Реферат на тему естественная радиоактивность

Обновлено: 01.07.2024

Источники радиации разделяют на естественные и искусственные (техногенные), созданные человеком. Ниже описываются основные источники ионизирующего излучения (ИИИ), а также тот вклад, который они вносят, в среднем, в облучение населения.

Содержание

1 Основные источники радиоэкологической опасности. 3
1.1 Космическая радиация и космические радионуклиды. 3
1.2 Земная радиация. 3
1.3 Искусственные источники. 4
1.3.1 Атмосферные испытания ядерного оружия. 5
1.3.2 Удобрения. 5
1.3.3 Другие источники . 5
2 Воздействие радиации на человека. 11
3 Биологические аспекты радиационной безопасности. 15

Работа содержит 1 файл

Экология.docx

Государственное образовательное учреждение

высшего профессионального образования

Выполнил: студент группы АС-111

Небритов Валерий Иванович

1 Основные источники радиоэкологической опасности. . 3

1.1 Космическая радиация и космические радионуклиды. . 3

1.2 Земная радиация. . . . 3

1.3 Искусственные источники. . . 4

1.3.1 Атмосферные испытания ядерного оружия. . 5

1.3.2 Удобрения. . . . 5

1.3.3 Другие источники . . . .5

2 Воздействие радиации на человека. . . 11

3 Биологические аспекты радиационной безопасности. . 15

1 ОСНОВНЫЕ ИСТОЧНИКИ РАДИОЭКОЛОГИЧЕСКОЙ ОПАСНОСТИ

Источники радиации разделяют на естественные и искусственные (техногенные), созданные человеком. Ниже описываются основные источники ионизирующего излучения (ИИИ), а также тот вклад, который они вносят, в среднем, в облучение населения.

1.1 Космическая радиация и космические радионуклиды

Космическое пространство пронизывается ионизирующим излучением различного происхождения и энергии. Первичная космическая радиация солнечного или галактического происхождения состоит, в основном, из протонов с энергией, изменяющейся в очень широком диапазоне. Вторичная космическая радиация включает продукты взаимодействия первичной радиации и атмосферы Земли. Глобальная годовая эффективная доза от космической радиации на одного человека составляет около 0,38 мЗв (38 мбэр), однако сильно зависит от абсолютной высоты (например, около 0,27мЗв (27 мбэр) на уровне моря (г. Мехико) и около 2 мЗв (200 мбэр) на высоте 3,9 км над уровнем моря (Ла-Пас, Боливия)). Космическое излучение в результате взаимодействия с элементами в атмосфере образует разнообразные радионуклиды. Наиболее значимым является углерод-74, который, попадая в организм, приводит к образованию годовой индивидуальной эффективной дозы около 0,012мЗв (1,2мбэр).

1.2 Земная радиация

Только долгоживущие радионуклиды с периодом полураспада, соизмеримым с возрастом Земли, до сих пор существуют в её веществе. Воздействие земной радиации может осуществляться тремя путями:

- прямое воздействие внешнего облучения;

- внутреннее облучение при потреблении пищи;

- внутреннее облучение при вдыхании воздуха.

Годовая индивидуальная эффективная доза от внешнего облучения составляет около 0,46 мЗв (46 мбэр), хотя эта величина может значительно изменяться в зависимости от местных геологических условий; в некоторых регионах доза может оказаться больше в 10 раз, а для ряда ограниченных территорий – в 100 раз. Доза, вызванная поступлением естественных радионуклидов из воздуха, продуктов питания и воды (исключая вдыхания радона), составляет около 0,23 мЗв (23 мбэр); калий-40 вместе с радионуклидами уранового и ториевого рядов составляет около 75% от этой дозы. Доза от калия-40 варьируется обычно незначительно, тогда как доза от урана и тория может изменяться значительно.

Радон представляет собой наиболее опасный природный источник радиации. Он является инертным газом и представлен двумя изотопами: радоном-222, радиологически наиболее значимым (продукт распада радия-226), и радоном-226, который часто называют тороном (продукт распада радия-225). Уровень концентрации радона в помещениях зависит от скорости его образования, определяемой концентрацией радия-226 в почве и других материалах, а также от интенсивности, с которой он переносится в воздух помещений и удаляется из них. На эти процессы влияют многие факторы (местные геологические условия, характеристики почвы, строительные материалы, тип постройки, тип вентиляционной системы и т.д.). В зависимости от этих факторов эффективная доза от вдыхания радона-222 и его дочерних продуктов оценивается в 1,2 мЗв (120 мбэр) и примерно в 0,07 мЗв (7 мбэр) – от вдыхания торона. Однако в некоторых географических районах индивидуальная доза может в 10 раз превышать среднюю. Особенности геологического строения земной коры в регионе, а также тип постройки могут оказаться причиной увеличения дозы внутри помещения в несколько сот раз по сравнению со средними значениями. Поэтому снижение поступления радона в помещение является одной из главных задач в области радиационной экологии.

Основным путём решения этой задачи является оценка потенциальной радоноопасности территорий застройки с целью определения требуемой радонозащиты зданий и сооружений. Концептуально подход к оценке потенциальной радоноопасности очевиден. Он должен быть основан на анализе фактических значений объёмной активности (OA) радона в воздухе помещений, изучении зависимости между плотностью потока радона с поверхности грунта и OA радона в помещениях и, наконец, установлении закономерностей процесса выделения радона с поверхности земли.

1.3 Искусственные источники

Определение групп населения, подвергающихся воздействию облучения от искусственных источников, и оценка степени этого облучения производятся исходя из сведений о способе производства этих источников и характере их использования. Персонал, непосредственно связанный с производством и применением источников радиации, подвергается воздействию облучения в процессе работы. Население подвергается как прямому (например, в медицине), так и косвенному (например, в результате выброса радиоактивных материалов в окружающую среду при штатной работе ядерных установок или в аварийных ситуациях) воздействию.

В медицине ионизирующее излучение широко применяется как для диагностики, так и при лечении травм и заболеваний. Индивидуальная годовая эффективная доза в Европе при диагностике (рентгеновское излучение при медицинских обследованиях) составляет около 1,1 мЗв (ПО мбэр). Средние дозы в европейских странах сильно меняются (от 0,4 до 1,6 мЗв, или 40-160 мбэр). Индивидуальная эффективность терапии составляет около 0,7 мЗв (70 мбэр) (исключая воздействие на органы или ткани, специально подвергшиеся терапии) и значительно меняется по странам.

1.3.1 Атмосферные испытания ядерного оружия

Атмосферные испытания ядерного оружия начались в 1945 г. и продолжались до 80-х гг.; более интенсивные периоды испытаний приходились на 50-е годы и начало 60-х годов. В результате таких испытаний в атмосферу были выброшены огромные количества радиоактивных продуктов. Прежде чем выпасть на земную поверхность, они равномерно рассеялись в стратосфере в глобальном масштабе. Во время испытаний ядерного оружия в атмосферу выбрасывались самые разнообразные продукты деления, образовавшиеся при взрыве, но современное глобальное загрязнение представлено наиболее долгоживущими радионуклидами. В основном это цезий-737 и стронций-90, имеющие период полураспада около 30 лет. Наиболее значительное облучение происходило в периоды испытаний ядерного оружия; с прекращением испытаний в 60-х гг. оно сильно уменьшилось. Индивидуальная годовая эффективная доза в 1996 г. на 40-50° северной широты (где уровни глобального загрязнения самые высокие) составляет около 0,009 мЗв (0,9 мбэр); при этом основной вклад вносит цезий-757.

Большинство разрабатываемых фосфатных месторождений содержат уран в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон. Удобрения также радиоактивны и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиоактивное загрязнение в этом случае обычно незначительно, но возрастает, если удобрения вносят в землю в жидком виде или содержащие фосфаты вещества скармливают скоту.

1.3.3 Другие источники

К другим источникам облучения относится производство атомной энергии в мирных и военных целях, исключая топливный цикл (добыча урана, его обогащение, изготовление топлива, работа реактора, регенерация топлива и т.д.), производство ядерного оружия и радиоизотопов, падение спутников с ядерными двигателями, использование промышленных источников радиации (например, промышленная радиография, стерилизация, скважинный каротаж) и т.д. В целом, за исключением крупных аварий (таких как Чернобыльская), влияние этих источников на формирование полной индивидуальной дозы по сравнению с другими источниками облучения невелико. По состоянию на конец 80-х - начало 90-х гг. годовая индивидуальная эффективная доза, вызванная производством атомной энергии, оценивается в 0,1 мкЗв, а вызванная производством радиоизотопов – в 0,02 мкЗв. Несколько более высокие дозы получают люди, проживающие вблизи ядерных установок. Так, проживающие вблизи работающих ядерных реакторов, могут получить дозу до 1-20 мкЗв, проживающие вблизи крупных регенерационных установок – до нескольких сот мкЗв (несколько десятков мбэр). Источником облучения являются и многие общеупотребительные предметы, содержащие радиоактивные вещества. Едва ли не самый распространённый – часы со светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую обусловленную утечками на АЭС. Обычно при изготовлении таких часов используют радий, что приводит к облучению всего организма, хотя на расстоянии 1 мот циферблата излучение в 10 ООО слабее, чем на расстоянии 7 см. Сейчас пытаются заменить радий тритием, облучение от которого меньше. Радиоактивные изотопы используют также в светящихся указателях входа-выхода, компасах, телефонных дисках, прицелах и т.д.

При изготовлении особо тонких оптических линз применяют торий, который может привести к существенному облучению хрусталика глаза. Для придания блеска искусственным зубам широко используется уран, который может служить источником облучения тканей полости рта.

Источниками рентгеновского излучения являются цветные телевизоры, однако при правильной настройке и эксплуатации дозы облучения от современных их моделей ничтожны. При ежедневном просмотре передач по 4 ч доза за год составит 7 мбэр. Рентгеновские аппараты для проверки багажа пассажиров в аэропортах также практически не вызывают облучения пассажиров.

В результате реализации в послевоенные десятилетия широкомасштабных программ использования атомной энергии в целях развития военной техники и мирных технологий существенно возросло влияние антропогенных источников радиоактивных загрязнений окружающей среды.

Так, только на Центральном (Новая Земля) и Семипалатинском испытательных полигонах за это время было произведено 586 ядерных взрывов (атмосферных, подводных и подземных). Общее же количество ядерных испытаний и взрывов за период с 1949 по 1990 годы составило 715.

По данным Госатомнадзора России, в настоящее время на территории России расположено свыше 60 радиационно-опасных для населения и окружающей среды промышленных объектов, главным образом, предприятий ядерно-топливного и ядерно-оружейного циклов. К концу 1993 года на территории России работало 9 атомных электростанций с 29 энергоблоками и реакторами различных типов. На Европейской части России атомными электростанциями вырабатывается около 25% всей электроэнергии. Поскольку более эффективной альтернативы атомной энергетике в настоящее время нет, в ближайшей перспективе предусматривается увеличение доли атомных электростанций в выработке электроэнергии до 35-37 %.

С ростом количества ядерных реакторов и взаимодействующих с ними обогатительных комбинатов повышается опасность того, что число стран, владеющих ядерным оружием, увеличивается. Именно по этой причине была создана международная организация под эгидой ООН – МАГАТЭ (Международное Агентство по Атомной Энергии). Потенциал разрушающего военного применения ядерных технологий привёл общественность к учреждению дорогого и сложного органа контроля.

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.

Вложенные файлы: 1 файл

Документ Microsoft Word (2).docx

Естественные источники радиации.

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах -. соответственно ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровень, герметизация помещений и даже полеты на самолетах все это увеличивает уровень облучения за счет естественных источников радиации. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения. В этой главе мы рассмотрим вначале данные о внешнем облучении от источников космического и земного происхождении. Затем остановимся на внутреннем облучении, причем особое внимание уделим радону радиоактивному газу, который вносит самый большой вклад в среднюю дозу облучения населения из всех источников естественной радиации. Наконец, в ней будут рассмотрены некоторые стороны деятельности человека, в том числе использование угля и удобрений, которые способствуют извлечению радиоактнвных веществ из земной коры и увеличивают уровень облучения людей от естественных источников радиации.

Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации . Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводят к образованию различных радионуклидов. Нет такого места на Земле, куда бы не падал этот невидимый космический душ. Но одни участки земной поверхности более подвержены его действию, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы (из которых в основном и состоят космические лучи). Существеннее, однако, то, что уровень облучения растет с высотой, поскольку при этом над нами остается все меньше воздуха, играющего роль защитного экрана. Люди, живущие на уровне моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу около 300 микрозивертов (миллионных долей зиверта) в год; для людей же, живущих выше 2000 м над уровнем моря это величина в несколько раз больше. Еще более интенсивному, хотя и относительно непродолжительному облучению, подвергаются экипажи и пассажиры самолетов. При подъеме с высоты 4000 м (максимальная высота, на которой расположены человеческие поселения: деревни шерпов на склонах Эвереста)до 12000 в (максимальная высота полета трансконтинентальных авиалайнеров) уровень облучения за счет космических лучей возрастает примерно в 25 раз и продолжает расти при дальнейшем увеличении высоты до 20000 м (максимальная высота полета сверхзвуковых реактивных самолетов) и выше. При перелете из Нью-Йорка в Париж пассажир обычного турбореактивного самолета получает дозу около 50 мкЗв, а пассажир сверхзвукового самолета на 20% меньше, хотя подвергается более интенсивному облучению. Это объясняется тем, что во втором случае перелет занимает гораздо меньше времени . Всего за счет использования воздушного транспорта человечество получает в год коллективную эффективную эквивалентную дозу около 2000 чел-Зв.

В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом. Совсем небольшая часть этой дозы приходится на радиоактивные изотопы типа углерода-14 и трития, которые образуются под воздействием космической радиации. Все остальное поступает от источников земного происхождения. В среднем человек получает около 180 микрозивертов в год за счет калия-40, который усваивается организмом в месте с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшей степени от радионуклидов ряда тория-232.Некоторые из них, например нуклиды свинца-210 и полония-210, поступают в организм с пищей. Они концентрируются в рыбе и моллюсках, поэтому люди, потребляющие много рыбы и других даров моря, могут получить относительно высокие дозы облучения. Десятки тысяч людей на Крайнем Севере питаются в основном мясом северного оленя (карибу), в котором оба упомянутых выше радиоактивных изотопа присутствуют в довольно высокой концентрации. Особенно велико содержание полония-210. Эти изотопы попадают в организм оленей зимой, когда они питаются лишайниками, в которых накапливаются оба изотопа. Дозы внутреннего облучения человека от полония-210 в этих случаях могут в 35 раз превышать средний уровень. А в другом полушарии люди, живущие в Западной Австралии в местах с повышенной концентрацией урана, получают дозы облучения, в 75 раз превосходящие средний уровень, поскольку едят мясо и требуху овец и кенгуру. Прежде чем попасть в организм человека, радиоактивные вещества, как и в рассмотренных выше случаях, проходят по сложным маршрутам в окружающей среде, и это приходится учитывать при оценке доз облучения, полученных от какого-либо источника.

Другие источники радиации.

Уголь, подобно большинству других природных материалов, содержит ничтожные количества первичных радионуклидов. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей. Хотя концентрация радионуклидов в разных угольных пластах различается в сотни раз, в основном уголь содержит меньше радионуклидов, чем земная кора в среднем. Но при сжигании угля большая часть его минеральных компонентов спекается в шлак или золу, куда в основном и попадают радиоактивные вещества. Большая часть золы и шлаки остаются на дне топки электросиловой станции. Однако более легкая зольная пыль уносится тягой в трубу электростанции. Количество этой пыли зависит от отношения к проблемам загрязнения окружающей среды и от средств, вкладываемых в сооружение очистных устройств. Облака, извергаемые трубами тепловых электростанций, приводят к дополнительному облучению людей, а оседая на землю, частички могут вновь вернуться в воздух в составе пыли. Согласно текущим оценкам, производство каждого гигаватт-года электроэнергии обходится человечеству в 2 чел-Зв ожидаемой коллективной эффективной эквивалентной дозы облучения, т.е. в 1979 году, например, ожидаемая коллективная эффективная эквивалентная доза от всех работающих на угле электростанций во всем мире составила около 2000 чел-Зв. На приготовление пищи и отопление жилых домов расходуется меньше угля, но зато больше зольной пыли летит в воздух в пересчете на единицу топлива. Таким образом, из печек и каминов всего мира вылетает в атмосферу зольной пыли, возможно, не меньше, чем из труб электростанций. Кроме того, в отличие от большинства электростанций жилые дома имеют относительно невысокие трубы и расположены обычно в центре населенных пунктов, поэтому гораздо большая часть загрязнений попадает непосредственно на людей. До последнего времени на это обстоятельство почти не обращали внимания, но по весьма предварительной оценке из-за сжигания угля в домашних условиях для приготовления пищи и обогревания жилищ во всем мире в 1979 году ожидаемая коллективная эффективная эквивалентная доза облучения населения Земли возросла на 100000 чел-Зв. Не много известно также о вкладе в облучение населения от зольной пыли, собираемой очистными устройствами. В некоторых странах более трети ее используется в хозяйстве, в основном в качестве добавки к цементам и бетонам. Иногда бетон на 4/5 состоит из зольной пыли. Она используется также при строительстве дорог и для улучшения структуры почв в сельском хозяйстве. Все эти применения могут привести к увеличению радиационного облучения, но сведений по этим вопросам публикуется крайне мало. Еще один источник облучения населения термальные водоемы. Некоторые страны эксплуатируют подземные резервуары пара и горячей воды для производства электроэнергии и отопления домов; один такой источник вращает турбины электростанции в Лардерелло в Италии с начала нашего века. Измерения эмиссии радона на этой и еще на двух, значительно более мелких, электростанциях в Италии показали, что на каждый гигаватт-год вырабатываемой ими электроэнергии приходится ожидаемая коллективная эффективная эквивалентная доза 6 чел-Зв, т. е. в три раза больше аналогичной дозы облучения от электростанций, работающих на угле. Однако, поскольку в настоящее время суммарная мощность энергетических установок, работающих на геотермальных источниках, составляет всего 0,1% мировой мощности, геотермальная энергетика вносит ничтожный вклад в радиационное облучение населения. Но этот вклад может стать весьма весомым, поскольку ряд данных свидетельствует о том, что запасы этого вида энергетических ресурсов очень велики. Добыча фосфатов ведется во многих местах земного шара; они используются главным образом для производства удобрений, которых в 1977 году во всем мире было получено около 30 млн. т. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий там в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиоактивное загрязнение в этом случае бывает обыкновенно незначительным, но возрастает, если удобрения вносят в землю в жидком виде или если содержащие фосфаты вещества скармливают скоту. Такие вещества действительно широко используются в качестве кормовых добавок, что может привести к значительному повышению содержания радиоактивности в молоке. Все эти аспекты применения фосфатов дают за год ожидаемую коллективную эффективную эквивалентную дозу, равную примерно 6000 чел-Зв, в то время как соответствующая доза из-за применения фосфогипса, полученного только в 1977 году, составляет около 300000 чел-Зв.

Источники, созданные человеком.

За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом. Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных. Как правило, для техногенных источников радиации упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Кроме того, порождаемое ими излучение обычно легче контролировать, хотя облучение, связанное с радиоактивным и осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обусловленное космическими лучами или земными источниками.

Источники, использующиеся в медицине.

В настоящее время основной вклад в дозу, получаемую человеком от техногенных источников радиации, вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Во многих странах этот источник ответствен практически за всю дозу, получаемую от техногенных источников радиации. Радиация используется в медицине как в диагностических целях, так и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из основных способов борьбы с раком является лучевая терапия. Понятно, что индивидуальные дозы, получаемые разными людьми, сильно варьируют от нуля (у тех, кто ни разу не проходил даже рентгенологического обследования) до многих тысяч среднегодовых доз (у пациентов, которые лечатся от рака). Однако надежной информации, на основании которой НКДАР ООН мог бы оценить дозы, получаемые населением Земли, слишком мало. Hе известно, сколько человек ежегодно подвергается облучению в медицинских целях, какие дозы они получают и какие органы и ткани при этом облучаются. В принципе облучение в медицине направлено на исцеление больного. Однако нередко дозы оказываются неоправданно высокими: их можно было бы существенно уменьшить без снижения эффективности, причем польза от такого уменьшения была бы весьма существенна, поскольку дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников. Наиболее распространенным видом излучения, применяющимся в диагностических целях, являются рентгеновские лучи. Согласно данным по развитым странам, на каждую 1000 жителей приходится от 300 до 900 обследований в год это не считая рентгенологических обследований зубов и массовой флюорографи. Менее полные данные по развивающимся странам показывают, что здесь число проводимых обследований не превышает 100-200 на 1000 жителей. В действительности около 2/3 населения Земли проживает в странах, где среднее число рентгенологических обследований составляет не более 10% от числа обследований в промышленно развитых стpанах. В большинстве стpан около половины рентгенологических обследований приходится на долю грудной клетки. Однако по мере уменьшения частоты заболеваний туберкулезом целесообразность массовых обследований снижается. Более того, практика показала, что раннее обнаружение рака легких почти не увеличивает шансов на выживание пациента. Сейчас во многих промышленно развитых странах, включая Швецию, Великобританию и Соединенные Штаты, частота таких обследований существенно снизилась, однако в некоторых странах около 1/3 населения по-прежнему ежегодно подвергается подобному обследованию. Недавно появился целый ряд технических усовершенствований, которые при условии их правильного применения могли бы привести к уменьшению дозы, получаемой пpи pентгеновском обследовании. Тем не менее по данным для Швеции и США это уменьшение оказалось весьма незначительным или отсутствовало вообще. Даже в пределах одной страны дозы очень сильно варьируют от клиники к клинике. Исследования, проведенные в ФРГ, Великобритании и США, показывают, что дозы, получаемые пациентами, могут различаться в сто раз. Известно также, что иногда облучению подвергается вдвое большая площадь поверхности тела, чем это необходимо. Наконец, установлено, что излишнее радиационное облучение часто бывает обусловлено неудовлетворительным состоянием или эксплуатацией оборудования. Тем не менее известны случаи, когда дозы облучения действительно были снижены благодаря усовершенствованию оборудования и повышению квалификации персонала. Иногда для существенного повышения эффективности диагностики нужно лишь слегка увеличить дозу. Как бы то ни было, пациент должен получать минимальную дозу при обследовании, и, по мнению НК ДАР, здесь имеются резервы значительного уменьшения облучения.

Среди персонала АЭС в ФРГ, Великобритании и США, которые получает дозы, не превышающие предельно допустимого, согласно международным стандартам, уровня, также обнаружены хромосомные аномалии. Но биологическое значение таких повреждений и их влияние на здоровье человека пока не выяснены. Поскольку нет никаких других сведений, приходится оценивать риск появления наследственных дефектов у человека основываясь на результатах, полученных в многочисленных экспериментах на животных. При оценке риска появления наследственных дефектов у человека НКДАР использует два подхода. При одном подходе пытаются определить непосредственный эффект данной дозы облучения, при другом

стараются определить дозу, при которой удваивается частота появления потомков с той или иной разновидностью наследственных дефектов по сравнению с нормальными радиационными условиями. Согласно оценкам, полученным при первом подходе, доза в 1 Гр, полученная при низком уровне радиации только особями мужского пола, индуцирует появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных. Оценки, полученные для особей женского пола, гораздо менее определенны, но явно ниже; это объясняется тем, что женские половые клетки менее чувствительны к действию радиации. Согласно ориентировочным оценкам, частота мутаций составляет от 0 до 900, а частота хромосомных аберраций от 0

до 300 случаев на миллион живых новорожденных. Согласно оценкам, полученным вторым методом, хроническое облучение при мощности дозы в 1 Гр на поколение (для человека-30 лет) приведет к появлению около 2000 серьезных случаев генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению. Этим методом пользуются также для оценки суммарной частоты появления серьезных наследственных дефектов в каждом поколении при условии, что тот же уровень радиации будет действовать все время. Согласно этим оценкам, примерно 15 000 живых новорожденных из каждого миллиона будут рождаться с серьезными наследственными дефектами из- за такого радиационного фона. Этот метод пытается учесть влияние рецессивных мутаций. О них известно немного, и по этому вопросу еще нет единого мнения, но считается, что их вклад в суммарную частоту появления наследственных заболеваний незначителен, поскольку мала вероятность брачного союза между партнерами с мутацией в одном и том же гене. Немного

известно также о влиянии облучения на такие признаки, как рост и плодовитость, которые определяются не одним, а многими генами, функционирующими в тесном взаимодействии друг с другом. Оценки НКДАР ООН относятся преимущественно к действию радиации на единичные гены, поскольку оценить вклад таких полигенных факторов чрезвычайно трудно. Еще большим недостатком оценок является тот факт, что оба метода способны регистрировать лишь серьезные генетические последствия обучения. Есть веские основания считать,

2 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ Явление радиоактивности Естественная и искусственная радиоактивность Характеристики радиоактивности. 6 1) α-распад. 6 2) β-распад. 7 3) γ-распад. 7 4) Спонтанное деление и двупротонная радиоактивность. 7 5) Закон радиоактивного распада. 8 ЗАКЛЮЧЕНИЕ. 10 СПИСОК ЛИТЕРАТУРЫ

6 в). Продукты наведенной радиоактивности, образующиеся в результате ядерных реакций элементарных частиц. Нейтроны, образующиеся при цепной реакции деления урана или плутония воздействуют на ядра стабильных элементов окружающей среды, превращая их в радиоактивные Оба вида радиоактивности подчиняются одним и тем же законам. 3. Характеристики радиоактивности. Радиоактивный распад возможен только тогда, когда он энергетически выгоден, т.е. сопровождается выделением энергии. Условием этого является превышение массы М исходного ядра суммы масс m i продуктов распада, т.е. неравенство: M > m i. Из около 3000 известных ядер (большинство из них получено искусственно) лишь 264 не являются радиоактивными. Основными видами радиоактивного распада являются альфа-распад, бетараспад, гамма-распад и спонтанное деление (распад ядра на два осколка сравнимой массы). 1). α-распад. Альфа-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4 He). Альфа-распад происходит в тяжёлых ядрах с массовым числом А 140. Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α- частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако она может преодолеть его и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера очень быстро (экспоненциально) уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше. α-распад:! X. Y +! He где A-атомная масса элемента, Z-зарядовое число элемента (Z равно числу протонов в элементе). α-распад обусловлен сильным взаимодействием. 6

7 2). β-распад. Бета-распад бывает трех видов:! a) β - распад:! X. Y + e! + ν!! b) β - распад:! X. Y + e! + ν! c) e захват. X + e. Y + ν! Главной особенностью β-распада является то, что он обусловлен слабым взаимодействием. Бета-распад - процесс не внутриядерный, а внутринуклонный. В ядре распадается одиночный нуклон. 3). γ-распад. Переход ядра из возбужденного состояния в основное состояние или в состояние с меньшей энергией возбуждения может происходить различными способами, в том числе путем испускания электромагнитного γ-излучения. Из этого следует, что γ-излучение это самопроизвольное коротковолновое электромагнитное излучение, испускаемое возбужденными атомными ядрами*. Переходы ядра из возбужденного состояния, сопровождающиеся испусканием γ-лучей, называются радиационными переходами. Радиационный переход может быть: однократным, когда ядро, испустив один квант, сразу переходит в основное состояние. каскадным, когда снятие возбуждения происходит в результате последовательного испускания нескольких γ-квантов. По своей физической природе γ-излучение представляет собой коротковолновое электромагнитное излучение ядерного происхождения. Обычно при радиоактивном распаде ядер, энергия ядерных γ-квантов заключена в пределах примерно от 10 кэв до 5 МэВ, а при ядерных реакциях рождаются γ-кванты до 20 МэВ. Так как в γ-распаде не происходит рождения протона или нейтрона, то, в отличие от α- и β-распадов, каждый из которых является ядерным превращением, при γ-распаде ядерного превращения не происходит. γ-распад: X!! X!! + γ *Возбуждённые состояния ядер состояния, в которых энергия системы превышает наименьшее возможное значение энергии, которое называется основным состоянием. Возбуждённое состояние ядра является неустойчивым, и с течением времени ядро переходит в состояние с меньшей энергией возбуждения и в результате таких переходов оказывается в основном состоянии. 4). Спонтанное деление - деление ядра на осколки (чаще всего на два) сравнимых масс и зарядов: A, Z = A!, Z! + A!, Z! ; A = A! + A!, Z = Z! + Z! 7

8 Двупротонная радиоактивность: (A,Z) 2р + (A-2,Z-2). При протонной и двупротонной радиоактивности протоны проникают через кулоновский потенциальный барьер благодаря туннельному эффекту. Это явление наблюдается для нейтронодефицитных ядер с Z 9 Сложный радиоактивный распад может протекать в двух случаях: 1. В первом случае исследуемый препарат содержит несколько сортов радиоактивных ядер. Пусть исследуемый препарат содержит два сорта радиоактивных ядер с постоянными распада λ 1 и λ 2. В этом случае общее число радиоактивных ядер будет изменяться со временем по закону: N = N! e!!"!+n! e. 2. Во втором случае происходит последовательные распады одного и того же ядра. Часто бывает что ядро, получившееся в результате радиоактивного распада, само оказывается радиоактивным, так что происходит последовательный распад исходного ядра 1 в ядро 2, а ядро 2 в ядро 3. В этом случае изменение числа N 1 ядер 1 и числа N 2 ядер 2 определяется системой уравнений:!"! = λ!"!n. "! = λ!"!n! λ! N!. Если T 1 >> T 2 (λ 1 > T 2 (λ 2 t >> 1) приближается к своему предельному значению: lim N! t =. N!" = const При t > 10T равенство выполняется уже с точностью около 0.1%. Обычно оно записывается в форме: λ 1 N 1 = λ 2 N 2 и носит название векового равновесия. 9

Радиоактивность вокруг нас: естественная и искусственная радиоактивность

Искусственная радиоактивность

Естественная радиоактивность

Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час. По сложившемуся мнению, такой уровень радиации не опасен для человека и животных, хотя эта точка зрения неоднозначна, так как многие ученые утверждают, что радиация даже в малых дозах приводит к раку и мутациям. Правда, в связи с тем, что повлиять на естественный уровень радиации мы практически не можем, нужно стараться максимально оградить себя от факторов, приводящих к значительному превышению допустимых значений.

Существует три основных источника естественной радиации:

1. Космическое излучение и солнечная радиация — это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник — атмосфера. Впрочем, интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому в любом случае следует избегать воздействия прямых солнечных лучей. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты. Чем выше Вы над Землей, тем интенсивнее космическое излучение, с каждой 1000 метров сила воздействия удваивается, а на экваторе уровень излучения гораздо сильнее, чем на полюсах.

Ученые отмечают, что именно с проявлением космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более десяти тысяч метров. Впрочем, обычным гражданам, не увлекающимися частыми перелетами, волноваться о космическом излучении не стоит.

Уровень радиации в салоне самолета на высоте 10 000 метров превышает естественный в 10 раз.

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания.

Это единственный способ померить уровень радиации в бытовых условиях и не приобретать опасные с радиационной точки зрения материалы.

3. Радон — это радиоактивный инертный газ без цвета, вкуса и запаха. Он в 7,5 раз тяжелее воздуха, и, как правило, именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство скапливаться под землей в больших количествах, на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Мало кто слышал о том, что любой строительный материал может стать источником радиоактивного излучения.

Чем это опасно для человека и животных? На самом деле, радиация не опасна, если она ограничена небольшой дозой.

К сожалению, современные дорогостоящие материалы нередко имеют высокую степень радиации. Встречаются случаи, когда одна деревянная конструкция несет в себе до 60% допустимой дозы облучения.

В состав многих строительных материалов могут входить радиоактивные уран 238, калий 40 и торий 232, а также прочие радионуклеиды. В любом случае, конечным продуктом распада подобных элементов будет радон 222. Минеральные глины и калиевые, а также полевые шпаты обычно имеют повышенное содержание радионуклеидов.

Например, гранит, кварцевый диорит и прочие магматические породы кислотного и щелочного происхождения имеют свойство давать достаточно сильное радиоактивное излучение. Морские глубоководные глины и многие другие осадочные глины также представляют большую опасность для здоровья человека.
Силикатный кирпич, фосфогипс, стекловолокно, гранит, и щебень способны излучать радиацию. Не стоит думать, что использование таких материалов в строительстве помещений приведет к неизбежной смерти. На самом деле, и когда производится аренда дизель генераторов , установки излучают некоторые вредные лучи. Все же значения радиации находятся в пределах допустимой нормы. Если же собрать в своем доме все опасные стройматериалы, то вы вряд ли будете чувствовать себя хорошо.

Наиболее сильное радиоактивное излучение способен давать графит. У данного материала уровень излучения может достигать 30 рентген в час, а в жилых помещениях общий радиационный фон от локальных источников не может превышать 60 рентген в час. Проще говоря, и излучение от графита нельзя назвать критичным, хоть оно довольно опасно для человека. При нагревании данного материала начинает выделяться радон. Следовательно, уровень радиации сильно повышается. Если вы решили использовать в качестве материала облицовки камина графит, то это необходимо учесть.
Наконец, наиболее безопасным материалом сегодня признан мрамор. Кроме того, можно обратиться к искусственному камню. Если вы хотите использовать графит, то лучше применять его для наружной облицовки здания.
Даже обычный кирпич выделяет радон. Все бы ничего, но этот же газ выделяет земная кора, а через трещины в домах он просачивается в помещение. Получается, что уровень концентрации вредного газа значительно повышается.

Радиация может попадать в наш организм как угодно, часто виной этому становятся предметы, не вызывающие у нас никаких подозрений.

Специалисты радиационно-гигиенической лаборатории много лет работают на благо и здоровее населения всего края.

Виды исследований по показателям радиационной безопасности, выполняемые лабораторией:

– дозиметрические измерения (альфа-, бета-, гамма-излучение, рентгеновское, нейтронное) – территорий открытой местности, земельные участки, помещения, металлолом, рабочие места, в том числе индивидуальный эквивалент дозы персонала группа А термолюминесцентным методом, радиационный выход рентгеновских излучателей медицинских рентгенодиагностических аппаратов;

- гамма-спектрометрические исследования – определение удельной активности техногенных и природных радионуклидов в пищевых продуктах, строительных материалах, почвах, отходах, изделиях из древесины, донных отложениях ;

- бета-спектрометрические исследования с использованием методов термического концентрирования – определение удельной активности техногенных радионуклидов в пищевых продуктах, почвах, отходах, изделиях из древесины, донных отложениях .

Радиационный контроль в пищевых продуктах выполняется по двум основным дозообразующим радионуклидам - цезию-137 и стронцию-90.

Дополнительно проведена калибровка аппаратуры для измерения удельной активности йода-131, кобальта-60. Определение удельной активности цезия-137 возможно в течение 3 часов. На о пределение удельной активности стронция-90 потребуется больше времени (от 8 до 24 часов), так как требуется частичное концентрирование пробы методом сжигания. Измерения выполняются на гамма-, бета-спектрометрах, минимально измеряемая активность (МИА) которых от 2 - 3 Бк/кг.

Мы сами ответственны за свою жизнь и здоровье. Защитите себя от радиации!

Радиационно-гигиеническая лаборатория

Читайте также: