной инертности механизмов, приводящих к увеличению кровоснабжения скелетных мышц, венозный возврат возрастает сравнительно медленно. В это время увеличение СО происходит в основном благодаря увеличению силы сокращения миокарда и уменьшению конечно-систолического объема. По мере продолжения циклической работы, выполняемой в вертикальном положении тела, благодаря значительному увеличению потока крови через работающие мышцы и активации мышечного насоса, возрастает венозный возврат к сердцу. Вследствие этого конечно-диастолический объем желудочков у нетренированных лиц со 120-130 мл в покое повышается до 160-170 мл, а у хорошо тренированных спортсменов даже до 200-220 мл. В это же время происходит увеличение силы сокращения сердечной мышцы. Это, в свою очередь, приводит к более полному опорожнению желудочков во время систолы. Конечно-систолический объем при очень тяжелой мышечной работе может уменьшиться у нетренированных до 40 мл, а у тренированных до 10-30 мл. То есть увеличение конечно-диастолического объема и уменьшение конечно-систолического приводят к значительному повышению СО.

    • Для учеников 1-11 классов и дошкольников
    • Бесплатные сертификаты учителям и участникам

    Жизненная емкость легких

    Дыхание - единый процесс, осуществляемый целостным организмом. Процесс дыхания состоит из трех неразрывных звеньев: а) внешнего дыхания или газообмена между внешней средой и кровью легочных капилляров, происходящего в легких; б) переноса газов, осуществляемого системами кровообращения и крови; в) внутреннего (тканевого) дыхания, т. е. газообмена между кровью и клеткой, в процессе которого клетки потребляют кислород и выделяют углекислоту.
    Работоспособность человека определяется в основном тем, какое количество кислорода поступило из наружного воздуха в кровь легочных капилляров и доставлено в ткани и клетки организма. Эти процессы осуществляются сердечно-сосудистой системой и системой органов дыхания. Например, при сердечной недостаточности наступает одышка, при недостаточности кислорода в атмосферном воздухе (например, на высотах) увеличивается количество эритроцитов – переносчиков кислорода, при заболеваниях легких наступает тахикардия.

    Исследование функционального состояния системы внешнего дыхания.

    Исследование системы внешнего дыхания представляет важный раздел изучения функционального состояния организма в целом. В условиях спортивной деятельности к аппарату внешнего дыхания предъявляют высокие требования, реализация которых обеспечивает эффективную работу всей кардиореспираторной системы.
    Исследование органов дыхания ведется по общепринятой клинической методике: расспрос, осмотр, перкуссия, аускультация и использование инструментальных методов исследования.

    При врачебном исследовании определяют тип, частоту, глубину и ритм дыхания.

    У взрослого человека в покое число дыхательных движений в минуту колеблется от 12 до 20. Частота дыхания меняется от ряда причин: в спокойном состоянии дыхание реже, а при движении, физических упражнениях - чаще. Дыхание учащается при повышении температуры окружающей среды, температуры тела, во время и после еды, при волнении. Оно меняется в зависимости от положения тела; реже - в положении лежа, чаще - в положении стоя. У женщин дыхание чаще на 2-4 в минуту, чем у мужчин. У детей дыхание значительно чаще, чем у взрослых.
    Количество вдыхаемого и выдыхаемого воздуха зависит от глубины и частоты дыхания. При всяком напряжении, особенно физическом, эта величина становится в несколько раз больше. Подсчет дыхательных движений производится прикладыванием кисти руки на границу грудной клетки в эпигастральной области. При этом необходимо отвлечь внимание обследуемого и определить частоту дыхания незаметно, иначе обследуемый невольно начинает дышать чаще или реже обычного и неравномерно.

    В покое у спортсменов количество дыхательных движений снижается и составляет 12-14, а иногда и 8 дыханий в минуту.

    На развитие грудной клетки оказывает влияние регулярность занятий физической культурой и спортом. Экскурсия грудной клетки и сила дыхательных мышц в определенной степени зависит от вида спорта. Подвижность грудной клетки оказывается наибольшей у лиц, тренирующихся в тех видах спорта, которые предъявляют значительные требования к аппарату дыхания. Наибольшая экскурсия грудной клетки отмечена у гребцов, бегунов на средние и длинные дистанции, у пловцов, а наименьшая - у гимнастов, штангистов.

    Исследование жизненной емкости легких(ЖЕЛ).

    Жизненная емкость легких - это объем воздуха, который испытуемый может выдохнуть при максимальном выдохе после максимального глубокого вдоха.

    ЖЕЛ является одним из важнейших показателей функционального состояния аппарата внешнего дыхания. Величину ЖЕЛ обычно выражают в единицах объема. Она позволяет косвенно оценить величину площади дыхательной поверхности легких, на которой происходит газообмен между альвеолярным воздухом и кровью легочных капилляров. Чем больше ЖЕЛ, тем больше дыхательная поверхность, большей может быть глубина дыхания и легче достигается увеличение объема вентиляции.

    Величина ЖЕЛ зависит от роста, веса, возраста, пола, а также положения тела. Наименьшая величина ЖЕЛ - в положении лежа, сидя и наибольшая - в положении стоя. В спортивной медицине этот показатель определяется в положении стоя.

    С возрастом ЖЕЛ увеличивается, ее прирост у мужчин происходит в среднем до 30 лет, у женщин - до 25 лет, затем наблюдается стабилизация этого показателя, а после 35 лет - его постепенное снижение.

    Величина ЖЕЛ зависит от размера грудной клетки, ее подвижности и силы дыхательной мускулатуры. Средние показатели принято считать у мужчин - 4000 мл, у женщин - 3200 мл. У спортсменов величина ЖЕЛ может колебаться в широких пределах - от 4500 до 8000 мл у мужчин и от 3500 до 5300 мл - у женщин.

    Показатели ЖЕЛ зависят от спортивной специализации. Наибольшие показатели величины ЖЕЛ наблюдаются у спортсменов, тренирующихся преимущественно на выносливость и обладающих высокой кардиореспираторной производительностью.

    Для измерения ЖЕЛ нужно сделать максимальный плавный вдох, а затем, зажав нос, плавно равномерно выдохнуть в спирометр. Продолжительность выдоха – 5-7 с. Измерение ЖЕЛ повторяют с интервалом 0,5-1 мин. При повторении двух максимальных величин измерение ЖЕЛ заканчивают. Полученная таким образом величина называется фактической.

    В связи с зависимостью ЖЕЛ от веса, роста и возраста фактическая величина может быть правильно оценена только при сравнении с должной величиной. Предложен ряд формул, с помощью которых можно оценить должную величину ЖЕЛ наиболее удобной является формула Антони: должная величина ЖЕЛ равна основному обмену в ккал, определенному по таблицам Гарриса-Бенедикта, умноженному на коэффициент 2,6 для мужчин и 2,3 для женщин:

    ДЖЕЛмуж = 00 x 2,6,

    ДЖЕЛжен = 00 x 2,3.

    Для детей в возрасте менее 16 лет ДЖЕЛ рассчитывается:

    для мальчиков ДЖЕЛ = 00 x 2,3,

    для девочек ДЖЕЛ = 00 x 2,1.

    Для выражения фактической ЖЕЛ в процентах должной величины пользуются формулой:

    Факт. ЖЕЛ, в % = Фактическая ЖЕЛ х 100.

    Для определения ДЖЕЛ в спортивной медицине можно использовать формулу Болдуина-Курнана-Ричардса. Эти формулы связывают должную величину ЖЕЛ с ростом испытуемого, его возрастом и полом:

    ДЖЕЛмуж = 27,63 - 0,122 х В/х L;

    ДЖЕЛжен = 27,78 - 0,101 х В/х L,

    где В - возраст в годах; L - длина тела в см.

    ДЖЕЛ в норме не должна быть ниже 90% от должной величины, у спортсменов она чаще всего превышает 100%.

    ЖЕЛ в % к ДЖЕЛ - 100 ± 10% -средняя

    ниже 90% - низкая;

    выше 110% - высокая.

    Функциональные пробы системы внешнего дыхания.

    Динамическая спирометрия – определение изменений ЖЕЛ под влиянием физической нагрузки. Определив исходную величину ЖЕЛ в покое, обследуемому предлагают выполнить дозированную физическую нагрузку - 2-минутный бег на месте в темпе 180 шаг/мин при подъеме бедра под углом 70-80°, после чего снова определяют ЖЕЛ. В зависимости от функционального состояния системы внешнего дыхания и кровообращения и их адаптации к нагрузке ЖЕЛ может уменьшиться, остаться неизменной или увеличиться. О достоверных изменениях ЖЕЛ можно говорить только в том случае, если она превысит 200 мл.

    Проба Розенталя - пятикратное измерение ЖЕЛ, проводимое через 15-секундные интервалы времени. Результаты данной пробы позволяют оценить наличие и степень утомления дыхательной мускулатуры, что, в свою очередь, может свидетельствовать о наличии утомления других скелетных мышц.

    Результаты пробы Розенталя оценивают следующим образом:

    - увеличение ЖЕЛ от 1-го к 5-му измерению - отличная оценка;

    - величина ЖЕЛ не изменяется - хорошая оценка;

    - величина ЖЕЛ снижается на величину до 300 мл - удовлетворительная оценка;

    - величина ЖЕЛ снижается более чем на 300 мл - неудовлетворительная оценка.

    Проба Шафранского заключается в определении ЖЕЛ до и после стандартной физической нагрузки. В качестве последней используются подъемы на ступеньку в течение 6 мин в темпе 16 шаг/мин. В норме ЖЕЛ практически не изменяется. При снижении функциональных возможностей системы внешнего дыхания значения ЖЕЛ уменьшаются более чем на 300 мл.

    Проба Генчи - регистрация времени задержки дыхания после максимального выдоха. Исследуемому предлагают сделать глубокий вдох, затем максимальный выдох. Исследуемый задерживает дыхание при зажатом носе и рте. Регистрируется время задержки дыхания между вдохом и выдохом.

    В норме величина пробы Генчи у здоровых мужчин и женщин составляет 20-40 с и для спортсменов – 40-60 с.

    Проба Штанге - регистрируется время задержки дыхания при глубоком вдохе. Исследуемому предлагают сделать вдох, выдох, а затем вдох на уровне 85-95% от максимального. Закрывают рот, зажимают нос. После выдоха регистрируют время задержки.

    Средние величины пробы Штанге для женщин – 35-45 с для мужчин – 50-60 с, для спортсменок – 45-55 с и более, для спортсменов - 65-75 с и более.

    Проба Штанге с гипервентиляцией.

    После гипервентиляции производится задержка дыхания на глубоком вдохе. Время произвольной задержки дыхания в норме возрастает в 1,5-2,0 раза.

    Проба Штанге с физической нагрузкой.

    После выполнения пробы Штанге в покое выполняется нагрузка - 20 приседаний за 30 с. После окончания физической нагрузки тотчас же проводится повторная проба Штанге. Время повторной пробы сокращается в 1,5-2,0 раза.

    По величине показателя пробы Генчи можно косвенно судить об уровне обменных процессов, степени адаптации дыхательного центра к гипоксии и гипоксемии и состояния левого желудочка сердца.
    Лица, имеющие высокие показатели гипоксемических проб, лучше переносят физические нагрузки. В процессе тренировки, особенно в условиях среднегорья, эти показатели увеличиваются.
    У детей показатели гипоксемических проб ниже, чем у взрослых.

    Дыхание — жизненно необходимый процесс постоянного обмена газами между организмом и окружающей его внешней средой. В процессе дыхания человек поглощает из окружающей среды кислород и выделяет углекислый газ.

    Содержание

    1. Значение дыхания
    2. Газообмен в легких
    3. Жизненная ёмкость лёгких
    4. Показатели сердечной деятельности
    Заключение
    Список использованных источников

    1. Значение дыхания

    Дыхание — жизненно необходимый процесс постоянного обмена газами между организмом и окружающей его внешней средой. В процессе дыхания человек поглощает из окружающей среды кислород и выделяет углекислый газ.

    Почти все сложные реакции превращения веществ в организме идут с обязательным участием кислорода. Без кислорода невозможен обмен веществ, и для сохранения жизни необходимо постоянное поступление кислорода. В клетках и тканях в результате обмена веществ образуется углекислый газ, который должен быть удален из организма. Накопление значительного количества углекислого газа внутри организма опасно. Углекислый газ выносится кровью к органам дыхания и выдыхается. Кислород, поступающий в органы дыхания при вдохе, диффундирует в кровь и кровью доставляется к органам и тканям.

    В организме человека и животных нет запасов кислорода, и поэтому непрерывное поступление его в организм является жизненной необходимостью. Если человек в необходимых случаях может прожить без пищи более месяца, без воды до 10 дней, то при отсутствии кислорода необратимые изменения наступают уже через 5-7 мин.

    Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

    Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в легочных пузырьках (альвеолах) относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, углекислого газа 4% (табл. 8).

    Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%) и большое количество углекислого газа (5,2%).

    Азот и инертные газы, входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково.

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Почему в выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном? Объясняется это тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания, в воздухоносных путях.

    2. Газообмен в легких

    Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот. Газообмен зависит от величины поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. При глубоком вдохе альвеолы растягиваются, и их поверхность достигает 100-105 м. Так же велика и поверхность капилляров в легких. Есть, и достаточная, разница между парциальным давлением газов в альвеолярном воздухе и напряжением этих газов в венозной крови.

    Из рисунка 1 следует, что разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода 110 — 40 = 70 мм рт. ст., а для углекислого газа 47 — 40 = 7 мм рт. ст.

    Опытным путем удалось установить, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступить 25-60 мл кислорода в 1 мин. Человеку в покое нужно примерно 25-30 мл кислорода в 1 мин. Следовательно, разность давлений кислорода в 70 мм рт. ст, достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

    Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому при разности давлений в 7 мм рт. ст., углекислый газ успевает выделиться из крови.

    3. Жизненная ёмкость лёгких

    Жизненная ёмкость лёгких (ЖЕЛ) — максимальное количество воздуха, которое может быть забрано в легкие после максимального выдоха. Взрослый здоровый человек при спокойном вдохе и выдохе вдыхает и выдыхает около 500 см воздуха. Это так называемый дыхательный воздух.

    Однако после спокойного вдоха можно дополнительно вдохнуть некоторое количество воздуха, так называемого дополнительного, его объем около 1500 см 3 .

    После спокойного выдоха можно дополнительно выдохнуть еще около 1500 см воздуха. Это так называемый резервный воздух.

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Таким образом, жизненная ёмкость лёгких представляет собой сумму дополнительного, дыхательного и резервного объемов и равна около 3500 см 3 .Даже после самого глубокого выдоха в легких остается еще около 800— 1700 см воздуха, так называемый остаточный воздух.Остаточный и резервный воздух постоянно заполняют альвеолы легких при спокойном дыхании. Это так называемый альвеолярный воздух. Объем его равен 2500—3500 см 3 .

    Вместе с остаточным объемом, т. е. объемом воздуха, остающегося в легких после самого глубокого выдоха, ЖЕЛ образует общую емкость легких (ОЕЛ). В норме ЖЕЛ составляет около 3/4 ОЕЛ.

    Определяют ЖЕЛ с помощью:

    Д.Ж.Е.Л= Рост(см)x0.052-Возраст х 0.022-4.6

    -для мальчиков 13-16 лет

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Д.Ж.Е.Л= Рост(см) x0.052-Возраст х 0.022-4.2

    Д.Ж.Е.Л= Рост(см) x0.052-Возраст х 0.022-3.6

    -девочки от 8 до 16

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    ДО(Дыхательный объём)-объём воздуха при нормальном вдохе и выдохе.

    РОвд.(Резервный объём вдоха)-объём воздуха при максимально глубоком выдохе.

    РОвыд.(Резервный объём выдоха)-объём воздуха выдыхаемый при максимальном выдохе.

    ООЛ(остаточный объём лёгких)-объём воздуха остающийся в лёгких после максимального выдоха.

    Сумма: Ж.Е.Л.+ООЛ=ОЕЛ-общая ёмкость лёгких

    Ж.Е.Л. мужчины: Рост х 25

    Ж.Е.Л. женщины: Рост х 20

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Жизненная емкость легких, их инспираторная и экспираторная мощность прежде всего зависят от физического развития, тренированности и телосложения. Они в значительной степени изменяются при заболевании легких и сердечно-сосудистой системы. При заболеваниях снижение ЖЕЛ возможно либо за счет возрастания в структуре ОЕЛ остаточного объема, что наблюдается при бронхиальной обструкции с острым вздутием легких (см. Бронхиальная астма) и развитием эмфиземы легких, либо вследствие снижения ОЕЛ. Снижение ЖЕЛ за счет уменьшения ОЕЛ обусловливает одышку рестриктивного типа (инспираторную), с коротким затрудненным вдохом и повышенной частотой дыхания (см. Одышка). Повторение измерения жизненной емкости легких в процессе лечения производят для оценки эффективности проводимой терапии.

    Специальная тренировка быстро приводит к увеличению ЖЕЛ. Таким образом, определение жизненной ёмкости лёгких является одним из наиболее важных методов диспансерного и клинического исследования людей.Жизненная емкость легких у детей — величина более лабильная, чем у взрослых. У детей раннего возраста она зависит от ряда факторов: возраста, пола, роста, окружности груди, подвижности диафрагмы и грудной клетки, состояния здоровья, степени тренированности и др.Снижение жизненной ёмкости лёгких у детей возникает при некоторых патологических состояниях легких (фиброзы любой этиологии, ателектазы, диффузный бронхит, бронхиолоспазм, состояние после резекции), плевры (спайки, плевральные наложения, гемо-, пио- и пневмоторакс), грудной клетки (выраженные деформации, состояние после торакотомии).Должная величина жизненной ёмкости лёгких равна должной величине основного обмена, умноженной на К (коэффициент корреляции, найденный эмпирическим путем). Должная величина основного обмена определяется показателями веса, роста, пола и возраста по таблицам: для детей 4 лет — 1,4; 5—6 лет — 1,5; 7—9 лет — 1,65; 10—13 лет — 1,75; 14—15 лет — 2,0. К для взрослых равен 2,3.

    4. Показатели сердечной деятельности

    Сердечный выброс (СВ) или минутный объем кровообращения (МОК) – количество крови выбрасываемое сердцем за одну минуту.

    УОК — систолический ударный объём крови

    ЧСС — частота сердечных сокращений

    Ударный (систолический) объем сердца (УО) – это количество крови, которое выбрасывается в аорту при каждом сердечном сокращении.

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    СВ – сердечный выброс

    ЧП – частота пульса.

    Сердечный индекс (СИ) – это показатель сердечного выброса в расчете на единицу поверхности тела человека.

    СВ –сердечный выброс

    Т – площадь поверхности тела человека.

    Ударный индекс (УИ) – это показатель ударного объема, в расчете на единицу поверхности тела.

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    УО –ударный объем сердца

    Т – площадь поверхности тела человека.

    Объемная скорость выброса (ОСВ) — количество крови, которое выбрасывается левым желудочком в начальный отрезок аорты, величина конкретизирующая представление о силе сердечных сокращений

    УО — ударный объем сердца

    Ви- время выбрасывания крови

    Частота сердечных сокращений

    Частота сердечных сокращений (ЧСС) зависит от многих факторов, включая возраст, пол, положение тела, условия окружающей среды. Она выше в вертикальном положении по сравнению с горизонтальном, уменьшается с возрастом. ЧСС покоя лежа-60 ударов в минуту; стоя-65. По сравнению с положением лежа в положении сидя ЧСС увеличивается на 10%, стоя на 20-30%. В среднем ЧСС составляет около 65 в минуту, однако наблюдается ее значительны колебания. У женщин этот показатель на 7-8 выше.

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    ЧСС подвержена суточным колебаниям. Во время сна она снижена на 2-7, в течение 3 часов после приема пищи — возрастает, особенно, если пища богата белками, что связано с поступлением крови к органам брюшной полости. Температура окружающей среды оказывает влияние на ЧСС, которая увеличивается в линейной зависимости от эффективной температуры.

    У тренированных лиц ЧСС в покое ниже, чем у нетренированных и составляет около 50-55 ударов в минуту.

    Физические нагрузки приводят к увеличению ЧСС, необходимого для обеспечения возрастания минутного объема сердца, причем существует ряд закономерностей позволяющих использовать этот показатель как один из важнейших при проведении нагрузочных тестов.

    Отмечается линейная зависимость между ЧСС и интенсивностью работы в пределах 80-90% максимальной предельности нагрузок.

    При легкой физической нагрузке первоначально ЧСС значительно увеличивается, однако постепенно снижается до уровня, который сохраняется в течение всего периода стабильной нагрузки. При более интенсивных нагрузках имеется тенденция к увеличению ЧСС, причем при максимальной работе она нарастает до предельно достижимой. Эта величина зависит от тренированности, возраста, пола и других факторов. У тренированных людей частота сердечных сокращений достигает 180 уд/мин. При работе переменной мощности можно говорить о диапазоне частоты сокращений 130-180 уд/мин, в зависимости от изменения мощности.

    Оптимальная частота 180 уд/мин при различной нагрузке. Следует отметить, что работа сердца при очень большой частоте сокращений (200 и более) становится менее эффективнее, так как значительно сокращается время наполнения желудочков и уменьшается ударный объем сердца, что может привести к патологии (В.Л. Карпман, 1964; Е.Б. Сологуб, 2000).

    Тесты с возрастанием нагрузок до достижения максимальной ЧСС используется лишь в спортивной медицине, и нагрузка считается допустимой, если ЧСС достигает 170 в минуту. Этот предел обычно используется при определении переносимости физической нагрузки и функционального состояния сердечнососудистой и дыхательной систем (Крестовников, В.Л. Карпман).

    Таблица 1. Тесты на количество сердечных сокращений в 1 мин людей разного возраста

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Минутный объем крови

    Минутный объем крови (МО)Это количество крови, перекачиваемое сердцем за минуту. По минутному объему судят о механической функции миокарда, которая отражает состояние системы кровообращения. Величина МО зависит отвозраста, пола, массы тела, температуры окружающего воздуха, интенсивности физической нагрузки.Норма МО для состояния покоя имеет довольно широкий диапазон и существенно зависит от методики определения:

    Наиболее простой способ определения МО, позволяющий ориентировочно определить его величину, — определение МО по формуле Старра:СО = 90,97 + 0,54 х ПД – 0,57 х ДД – 0,61В;МО = СО-ЧСС,где СО — систолический объем крови, Мл; ПД — пульсовое давление, мм рт. ст; ДД — минимальное давление, мм рт. ст.; В — возраст, в годах.

    Заключение

    Через дыхательные органы до всех клеток проходит O2. Фильтруется в носовой полости, проходит через гортань, трахею, которая переходит в бронхи. Затем бронхи разветвляются и переходят в альвеолы, к которым подходят капилляры. Они собираются в артерии и доносят насыщенную кислородом кровь к левому предсердию и до артерий большого круга кровообращения, которые разветвляются на артериолы и капилляры.

    Нужна помощь в написании реферата?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Они разносят кислород по всему организму ко всем клеткам и поглощают CO2; капилляры собираются в вены, которые проходят через правое предсердие и по малому кругу кровообращения в легкие, где снова происходит газообмен.

    Список использованных источников

    Читайте также: