Реферат на тему динамические модели

Обновлено: 07.05.2024

Она описывает поведение системы — взаимодействие между различными ее компонентами, взаимодействие системы с ее окружением и поведение самих компонент.

На начальных этапах разработки можно придерживаться одной из двух стратегий. Первая: сначала специфицировать классы системы, а затем объекты и сценарии взаимодействия. Она будет использоваться с большей вероятностью, если разработчикам хорошо знакома предметная область. Возможна и другая стратегия — в том случае, если на этапе анализа приходится изучать незнакомую предметную область. Основное назначение модели объектов — описание различных ролей, которые могут играть экземпляры классов системы. Каждой функции из функциональной модели Real можно сопоставить диаграмму объектов, назначение которой — описать типичную ”конфигурацию” объектов, задействованных в осуществлении данной функции, а также описать связи между ними. При использовании объектно-ориентированного подхода выполнение функций системы реализуется как совместная деятельность нескольких объектов. Основными ее элементами являются объекты-роли и отношения между ними.

Построение сценариев для функции начинается с определения ”прямых веток”, т.е. идеального исполнения функции. При этом из рассмотрения исключаются граничные, ошибочные ситуации, частные случаи и т.п., для них впоследствии тоже строятся сценарии либо они специфицируются другими средствами.

Поведенческая модель описывает поведение составляющих систему классов с помощью расширенного конечного автомата и представлена в Real двумя нотациями: в стиле STD и SDL. Фактически, поведенческая модель определяет процессы, протекающие в системе в терминах состояний, событий и действий. В дальнейшем будем говорить о поведенческой модели отдельного класса. Построение такой модели можно начать с анализа всех сценариев, в которых участвуют объекты-роли данного класса. Проектирование поведения системы (поведения ее классов) на основе сценариев, а не напрямую, позволяет в более наглядном виде представлять общие процессы, протекающие в программном обеспечении, и, отталкиваясь от них, конструировать внутреннее поведение участников этих процессов.

2.4.4. Статическая модель.

После того, как созданы основные сценарии системы, можно переходить к спецификации их участников — объектов, т.е. к построению модели классов. Эта модель классов строится на протяжении всего процесса разработки программного обеспечения.

В Real в модели классов могут быть следующие виды сущностей:

• класс — описание группы однородных объектов;

• шаблон — параметризованный класс с возможностью получения из него обычного класса подстановкой значений параметров;

• интерфейс — описание правил взаимодействия классов;

• представление — аналог конструкции VIEW языка SQL.

Модель классов Real реализует достаточно полное подмножество модели классов UML. Кроме того, в ней есть интерфейсы и порты из ROOM, при этом последние существенно расширены. Модель классов Real содержит также средства моделирования схемы баз данных.

3. Реализация прототипа системы реального времени.

3.1. Жизненный цикл разработки.

Разработка состоит из двух основных частей: планировщика задач РВ и прикладного приложения. Прямых зависимостей между этапами проектирования данных систем нет. Однако, существуют логические связи. Приложение строится на основе созданного планировщика, что предполагает знание о предоставляемых им интерфейсах. Планировщик, в свою очередь, строится с учетом особенностей приложения, которое является приложением контроля, т.е. ориентированным на обработку внешних стохастических событий.

На диаграмме 1 представлены этапы разработки программной системы. Выполненные в рамках данной работы, выделены чёрным цветом, предполагаемые к исполнению в дальнейшем – серым.

Для планировщика выбрана V – образная модель жизненного цикла. Она применяется для приложений, при проектировании которых разработчикам приходится исследовать новую проблемную область. Отличительной особенностью этой модели жизненного цикла является наличие обратных связей уже на этапах тестирования и верификации. Предполагается, что это позволит создать более гибкую в плане предоставляемых возможностей систему.

Для приложения-протокола выбрана каскадная модель жизненного цикла. Она применяется для приложений в хорошо исследованных областях знаний. В данном случае системные требования на протокол уже описаны в технической документации.

В данной работе будут выполнены этапы создания системных и функциональных требований к планировщику, а также определение его архитектуры. Для протокола будет выполнена функциональная модель и модель классов.

3.2. Планировщик заданий.

3.2.1. Выбор алгоритма планирования.

3.2.1.1. Виды требований РВ, поддерживаемые планировщиком.

Во многих системах можно заранее установить множество задач, которые будут использоваться, и предположить их характеристики работы в худшем случае. При этом можно либо провести фиксированное планирование, которое будет удовлетворять требованиям системы, либо определить предварительные приоритеты задач.

Следующие ограничения будет возможно задавать с помощью создаваемого планировщика. Они основаны на временном поведении задач.

Раздел: Информатика, программирование
Количество знаков с пробелами: 104513
Количество таблиц: 2
Количество изображений: 0

1. Введение ……………………………………………………………………………………………2
2. Преимущества системно-динамического моделирования…………….5
3. Анализ систем с обратной связью…………………………………………………….8
4. Имитационное моделирование………………………………………………………..9
5. Динамическое моделирование………………………………………………………..15
6. Список использованной литературы………………………………………………..18

Анализлитературы, в которой применяется термин "модель", показывает, что этот термин употребляется в двух значениях: 1) в значении теории и 2) в значении объекта (или процесса как частного случая объекта), который этой теорией отражается. Т.е., с одной стороны, модель носит абстрагирующий по отношению к объекту характер (абстрактная модель), а с другой конкретизирующий (конкретная модель). Последовательнорассматривая основные значения термина "модель", автор монографии "Моделирование и философия" В.А. Штофф предлагает следующее определение: "Под моделью понимается такая мысленно представляемая или материально реализованная система, которая, отображая и воспроизводя объект, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте". Отвлекаясь от целевой компоненты понятия "модель" иимея в виду школьную математику, в которой "модель" могла бы быть не только средством, но и объектом изучения, дадим следующее определение модели: "Отвлекаясь (абстрагируясь) от некоторых свойств объекта, получаем абстрактную модель. Приписывая объекту дополнительные свойства (материал моделирования), получаем конкретную модель". А сами процессы отвлечения (абстрагирования) и приписывания(оснащения) назовем процессом моделирования..

Системная динамика
Системная динамика представляет собой совокупность принципов и методов анализа динамических управляемых систем с обратной связью и их применения для решения производственных, организационных и социально-экономических задач. В системах поддержки принятия решений применение системной динамики позволяет объединить несколько функциональныхпространств организации в одно целое и обеспечить организационный и количественный базис для выработки более эффективной управленческой политики. Три достижения, обеспеченные в основном благодаря разработкам в области вооружений, сделали возможным применение системной динамики:
1. Успехи в проектировании и анализе систем управления с обратной связью.
2. Прогресс в методах компьютерного моделирования и развитиевычислительной техники.
3. Накопленный опыт в моделировании процесса принятия решений.
На первое место по своей важности следует поставить осознание необходимости развития динамических информационных систем с обратной связью, которые появились уже после того, как подобные электромеханические, а затем и электронные системы стали широко применяться на практике.
Другим основным достижением,которое легло в основу системной динамики, является компьютерное моделирование. Уже много лет моделирование – важнейшая составная часть инженерного проектирования. Применение методов имитационного моделирования в технике, предшествующее созданию опытных образцов, обусловило их распространение на проблемы планирования и управления в организационных системах. С появлением надежных и высокопроизводительныхперсональных компьютеров моделирование сложных организаций стало практической задачей. Ограничения на размерность и вид математических моделей сейчас практически сняты.
Наконец, наряду с этими достижениями, пришло более глубокое понимание того, как организован процесс принятия решений человеком. Расширение наших знаний в этой области было вызвано потребностями военных исследований для автоматического иавтоматизированного управления оружием. Успех в этой области убедил в том, что человеческое мышление и действия доступны не только тщательному изучению, пониманию и произведению, но даже и улучшению.
Философия системной динамики базируется на предположении, что поведение (или история развития во времени) организации главным образом определяется ее.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Кафедра информатики и вычислительной техники

Моделирование, виды моделей. Требования к построению моделей

Организация информационного взаимодействия в информационном образовательном пространстве педагогического вуза

студентка 4 курса группы МДМ-216 ______________________ А.А.Буянова

канд. физ. мат. наук, доцент ________________________ Т. В. Кормилицына

Модель - очень широкое понятие, включающее в себя множество способов представления изучаемой реальности. Различают модели материальные (натурные) и идеальные (абстрактные). Материальные модели основываются на чем-то объективном, существующем независимо от человеческого сознания (каких-либо телах или процессах). Материальные модели делят на физические и аналоговые, основанные на процессах, аналогичных в каком-то отношении изучаемому. Между физическими и аналоговыми моделями можно провести границу и такая классификация моделей будет носить условный характер.

Еще более сложную картину представляют идеальные модели, неразрывным образом связанные с человеческим мышлением, воображением, восприятием. Среди идеальных моделей можно выделить интуитивные модели, к которым относятся, но единого подхода к классификации остальных видов идеальных моделей нет. Такой подход является не вполне оправданным, так как он переносит информационную природу познания на суть используемых в процессе моделей - при этом любая модель является информационной. Более продуктивным представляется такой подход к классификации идеальных моделей:

1. Вербальные (текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей являются милицейский протокол, правила дорожного движения, настоящий учебник).

2. Математические модели - очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), широко использующих те или иные математические методы. Например, математическая модель звезды. Эта модель будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в недрах звезды. Математической моделью другого рода являются, например, математические соотношения, позволяющие рассчитать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия.

3. Информационные модели - класс знаковых моделей, описывающих информационные процессы (возникновение, передачу, преобразование и использование информации) в системах самой разнообразной природы.

Граница между вербальными, математическими и информационными моделями может быть проведена весьма условно; возможно, информационные модели следовало бы считать подклассом математических моделей. В рамках информатики как самостоятельной науки, отдельной от математики, физики, лингвистики и других наук, выделение класса информационных моделей является целесообразным. Информатика имеет самое непосредственное отношение и к математическим моделям, поскольку они являются основой применения компьютера при решении задач различной природы: математическая модель исследуемого процесса или явления на определенной стадии исследования преобразуется в компьютерную (вычислительную) модель, которая затем превращается в алгоритм и компьютерную программу.

Модель - это искусственно созданный объект, дающий упрощенное представление о реальном объекте, процессе или явлении, отражающий существенные стороны изучаемого объекта с точки зрения цели моделирования. Моделирование - это построение моделей, предназначенных для изучения и исследования объектов, процессов или явлений.

Объект, для которого создается модель, называют оригиналом или прототипом. Любая модель не является абсолютной копией своего оригинала, она лишь отражает некоторые его качества и свойства, наиболее существенные для выбранной цели исследования. При создании модели всегда присутствуют определенные допущения и гипотезы.

Системный подход позволяет создавать полноценные модели. Особенности системного подхода заключаются в следующем. Изучаемый объект рассматривается как система, описание и исследование элементов которой не выступает как сама цель, а выполняется с учетом их места (наличие подзадач). В целом объект не отделяется от условий его существования и функционирования. Объект рассматривается как составная часть чего-то целого (сам является подзадачей). Один и тот же исследуемый элемент рассматривается как обладающий разными характеристиками, функциями и даже принципами построения. При системном подходе на первое место выступают не только причинные объяснения функционирования объекта, но и целесообразность включения его в состав других элементов. Допускается возможность наличия у объекта множества индивидуальных характеристик и степеней свободы. Альтернативы решения задач сравниваются в первую очередь по критерию "стоимость-эффективность".

Создание универсальных моделей - это следствие использование системного подхода. Моделирование (эксперимент) может быть незаменимо. С помощью компьютера возможен расчет интересующих исследователей параметров. Моделирование - исследование явлений, процессов или систем объектов путем построения и изучения их моделей - это основной способ научного познания. В информатике данный способ называется вычислительный эксперимент и основывается он на трех основных понятиях: модель - алгоритм - программа. Использование компьютера при моделировании возможно по трем направлениям:

1. Вычислительное - прямые расчеты по программе.

2. Инструментальное - построение базы знаний, для преобразования ее в алгоритм и программу.

3. Диалоговое - поддержание интерфейса между исследователем и компьютером.

Модель - общенаучное понятие, означающее как идеальный, так и физический объект анализа. Важным классом идеальных моделей является математическая модель - в ней изучаемое явление или процесс представлены в виде абстрактных объектов или наиболее общих математических закономерностей, выражающих либо законы природы, либо внутренние свойства самих математических объектов, либо правила логических рассуждений.

Границы между моделями различных типов или классов, а также отнесение модели к какому-то типу или классу чаще всего условны. Наиболее распространенные признаки, по которым классифицируются модели:

По целям использования выделяются модели учебные, опытные, имитационные, игровые, научно-технические.

По области знаний выделяются модели биологические, экономические, исторические, социологические и т.д.

По фактору времени разделяются модели динамические и статические. Статическая модель отражает строение и параметры объекта, поэтому ее называют также структурной. Она описывает объект в определенный момент времени, дает срез информации о нем. Динамическая модель отражает процесс функционирования объекта или изменения и развития процесса во времени.

Любая модель имеет конкретный вид, форму или способ представления, она всегда из чего-то и как-то сделана или представлена и описана. В этом классе, прежде всего, модели рассматриваются как материальные и нематериальные.

Материальные модели - это материальные копии объектов моделирования. Они всегда имеют реальное воплощение, воспроизводят внешние свойства или внутреннее строение, либо действия объекта-оригинала. Материальное моделирование использует экспериментальный (опытный) метод познания.

Нематериальное моделирование использует теоретический метод познания. По-другому его называют абстрактным, идеальным. Абстрактные модели, в свою очередь, делятся на воображаемые и информационные.

Информационная модель - это совокупность информации об объекте, описывающая свойства и состояние объекта, процесса или явления, а также связи и отношения с окружающим миром. Информационные модели представляют объекты в виде, словесных описаний, текстов, рисунков, таблиц, схем, чертежей, формул и т.д. Информационную модель нельзя потрогать, у нее нет материального воплощения, она строится только на информации. Ее можно выразить на языке описания (знаковая модель) или языке представления (наглядная модель).Одна и та же модель одновременно относится к разным классам деления. Например, программы, имитирующие движение тел. Такие программы используются на уроках физики (область знания) с целями обучения (цель использования). В то же время они являются динамическими, так как учитывают положение тела в разные моменты времени, и алгоритмическими по способу реализации.

Форма представления информационной модели зависит от способа кодирования (алфавита) и материального носителя.

Воображаемое (мысленное или интуитивное) моделирование - это мысленное представление об объекте. Такие модели формируются в воображении человека и сопутствуют его сознательной деятельности. Они всегда предшествуют созданию материального объекта, материальной и информационной модели, являясь одним из этапов творческого процесса.

Наглядное (выражено на языке представления) моделирование - это выражение свойств оригинала с помощью образов. Например, рисунки, художественные полотна, фотографии, кинофильмы. При научном моделировании понятия часто кодируются рисунками - иконическое моделирование. Сюда же относятся геометрические модели - информационные модели, представленные средствами графики.

Образно-знаковое моделирование использует знаковые образы какого-либо вида: схемы, графы, чертежи, графики, планы, карты. Например, географическая карта, план квартиры, родословное дерево, блок-схема алгоритма. К этой группе относятся структурные информационные модели, создаваемые для наглядного изображения составных частей и связей объектов. Наиболее простые и распространенные информационные структуры - это таблицы, схемы, графы, блок-схемы, деревья.

Знаковое (символическое выражено на языке описания) моделирование использует алфавиты формальных языков: условные знаки, специальные символы, буквы, цифры и предусматривает совокупность правил оперирования с этими знаками. Примеры: специальные языковые системы, физические или химические формулы, математические выражения и формулы, нотная запись и т. д. Программа, записанная по правилам языка программирования, является знаковой моделью.

Одним из наиболее распространенных формальных языков является алгебраический язык формул в математике, который позволяет описывать функциональные зависимости между величинами. Составление математической модели во многих задачах моделирования хоть и промежуточная, но очень существенная стадия.

Математическая модель - способ представления информационной модели, отображающий связь различных параметров объекта через математические формулы и понятия. В тех случаях, когда моделирование ориентировано на исследование моделей с помощью компьютера, одним из его этапов является разработка компьютерной модели.

Компьютерная модель - это созданный за счет ресурсов компьютера виртуальный образ, качественно и количественно отражающий внутренние свойства и связи моделируемого объекта, иногда передающий и его внешние характеристики. Компьютерная модель представляет собой материальную модель, воспроизводящую внешний вид, строение или действие моделируемого объекта посредством электромагнитных сигналов. Разработке компьютерной модели предшествуют мысленные, вербальные, структурные, математические и алгоритмические модели.

Мы говорили об информационных моделях и об одном из видов программного обеспечения для работы с ними. Вы помните, что СУБД позволяет хранить большое количество информации и находить среди нее нужную. Однако, зачастую требуется не просто хранить некоторую информацию (знания об объектах), но и динамической39. Чаще всего правилами, описывающими функционирование системы являются математические формулы.

В этом случае модель называют математической. Одним из средств для построения компьютерных математических моделей являются электронные таблицы (или табличные процессоры). Как ясно из названия, электронная таблица предназначена для табличных расчетов. Представление информации в ней похоже на реляционную базу данных. Но, в отличие от таблицы в базе данных, здесь строки совсем не обязательно должны быть однотипными (на рисунке 1-я и 151-я строки отличаются от остальных содержащих информацию строк).


В каждую клетку таблицы можно занести число или текст (вспомните про типы данных!), а можно — формулу. В этом случае компьютер выполнит заданные формулой действия, а на экране покажет результат.

Обычно в электронной таблице одинаковые действия нужно выполнять с большим числом (нередко, с сотнями) строк таблицы. Неужели приходится по многу раз набирать почти одинаковые формулы? Конечно нет. В табличных процессорах предусмотрено автоматическое заполнение ячеек.

Но вот мы создали математическую модель, занесли данные в таблицу, выполнили расчеты — и получили большое количество чисел. Хорошо бы представить результаты вычислений понагляднее. Тут нам тоже поможет табличный процессор. Оказывается, он умеет строить диаграммы.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Диаграмма40 — условное графическое изображение числовых величин или их соотношений. Рассмотрим три их разновидности: столбчатую, линейную и круговую диаграммы.

Табличные процессоры позволяют строить не только несколько разновидностей диаграмм, но и графики (график, в отличие от диаграммы, изображает зависимость одной величины от другой).

Statike (греч.) — равновесие, неподвижность; dynamikos (греч.) — сильный, действующий, движущийся.

Diagramma (греч.) — рисунок.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Введение
В развитии различных областей человеческой деятельности математика оказывала и оказывает существенное влияние. Современное развитие науки характеризуется потребностью изучения всевозможных сложных процессов и явлений. Происходит значительное увеличение темпов математизации и расширение ее области действия. Теории математики широко применяются в других науках, казалось бы совершенно от нее далеких – лингвистике, юриспруденции. Это вызвано естественным процессом развития научного знания, который потребовал привлечения нового и более совершенного математического аппарата, проявлением новых разделов математики, а также кибернетики, вычислительной техники и так далее, что значительно увеличило возможности ее применения.
Математическое моделирование по временным рядам – бурно развивающееся направление математической статистики и нелинейной динамики. Оно возникло с аппроксимации множества экспериментальных точек на плоскости гладкой линией. В настоящее время эмпирические модели имеют вид сложных дифференциальных и разностных уравнений и способны описывать даже нелинейные колебательно-волновые феномены.
Использование современных компьютеров с их большими объемами памяти и скоростями обработки данных и современными математическими пакетами в значительной степени облегчает получение модельных систем нелинейных уравнений, обработку сложных зашумленных сигналов, типичных для реальных объектов и ситуаций. Практические приложения эмпирических моделей весьма разнообразны – от прогнозов будущего до технической и медицинской диагностики, но процедуры их получения формализовать чрезвычайно сложно[4].
В реферате предпринята попытка рассмотреть исторические и философские аспекты возникновения и развития методов реконструкции математических моделей динамических систем. В первом параграфе рассмотрено возникновение теории динамических систем, понятий динамическая систем, вычислительный эксперимент, математическая модель и хаос. Во втором параграфе рассматривается развитие методов реконструкции математических моделей динамических систем, применения компьютеров для проведения вычислительных экспериментов.

Читайте также: