Реферат на тему экономические проблемы биофармацевтики

Обновлено: 05.07.2024

Сегодня человечество совершенно справедливо полагает, что биотехнологические науки занимают приоритет в области современных высоких технологий. Сиквенирование геномов и валидация новых мишеней для действия лекарственных соединений является одним из перспективных направлений современной фармакологии. Учитывая, что появились новые принципиальные возможности для сиквенирования, встает вопрос о генетической паспортизации населения, когда каждому будет выдан его генетический паспорт, и человек будет решать проблемы своего здоровья. Важнейшим достижением прошлого века являются стволовые клетки, что стало возможным благодаря развитию всей эмбриологии и цитологии. Это позволило подойти к разработке путей создания искусственных органов, получать новые вещества, специфически влияющие на органы-мишени.

На современном этапе развития биотехнологии большое внимание уделяется разработке подходов к созданию новых процессов в медицинской биотехнологии. Это различные методы модификации микроорганизмов, растений и животных, в т.ч. культивирование растительных клеток как источника получения новых веществ; конструирование молекул, нанотехнологии, компьютерное моделирование, биокаталитическая трансформация веществ и т.д.

Так, например, существуют многочисленные разработки лекарственных препаратов, созданных на основе морских организмов. Использование морских природных соединений в качестве основы лекарств - весьма перспективный путь создания новых фармацевтических препаратов, особенно методами биотехнологии. Коллекция морских микроорганизмов ТИБОХ, из которых можно продуцировать биологически-активные соединения, содержит 800 штаммов бактерий, актиномицетов и грибов. Эти штаммы можно культивировать, что важно для решения проблемы сохранения биологического равновесия.

Таким образом, в получении лекарственных препаратов, производимых биотехнологическим способом, можно выделить как бы два пула — новые соединения, получаемые с помощью биотехнологических процессов, комбинаторной химии, и новые мишени, которые идентифицируются в процессе изучения геномов. Это дает возможность отбирать молекулы, обладающие новыми биологическими и физиологическими свойствами, которые и будут выполнять роль лекарств.

Прежде всего, обратимся к медицинской ветви биотехнологии. Рассматривая различные классы соединений, используемые в клинической практике, и получаемые методами биотехнологии, в первую очередь, необходимо назвать антибиотики - самый большой класс фармацевтических соединений, синтез которых осуществляется микробными клетками. К этому же классу относятся противогрибковые агенты, противоопухолевые лекарства и алкалоиды. Производство антибиотиков исчисляется тысячами тонн. Пенициллины, как известно, были выделены при выращивании грибов рода Penicillium. В 1945 г. из пробы морской воды была выделена плесень Cephalosporium acremonium, синтезирующую несколько антибиотиков; один из них, цефалоспорин С, оказался особенно эффективен против устойчивых к пенициллину грамположительных бактерий.

Из нескольких тысяч открытых антибиотиков львиная доля принадлежит актиномицетам. Среди актиномицетов наибольший вклад вносит род Streptomyces, один только вид Streptomyces griseus синтезирует более пятидесяти антибиотиков. Начиная с середины 1960-х гг. в связи с возросшей сложностью выделения эффективных антибиотиков и распространением устойчивости к наиболее широко применяемым соединениям у большого числа патогенных бактерий исследователи перешли от поиска новых антибиотиков к модификации структуры уже имеющихся. Они стремились повысить эффективность антибиотиков, найти защиту от инактивации ферментами устойчивых бактерий и улучшить фармакологические свойства препаратов. Антибиотики вырабатываются в результате совместного действия продуктов 10—30 генов, поэтому практически невозможно обнаружить отдельные спонтанные мутации, которые могли бы повысить выход антибиотика с нескольких миллиграммов на литр в штамме дикого типа до 20 г/л и более. Такие высокопродуктивные штаммы Penicillium chrysogenum или Streptomyces auerofaclens (продуценты пенициллина или тетрациклина) были получены в результате последовательных циклов мутагенеза и селекции. Определенные мутанты, так называемые идиотрофы, способны синтезировать только половину молекулы антибиотика, а среда должна быть обогащена другой ее половиной. Такая форма мутационного биосинтеза привела к открытию новых производных антибиотиков.

Число противоопухолевых веществ микробного происхождения довольно ограниченно. Блеомицин, выделенный из культур Streptomyces verticilliis, представляет собой гликопептид, который действует, разрывая ДНК опухолевых клеток и нарушая репликацию ДНК и РНК. Другая группа противоопухолевых агентов создана на основе комбинации аминогликозидной единицы и молекулы антрациклина. Недостатком обоих соединений является их потенциальная опасность для сердца.

Антибиотики используются грибами и актиномицетами в конкурентной борьбе в естественной среде обитания. Человек применил эти соединения для терапии инфекционных и онкологических заболеваний. Это явилось своеобразным толчком эволюционных преобразований в микробной среде, стали возникать устойчивые штаммы бактерий. В связи с этим вновь возникла проблема создания нового поколения более эффективных антибиотиков. В настоящее время протокол лечения инфекционной и хирургической патологии обязательно включает антибиотики. Но, имея неоспоримые преимущества, антибиотики оказывают на организм человека и негативное влияние: нарушается микрофлора желудочно-кишечного тракта, возможны осложнения в функционировании почек и печени, подавляется работа иммунной системы. Поэтому современные схемы лечения являются комплексными и направлены на поддержание адаптационных возможностей человека.

Другим важным классом лекарственных соединений являются генно-инженерные ферменты, соответствующие ферментам человека. По сравнению с ферментами, которые получают из природного сырья, они обладают рядом преимуществ: низкой антигенностью, высокой специфичностью фармакологического действия, отсутствием контаминирующих инфекционных агентов. Генно-инженерные технологии позволяют легко увеличивать промышленное производство ферментов.

Ферменты находят все более широкое применение как биокатализаторы в фармацевтическом производстве.

Направленная модификация с помощью методов генной инженерии открывает возможности трансформации структуры ферментов таким образом, что они приобретают качественно новые свойства. Так, особый интерес в мире сейчас представляет возможность перехода от пенициллинов к цефалоспоринам с помощью генно-инженерного фермента экспандазы, благодаря чему унифицируется биотехнологическая часть получения антибиотиков. Далее с помощью других биокаталитических процессов и совмещения их с химическими можно производить класс новых антибиотиков для борьбы с инфекциями.

Биокаталитические подходы открывают большое поле для различных вариантов построения новых фармацевтических процессов. В частности, использование генно-инженерных ферментов позволяет получить оптически активные изомеры соединений, которые составляют более 70% всех лекарств. При этом период окупаемости биокаталитических процессов значительно короче по сравнению с химическим синтезом, а по энергозатратам и капиталовложениям они тоже имеют большие перспективы. Техноинженерные ферменты широко используются для создания диагностических тест-систем в биохимическом, иммуноферментном и ДНК-анализах.

Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления процессов различного назначения. В целом, биотехнология представляет собой систему приемов, позволяющих получать промышленным способом ценные продукты за счет использования процессов жизнедеятельности живых организмов.

В фармацевтической промышленности биотехнологии применяются для производства антибиотиков, иммунобиологических препаратов, генно-инженерных лечебно-профилактических препаратов, для производства энзимов, биологически активных веществ и других медицинских препаратов. Важным направлением биотехнологий в медицине является использование биотехнологий для реконструкции тканей и органов человека с использованием стволовых клеток.

Одним из перспективных направлений является использование нанотехнологий в медицинских целях, создание новых носителей и средств целевой доставки лекарственных препаратов.

Новые биологические технологии используются в диагностике и лечении сердечно-сосудистых, онкологических, аллергических и эндокринных заболеваниях.

Ежегодный прирост мирового рынка биотехнологической продукции составляет 7-10%. Уже сегодня использование биотехнологических разработок позволяет решать многие проблемы диагностики и лечения особо опасных заболеваний, недостаточного или несбалансированного питания, повышения качества питьевой воды, обеззараживания опасных для человека и окружающей среды отходов.

1. Корочкин Л.И. Биология индивидуального развития. - М.: Наука, 2002. 263 с.

2. Корочкин Л.И., Михайлов А.Т. Введение в нейрогенетику. - М.: Наука, 2000. 312 с.

3. Репин В.С., Сухих Г.Т. Медицинская клеточная биология. - М.: БЭБиМ, 1998. - 250 с.

3. Экономические выгоды производства биотехнологических лекарственных средств

Генно-инженерные лекарственные препараты, появившиеся на рынке в последнее десятилетие, представляют собой естественные природные биорегуляторы и биологически активные вещества, синтез которых для медицинских целей вне организма невозможен или весьма затруднителен. К таким препаратам относятся инсулин, гормон роста, урокиназа, факторы свертывания крови, эритропоэтин, интерлейкины и их ингибиторы, колониестимулирующие факторы и факторы роста, артериальный натрийуретический фактор, супероксиддисмутаза, ангиогенин, тканевый активатор плазминогена, вакцины, моноклональные антитела.

Биотехнология предоставляет медицине новые пути получения ценных гормональных препаратов. Особенно большие сдвиги произошли в последние годы в направлении синтеза пептидных гормонов. Раньше гормоны получали из органов и тканей животных и человека (крови доноров, удаленных при операциях органов, трупного материала). Требовалось много материала для получения небольшого количества продукта. Так, человеческий гормон роста (соматотропин) получали из гипофиза человека, каждый гипофиз содержит его не более 4 мг. В то же время для лечения одного ребенка, страдающего карликовостью, требуется около 7 мг соматотропина в неделю; курс лечения должен продолжаться несколько лет. С применением генноинженерного штамма Е. coli в настоящее время получают до 100 мг гормона роста на 1 л среды культивирования, что гораздо дешевле. Открываются перспективы борьбы не только с карликовостью, но и с низкорослостью -- более слабой степенью дефицита соматотропина. Соматотропин способствует заживлению ран и ожогов, наряду с кальцитонином (гормоном щитовидной железы) регулирует обмен Са 2+ в костной ткани. Инсулин, пептидный гормон островков Лангерганса поджелудочной железы, представляет основное средство лечения при сахарном диабете. До недавнего времени инсулин получали из поджелудочной железы быка и свиньи. Широкомасштабное терапевтическое применение инсулина сдерживалось его высокой стоимостью и ограниченностью ресурсов. Путем химической модификации инсулин из животных удалось сделать неотличимым от человеческого, но это означало дополнительное удорожание продукта. Компания Eli Lilly с 1982 г. производит генно-инженерный инсулин на основе раздельного синтеза Е. coli его А- и В-цепей. Стоимость продукта значительно снизилась, получаемый инсулин идентичен человеческому. К лечению диабета приложена также технология инкапсулирования: клетки поджелудочной железы в капсуле, введенные однократно в организм больного, продуцируют инсулин в течение года. Значителен вклад биотехнологии и в промышленное производство непептидных гормонов, в первую очередь стероидов. Методы микробиологической трансформации позволили резко сократить число этапов химического синтеза кортизона, гормона надпочечников, применяемого для лечения ревматоидного артрита. При производстве стероидных гормонов широко используют иммобилизованные микробные клетки, например Arthrobacter globiformis, для синтеза преднизолона из гидрокортизона. Имеются разработки по получению гормона щитовидной железы тироксина из микроводорослей, что также означает уменьшение затрат на производство лекарственного средства. Моноклональные антитела (МА) занимают ведущее место среди разрабатываемых биотехнологических продуктов. МА давно нашли применение в иммунодиагностике, а в последнее десятилетие растет их роль в терапии рака и других заболеваний.

Заключение

Конечно, как и любая другая наука, биотехнология не стоит на месте. Она развивается, причем стремительно, несмотря на строгий контроль над всеми направлениями работ, результаты которых теоретически могут нанести вред человеку.

Быстрота развития биотехнологии обусловлена ее способностью помочь в решении множества проблем, с которыми в настоящее время сталкивается общество, в том числе и экономических. В число таких задач входят излечение тяжелых заболеваний, повышение эффективности и безопасности сельскохозяйственного производства, очистка окружающей среды от загрязнений, сохранение биологического разнообразия и многое другое

Медицине предстоит в недалеком будущем пережить революцию биомедицинских достижений. ХХI век станет веком биомедицинских технологий и позволит врачам еще более эффективно распознавать болезни и лечить пациентов, предотвращать заболевания и нивелировать их последствия.

Биомедицинские технологии гораздо полнее отвечают актуальным принципам медицинской помощи:

- предупреждение развития заболеваний;

- восстановление и сохранение здоровья человека;

- адаптация организма человека к изменяющимся условиям внешней среды.

Инновационные биомедицинские технологии будут эффективнее, чем методы и средства, которые мы имеем в своем распоряжении сегодня, однако они должны стать доступными для подавляющего большинства

Стремительный рост численности населения на планете оставляет за биотехнологиями будущее в обеспечении населения продукцией и медикаментами. Для поддержания и развития отечественной биотехнологической инфраструктуры необходимо разработать механизмы государственной поддержки инновационной деятельности в области биотехнологии. В том числе меры по привлечению в сферу биотехнологии частных инвестиций, включая механизмы частногосударственного партнерства, в целях создания биотехнологических производств для выпуска импортозамещающей продукции. Кроме того, необходимо формирование сети технопарков и технико-внедренческих зон в сфере биотехнологии. А также - разработка системы подготовки высококвалифицированных кадров для развивающейся отрасли.

Список литературы

1. Биотехнология лекарственных средств / под ред. В.А. Быкова, М.В. Данилина. - М.: Медбиоэкономика, 1991, стр.105-108.

3. Биотехнология: Принципы и применение / под редакцией И. Хиггинса, Д. Беста, Дж. Джойса; пер. с англ.- М.: Мир, 1998, стр.45-82.

6. Михайлов И.Б. Клиническая фармакология / И.Б. Михайлов. - СПб., 1998. - 473с.

7. Николаев В. Биотехнология - приоритетное направление // Фармацевтический вестник.

8. Промышленная технология лекарств: в 2-х томах / Под ред. В.И. Чуешова. - Харьков: НФАУ, МТК - книга, 2002.

9. Северин С.Е. Биохимия и медицина - новые подходы и достижения / С. Е. Северин. - М: Русский врач, 1998. - 94с

Биотехнология — одна из важнейших современных научных дисциплин, необходимых фармацевту, работающему как в лабораториях и цехах предприятий, выпускающих лекарственные средства, так и в аптеках и контрольных учреждениях. В каждом случае помимо знания общих основ этой науки (и сферы производства) обязательно также глубокое знакомство с теми ее разделами, которые будут наиболее близки профилю работы специалиста. Знакомство с биотехнологией необходимо всем выпускникам медицинских вузов независимо от их специализации: биотехнологические методы все более интенсивно проникают в практику диагностики, профилактики и лечения различных заболеваний, современные же концепции биотехнологии способствуют формированию мировоззрения человека, адекватного стремительному течению научно-технического прогресса в современном мире.

В общем смысле технология, как правило, связана с производством, целью которого является удовлетворение потребностей человеческого общества. Иногда высказывается мнение, что биотехнология — это осуществление природного процесса в искусственных, созданных человеком условиях. Однако в последнее десятилетие на основе биотехнологических методов в биореакторах (техногенных нишах) воспроизводятся не только природные, но и не протекающие в природе процессы с использованием ферментов (биокатализаторов — бесклеточных ферментных комплексов), одноклеточных и многоклеточных организмов.

Из этого и предыдущих определений следует, что биотехнология — и наука, и сфера производства. Она включает разделы энзимологии, промышленной микробиологии, прикладной биохимии, медицинской микробиологии и биохимии, а также разделы, связанные с конструированием заводского оборудования и созданием специализированных поточных линий.

2. Этапы развития биотехнологии

В развитии биотехнологии выделяют следующие периоды:

Последний специально отделяется от предыдущего, так как биотехнологи уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

1) Эмпирическая биотехнология неотделима от цивилизации, преимущественно как сфера производства (с древнейших времен — приготовление теста, получение молочнокислых продуктов, сыро-, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка растительных волокон). В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим аппаратом. Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.

2) Быстрое развитие биотехнологии как научной дисциплины с середины XIX в. было инициировано работами Л. Пастера (1822 — 1895).

Практическое значение этих исследований Л. Пастера сводится к требованию поддержания чистоты культуры, т.е. к проведению производственного процесса с индивидуальным, имеющим точные характеристики биообъектом.

Ослабленный патоген и животное, в организм которого он введен, могут рассматриваться как своеобразный биообъект, а получаемая вакцина - как биотехнологический препарат. Л. Пастер создал строго научные основы получения вакцин, тогда как замечательные достижения Э.Дженнера в борьбе с оспой были результатом освоения эмпирического опыта индийской медицины.

3) Современная биотехнология, основанная на достижениях молекулярной биологии, молекулярной генетики и биоорганической химии (на практическом воплощении этих достижений), выросла из биотехнологии Л.Пастера и, являясь также строго научной, отличается от последней прежде всего тем, что способна создавать и использовать в производстве неприродные биообъекты, что отражается как на производственном процессе в целом, так и на свойствах новых биотехнологических продуктов.

В 1980 г. Верховный суд США признал, что генно-инженерные микроорганизмы могут быть запатентованы, а развитие биотехнологических методов получило юридический статус.

В настоящее время интенсивно растет количество таких успешно применяемых в медицине биотехнологических продуктов, как рекомбинантные белки, вторичные метаболиты микроорганизмов и растений, а также полусинтетических лекарственных агентов, являющихся продуктами одновременно био- и оргсинтеза.

В последние годы родилась новая отрасль генетики - геномика, изучающая не отдельные гены, а целые геномы. Достижения молекулярной биологии и генной инженерии дали человеку возможность читать генетические тексты вначале вирусов, бактерий, дрожжевых грибков, многоклеточных животных. Например, знание геномной структуры патогенных бактерий очень важно при создании рационально сконструированных вакцин, для диагностики и других медицинских целей.

Апрель 2003 года ознаменовался сенсацией в биологии и медицине: Международный консорциум по составлению генетической карты человека (Центр геномного секвенирования: Вашингтонский университет и Сенгеровский центр в Кембридже) опубликовал заявление, что удалось полностью расшифровать геном человека. Титанический труд сотен исследователей из США, Великобритании, Германии, Франции, Японии и Китая занял более 10 лет и обошелся почти в 3 млрд долларов. При этом были разработаны высокоэффективные технологии и инструменты картирования, такие как коллекции клеток, в которых есть небольшие фрагменты каждой из хромосом или искусственные дрожжевые хромосомы, содержащие крупные фрагменты хромосом человека, бактериальные и фаговые векторы, позволяющие размножить (клонировать) фрагменты ДНК человека. Быстро прогрессировала техника секвенирования (например, многоканальный капиллярный электрофорез ускорил и удешевил расшифровку первичной структуры ДНК). Созданы компьютерные программы, позволяющие находить гены в расшифрованных участках ДНК.

3. История развития биотехнологии (даты, события).

1917 - введен термин биотехнология;

- произведен в промышленном масштабе пенициллин;

- показано, что генетический материал представляет собой ДНК;

1953 - установлена структура инсулина, расшифрована структура ДНК;

1961-1966 - расшифрован генетический код, оказавшийся универсальным для всех организмов;

1953 - 1976 - расшифрована структура ДНК, ее функции в сохранении и передаче организмом наследственной информации, способность ДНК организовываться в гены;

1963 - осуществлён синтез биополимеров по установленной структуре;

1970 - выделена первая рестрикционная эндонуклеаза;

- осуществлён синтез ДНК;

1972 - синтезирован полноразмерный ген транспортной РНК;

1975 - получены моноклональные антитела;

1976 - разработаны методы определения нуклеотидной последовательности ДНК;

- синтезированы фрагменты нуклеиновых кислот;

- разрешена к применению в Европе первая вакцина для животных, полученная по технологии рекомбинантных ДНК;

1983 - гибридные Ti - плазмиды применены для трансформации растений;

1994 - 1995 - опубликованы подробные генетические и физические карты хромосом человека;

1996 - ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд долларов;

1997 - клонировано млекопитающее из дифференцированной соматической клетки;

4. Новые технологии в биоформацевтике

Сегодня человечество совершенно справедливо полагает, что биотехнологические науки занимают приоритет в области современных высоких технологий. Сиквенирование геномов и валидация новых мишеней для действия лекарственных соединений является одним из перспективных направлений современной фармакологии. Учитывая, что появились новые принципиальные возможности для сиквенирования, встает вопрос о генетической паспортизации населения, когда каждому будет выдан его генетический паспорт, и человек будет решать проблемы своего здоровья. Важнейшим достижением прошлого века являются стволовые клетки, что стало возможным благодаря развитию всей эмбриологии и цитологии. Это позволило подойти к разработке путей создания искусственных органов, получать новые вещества, специфически влияющие на органы-мишени.

На современном этапе развития биотехнологии большое внимание уделяется разработке подходов к созданию новых процессов в медицинской биотехнологии. Это различные методы модификации микроорганизмов, растений и животных, в т.ч. культивирование растительных клеток как источника получения новых веществ; конструирование молекул, нанотехнологии, компьютерное моделирование, биокаталитическая трансформация веществ и т.д.

Так, например, существуют многочисленные разработки лекарственных препаратов, созданных на основе морских организмов. Использование морских природных соединений в качестве основы лекарств - весьма перспективный путь создания новых фармацевтических препаратов, особенно методами биотехнологии. Коллекция морских микроорганизмов ТИБОХ, из которых можно продуцировать биологически-активные соединения, содержит 800 штаммов бактерий, актиномицетов и грибов. Эти штаммы можно культивировать, что важно для решения проблемы сохранения биологического равновесия.

Таким образом, в получении лекарственных препаратов, производимых биотехнологическим способом, можно выделить как бы два пула — новые соединения, получаемые с помощью биотехнологических процессов, комбинаторной химии, и новые мишени, которые идентифицируются в процессе изучения геномов. Это дает возможность отбирать молекулы, обладающие новыми биологическими и физиологическими свойствами, которые и будут выполнять роль лекарств.

Прежде всего, обратимся к медицинской ветви биотехнологии. Рассматривая различные классы соединений, используемые в клинической практике, и получаемые методами биотехнологии, в первую очередь, необходимо назвать антибиотики - самый большой класс фармацевтических соединений, синтез которых осуществляется микробными клетками. К этому же классу относятся противогрибковые агенты, противоопухолевые лекарства и алкалоиды. Производство антибиотиков исчисляется тысячами тонн. Пенициллины, как известно, были выделены при выращивании грибов рода Penicillium. В 1945 г. из пробы морской воды была выделена плесень Cephalosporium acremonium, синтезирующую несколько антибиотиков; один из них, цефалоспорин С, оказался особенно эффективен против устойчивых к пенициллину грамположительных бактерий.

Из нескольких тысяч открытых антибиотиков львиная доля принадлежит актиномицетам. Среди актиномицетов наибольший вклад вносит род Streptomyces, один только вид Streptomyces griseus синтезирует более пятидесяти антибиотиков. Начиная с середины 1960-х гг. в связи с возросшей сложностью выделения эффективных антибиотиков и распространением устойчивости к наиболее широко применяемым соединениям у большого числа патогенных бактерий исследователи перешли от поиска новых антибиотиков к модификации структуры уже имеющихся. Они стремились повысить эффективность антибиотиков, найти защиту от инактивации ферментами устойчивых бактерий и улучшить фармакологические свойства препаратов. Антибиотики вырабатываются в результате совместного действия продуктов 10—30 генов, поэтому практически невозможно обнаружить отдельные спонтанные мутации, которые могли бы повысить выход антибиотика с нескольких миллиграммов на литр в штамме дикого типа до 20 г/л и более. Такие высокопродуктивные штаммы Penicillium chrysogenum или Streptomyces auerofaclens (продуценты пенициллина или тетрациклина) были получены в результате последовательных циклов мутагенеза и селекции. Определенные мутанты, так называемые идиотрофы, способны синтезировать только половину молекулы антибиотика, а среда должна быть обогащена другой ее половиной. Такая форма мутационного биосинтеза привела к открытию новых производных антибиотиков.

Число противоопухолевых веществ микробного происхождения довольно ограниченно. Блеомицин, выделенный из культур Streptomyces verticilliis, представляет собой гликопептид, который действует, разрывая ДНК опухолевых клеток и нарушая репликацию ДНК и РНК. Другая группа противоопухолевых агентов создана на основе комбинации аминогликозидной единицы и молекулы антрациклина. Недостатком обоих соединений является их потенциальная опасность для сердца.

Антибиотики используются грибами и актиномицетами в конкурентной борьбе в естественной среде обитания. Человек применил эти соединения для терапии инфекционных и онкологических заболеваний. Это явилось своеобразным толчком эволюционных преобразований в микробной среде, стали возникать устойчивые штаммы бактерий. В связи с этим вновь возникла проблема создания нового поколения более эффективных антибиотиков. В настоящее время протокол лечения инфекционной и хирургической патологии обязательно включает антибиотики. Но, имея неоспоримые преимущества, антибиотики оказывают на организм человека и негативное влияние: нарушается микрофлора желудочно-кишечного тракта, возможны осложнения в функционировании почек и печени, подавляется работа иммунной системы. Поэтому современные схемы лечения являются комплексными и направлены на поддержание адаптационных возможностей человека.

Другим важным классом лекарственных соединений являются генно инженерные ферменты, соответствующие ферментам человека. По сравнению с ферментами, которые получают из природного сырья, они обладают рядом преимуществ: низкой антигенностью, высокой специфичностью фармакологического действия, отсутствием контаминирующих инфекционных агентов. Генно-инженерные технологии позволяют легко увеличивать промышленное производство ферментов. Ферменты находят все более широкое применение как биокатализаторы в фармацевтическом производстве.

Направленная модификация с помощью методов генной инженерии открывает возможности трансформации структуры ферментов таким образом, что они приобретают качественно новые свойства. Так, особый интерес в мире сейчас представляет возможность перехода от пенициллинов к цефалоспоринам с помощью генно-инженерного фермента экспандазы, благодаря чему унифицируется биотехнологическая часть получения антибиотиков. Далее с помощью других биокаталитических процессов и совмещения их с химическими можно производить класс новых антибиотиков для борьбы с инфекциями.

Биокаталитические подходы открывают большое поле для различных вариантов построения новых фармацевтических процессов. В частности, использование генно-инженерных ферментов позволяет получить оптически активные изомеры соединений, которые составляют более 70% всех лекарств. При этом период окупаемости биокаталитических процессов значительно короче по сравнению с химическим синтезом, а по энергозатратам и капиталовложениям они тоже имеют большие перспективы. Техноинженерные ферменты широко используются для создания диагностических тест-систем в биохимическом, иммуноферментном и ДНК-анализах.

Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления процессов различного назначения. В целом, биотехнология представляет собой систему приемов, позволяющих получать промышленным способом ценные продукты за счет использования процессов жизнедеятельности живых организмов.

В фармацевтической промышленности биотехнологии применяются для производства антибиотиков, иммунобиологических препаратов, генно-инженерных лечебно-профилактических препаратов, для производства энзимов, биологически активных веществ и других медицинских препаратов. Важным направлением биотехнологий в медицине является использование биотехнологий для реконструкции тканей и органов человека с использованием стволовых клеток.

Одним из перспективных направлений является использование нанотехнологий в медицинских целях, создание новых носителей и средств целевой доставки лекарственных препаратов.

Новые биологические технологии используются в диагностике и лечении сердечно-сосудистых, онкологических, аллергических и эндокринных заболеваниях.

Ежегодный прирост мирового рынка биотехнологической продукции составляет 7-10%. Уже сегодня использование биотехнологических разработок позволяет решать многие проблемы диагностики и лечения особо опасных заболеваний, недостаточного или несбалансированного питания, повышения качества питьевой воды, обеззараживания опасных для человека и окружающей среды отходов.

Характерен рост числа специализированных периодических изданий по биотехнологии, выпускаемых в разных странах, международных и региональных биотехнологических конгрессов и конференций.

3. Албертс Б., Брэй Д., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир, 1994 г., 444 с.

4. Бейли Дж., Оллис Д. Основы биохимической инженерии. В 2-х томах. М.: Мир, 1989 г.

5. Биотехнология: Учебное пособие для ВУЗов /Под ред. Н.С. Егорова, В.Д. Самуилова.- М.: Высшая школа, 1987.

6. Грачева И.М., Кривова А.Ю. Технология ферментных препаратов. М.: Элевар, 2000 г., 512 с.

7. Манаков М.Н., Победимский Д.Г. Теоретические основы технологии микробиологических производств. М.: Агропромиздат, 1990 г., 272 с.

8. Матвеев В.Е. Научные основы микробиологической технологии. М.: Агропромиздат, 1985 г., 224 с.

9. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. – Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.


Введение

В конце марта в Бийске, который должен стать центром фармкластера, состоялось совещание с участием губернатора Александра Карлина, посвященное ходу реализации проекта.

Участники совещания отметили, что создание биофармацевтического кластера будет во многом содействовать возрождению отечественной фармацевтики. Регион выступит производителем инновационных лекарств, субстанций, качественных недорогих препаратов и биологически активных добавок. Конкурентными преимуществами будущего кластера станут биофармацевтика и биопарафармацевтика - направления, основанные на использовании уникальных природных ресурсов Алтая. В настоящее время уже разработаны некоторые проекты, которые ожидают своей реализации.

Рассказы об этом амбициозном проекте выглядят насколько убедительно, настолько и малопонятно. Попробуем разобраться, о чем идет речь. Сначала, как говорят ученые, определимся в терминах.

Глава 1. Биофармацевтика и биопарафармацевтика

- Биофармацевтика - это получение нового поколения лекарственных препаратов, в основе которых лежат биологические молекулы, участвующие в регуляции тех или иных процессов в человеческом организме - и в нормальном состоянии, и при патологиях, - говорит заместитель директора по науке НИИ молекулярной медицины Московской медицинской академии им. И.М. Сеченова, профессор Всеволод КИСЕЛЕВ. - Первым классическим продуктом биофармацевтики является инсулин. Следующий успех в этой области - получение на основе природного белка альфа-интерферона - препарата с отчетливой противовирусной активностью. Если говорить об отечественном лекарственном бизнесе в целом, то перед ним по большому счету стоят две задачи. Первая - сделать портфель качественных российских дженериков, то есть внедрить в массовое производство мировые достижения в области биофармацевтики. Вторая задача связана с получением абсолютно новых лекарственных препаратов, и решить ее будет намного сложнее. Дело в том, что отечественная биофармацевтика серьезно отстает в технологическом плане. Основная проблема в том, что людей, обладающих достаточной квалификацией, в стране остались единицы. Сегодня практически некому, с одной стороны, генерировать идеи новых подходов к созданию лекарственных средств, а с другой - решать технологические задачи, возникающие на каждом этапе продвижения к лекарству.

Биопарафармацевтика - это разработка и производство биологически активных добавок к пище (БАДов), применяемых для профилактики, вспомогательной терапии и поддержки в физиологических границах функциональной активности органов и систем.

Глава 2. Что такое инновационное лекарство

- Настоящее инновационное лекарство - это принципиально новый препарат, который лечит болезнь по совершенно иному механизму, чем лекарства-предшественники. Именно такие революционные препараты имеют коммерческий успех на современном рынке. За последние годы фармацевтическая медицина сделала большой шаг вперед. Прежние традиционные препараты, такие, как аспирин, лечили только симптомы болезни, и это была химическая эра фармацевтики. В последние годы гораздо больше внимания исследователи стали уделять влиянию биологических соединений на рецепторы, с помощью чего можно по-настоящему бороться с причиной заболевания. Так сегодня лечат повышенное давление, болезни сердца и желудочно-кишечного тракта. Особенно биопрепараты успешны при лечении рака. К современной фармацевтике подключилась генетика, изучающая в числе прочего и генные отклонения. По ним фармацевты устанавливают, какова реакция человеческого индивидуума на конкретное лекарство, как классическое, так и новое. Так гораздо конкретнее, чем прежде, разрабатывается схема лечения больного.

Достаточно перспективно сегодня разрабатывать и продвигать продукты фармакогенетики. Во-первых, ими не лечили прежде. Во-вторых, лечение ряда заболеваний во главе с болезнью Альцгеймера традиционными препаратами не давало положительного результата. Кроме того, фармацевтам всего мира нужно форсировать разработку лекарств против рака. Определенные подвижки есть, но люди продолжают страдать от злокачественных заболеваний, а значит, нужно продолжать искать от них панацею. Третья область перспективных исследований - это диабет, поскольку пока нет препарата, который бы боролся с первопричиной болезни. Ведь инсулин только гасит ее последствия.

Цифры, прямо скажем, впечатляют. 15 лет и 500 млн. - 1 млрд. долларов на один препарат. По плечам ли это Алтайскому краю? Где найти таких инвесторов?

Глава 3. Два слова о дженериках

Теперь о качественных недорогих препаратах. Речь, по всей видимости, идет о дженериках, отечественных лекарствах-аналогах с тем же действующим веществом, что и уже имеющиеся на рынке импортные. По оценкам специалистов, дженерики обходятся на порядки дешевле. Даже если препараты только таблетировать и упаковывать в России, получается ощутимая экономия. Стоимость субстанции составляет 20% стоимости таблетки, а затраты на производство и реализацию - еще 30 - 40%. Следовательно 40 - 50% от потребительской цены таблетки - это прибыль производителя. Специалисты считают, что производство дженериков - задача не очень сложная.

Глава 4. Три слова о БАДах

Особо нужно сказать о БАДах, производство которых также является частью концепции биофармацевтического кластера.

Думается, поведение потребителей БАДов определяется иррациональной стороной человеческого сознания. Склонность многих людей к вере в чудо и относительная дешевизна БАДов плюс интенсивная реклама сделали их столь популярными.

Заключение

Возрастная категория сайта 18 +

Читайте также: