Реферат на тему биохимический метод

Обновлено: 04.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное автономное образовательное учреждение

среднего профессионального образования Республики Крым

Методическая разработка лекции № 3

I . Методический блок

Тема лекции: Задачи, разделы биохимии, функции, тактики, классификации биохимических методов исследования.

Дисциплина: ПМ 03 Проведение лабораторных биохимических исследований

Специальность: 31.02.03 Лабораторная диагностика

Курс: II Семестр : IV Количество часов: 2

Преподаватель: Людмила Сергеевна Мамыкина

Цель лекции: Невозможно представить в настоящее время практически ни одной естественной науки, которая не использовала бы достижения биохимии. Биологическая химия имеет и чисто научное (теоретическое) и, что наиболее важно, практическое (прикладное) значение. Исходя из этого, конечно, наиболее прикладной характер имеет биохимия в медицине. Современные врачи проводят биохимические исследования крови, мочи, желудочного сока, спинномозговой жидкости и др. Имея результаты только биохимических исследований можно поставить диагнозы множества заболеваний (гепатита, почечной недостаточности, анемии, мочекаменной болезни, сахарного диабета и многих других). Ориентируясь на динамику изменения биохимических показателей, врачи назначают и корректируют дозы лекарственных средств и добиваются выздоровления.

1. Учебные цели:

Студент должен знать:

Задачи биохимии, значение, разделы функции биохимии, принципы и значение лабораторных методов диагностики заболеваний.

2. Развивающие цели: развивать у студентов умение - логического мышления; обобщать полученные знания; проводить анализ и сравнение, делать необходимые выводы; умение владеть собой, выдержки, самообладания.

3. Воспитательные цели: Привитие любви к избранной профессии, развитие профессионального кругозора, творческого подхода к учебной деятельности, формирование необходимых коммуникативных качеств, связи с особенностями выбранной профессии.

4. Общие компетенции:

Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития.

Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности.

Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.

Ставить цели, мотивировать деятельность подчиненных, организовывать и контролировать их работу с принятием на себя ответственности за результат выполнения заданий.

Быть готовым к смене технологий в профессиональной деятельности.

Межпредметные связи:

Организационная структура лекции

Основные этапы лекции и их содержание

Цели в уровнях усвоения

Тип лекции, методы и способы обучения

Дидактическое обеспечение,

наглядность,

Подготовительный этап.

1. Организационный момент.

2. Формулирование темы, обоснование актуальности.

3. Определение учебных

целей и мотивация учебной деятельности студентов.

Основной этап

План изучения лекционного материала:

1. Биохимия как наука

2. Разделы биохимии

3. Задачи современной биохимии.

4. Классификация биохимических методов исследования

5. Функции биохимических исследований.

6. Тактика биохимического обследования

Объяснения с элементами беседы

Объяснения с элементами диалога

Объяснения с элементами беседы

Заключительный этап

1. Резюме лекции.

2. Ответы на заданные вопросы

3. Задание для самоподготовки

Работа с конспектами, учебной и специальной литературой

II . Информационный блок

1. БИОХИМИЯ КАК НАУКА

Биохимия – это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах, а также связи этих превращений с деятельностью органов и тканей.

Таким образом, биохимия состоит как бы из трех частей:

1) статическая биохимия (это анализ химического состава живых организмов);

2) динамическая биохимия (изучает совокупность превращения веществ и энергии в организме);

3) функциональная биохимия (исследует процессы, лежащие в основе различных проявлений жизнедеятельности).

Все указанные разделы неразрывно связаны друг с другом и являются частями одной и той же науки – современной биохимии. Возникнув на стыке смежных дисциплин, таких как органическая и физическая химия, биохимия в то же время не стала каким-то механическим объединением этих дисциплин, несмотря на их некоторую общность. Перед биохимией и смежными с ней науками стоят совершенно различные задачи.

Главным для биохимии является выяснение функционального, то есть биологического назначения всех химических веществ и физико-химических процессов в живом организме, а также механизм нарушения этих функций при разных заболеваниях.

2. РАЗДЕЛЫ БИОХИМИИ

В зависимости от объекта исследования или направления исследования биохимию подразделяют на такие разделы как:

Ø общая биохимия которая изучает общие вопросы химических основ жизнедеятельности различных организмов

Ø бионеорганическая химия изучающая роль и значение в процессе жизнедеятельности комплексов неорганических ионов с органическими соединениями

Ø биоорганическая химия исследующая физико-химические основы функционирования живых систем

Ø биохимия человека и животных, (растений, микроорганизмов)

Ø техническая биохимия, изучающая состав пищевых продуктов, химическую основу технологических процессов их хранения, переработки и т.д.

Ø сравнительная (эволюционная) биохимия которая исследует биохимические процессы в сравнительном (эволюционном) аспекте

Ø радиационная биохимия изучает биохимические основы радиационного повреждения и способы его профилактики в живой организме.

3. ЗАДАЧИ СОВРЕМЕННОЙ БИОХИМИИ

Биологическая химия решает большое число задач. Поскольку в основе жизнедеятельности здорового организма лежит сложнейшая совокупность биохимических реакций, то при патологии нормальное течение биохимических реакций, как правило, нарушается. В связи с чем возникает необходимость исследовать состояние обмена веществ не только в норме, но и при патологии. Задача врача заключается в том, чтобы предотвратить развитие патологического процесса в организме и ее решение возможно лишь при своевременной и правильной диагностике, назначении адекватного лечения, которое возможно лишь в том случае, если врач понимает сущность происходящего в организме. При назначении в процессе лечения различных медикаментов, которые включаются в метаболические процессы, необходимо четко представлять механизм их действия и предвидеть возможные последствия этого лечения.

Познание молекулярных механизмов физиологических, генетических и иммунологических процессов жизнедеятельности в норме и при патологии и действии на организм различных факторов.

Совершенствование методов профилактики, диагностики и лечения заболеваний.

Разработка новых лекарственных средств, нормализующих обменные процессы.

Разработка научных основ, рационального, сбалансированного питания, здорового образа жизни.

Современная биохимия решает следующие задачи:

1. Биотехнологическую, т.е. создание фармацевтических препаратов (гормонов, ферментов), регуляторов роста растений, средств борьбы с вредителями, пищевых добавок.

2. Проводит разработку новых методов и средств диагностики и лечения наследственных заболеваний, канцерогенеза, природы онкогенов и онкобелков.

3. Проводит разработку методов генной и клеточной инженерии для получения принципиально новых пород животных и форм растений с более ценными признаками.

4. Изучает молекулярные основы памяти, психики, биоэнергетики, питания и целый ряд других задач.

4. КЛАССИФИКАЦИЯ БИОХИМИЧЕСКИХ

МЕТОДОВ ИССЛЕДОВАНИЯ

Методы используемые в биохимии: химические; физические; ферментативные методы – есть только в биохимии; молекулярно-генетические и другие. Материал для биохимических исследований - кровь, моча, желудочный сок, спинномозговая жидкость, синовиальная жидкость, слюна, биоптаты органов.

В биохимии широко применяют диализ, центрифугирование, оптические методы, различные виды хроматографии и др.

Оптические методы

В основу абсорбционнойспектроскопии положен принцип измерения поглощения света, проходящего сквозь раствор исследуемого вещества, вследствие его абсорбции. Измерение спектров осуществляют на специальных спектральных аппаратах, в которых пробу вещества помещают между источником света и фотоэлементом, регистрирующим свет. Каждое вещество имеет характерный свет поглощения. Для аналитических целей используют длину волны, соответствующую максимуму поглощения исследуемого соединения (λmax).

Фотоэлектроколориметрия – это измерение поглощения видимой части спектра окрашенными растворами.

Собственно спектрофотомерия – это измерение поглощения (пропускания) прозрачных растворов в ультрафиолетовой, видимой и инфракрасной зонах спектра (220-1100 нм).

Нефелометрия – метод измерения интенсивности рассеянного света.

К приборы, базирующимся на измерении светопоглощения веществ, относятся фотоэлектроколориметры (ФЭК) и спектрофотометры (СФ). ФЭК позволяют проводить измерения поглощения в видимой части спектра. СФ дают возможность проводить измерения в широком диапазоне длин волн – от ультрафиолетового до инфракрасного (210-1100 нм) и исследовать окрашенные и бесцветные растворы в узкой зоне спектра, на участке максимального поглощения монохроматического потока света.

Электрофорез

Явление электрофореза – это перемещение заряженных частиц в электрическом поле.

Наиболее часто метод используют для аналитических целей – для разделения смеси заряженных веществ на фракции с последующим качественным и количественным их определением. Таким способом удается разделить, например, белки сыворотки крови на 5 фракций: альбумин и 4 фракции глобулинов. Эту задачу часто решают в клинической биохимии, так как соотношение фракций закономерно изменяется при многих патологических процессах.

Хроматография

Хроматографические методы основаны на динамическом раз­делении смеси веществ. Общий принцип хроматографии состоит в том, что непрерывный поток подвижнойфазы, содержащей анализируемый образец, направленно проходит черезстационарнуюфазу, которая в зависимости от своей природы, взаимодействует в различной степени с компонентами образца.

Метод центрифугирования

Разделение и исследование веществ с помощью центрифугирования основано на разной скорости оседания (седиментации) в центробежном поле частиц, имеющих разную плотность, форму или размеры.

Коэффициент седиментации зависит от молекулярной массы и формы частицы, а также от плотности и вязкости среды выделения, что используется для определения молекулярной массы.

Простейшая задача центрифугирования заключается в отделении осаждённых веществ от растворов как этап выполнения аналитических работ. Например, отделение белков от других органических соединений после осаждения. Подбирая скорости центрифугирования и определенные среды выделения, можно избирательно осаждать разные клеточные структуры: ядра, митохондрии, лизосомы, рибосомы, эндоплазматический ретикулум.

Радиоизотопные методы

Основаны на способности нестабильных радиоизотопов испускать частицы или электромагнитное излучение, которые фиксируются специальными методами.

Основными преимуществами методов с применением радиоизотопных меток являются их чувствительность и возможность вводить метки в живой организм, что позволяет исследовать метаболические превращения, механизмы и скорости поглощения и переноса веществ в интактном организме, возраст биологических образцов.

5. ФУНКЦИИ БИОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ.

Определение при помощи лабораторных исследований естественного течения патобиохимических процессов при данном заболевании или оценка эффективности лечебных мероприятий по нормализации биохимических показателей.

Выявление заболевания на доклинической стадии на основании нарушения биохимических процессов при данной патологии

Подтверждение диагноза, предполагаемого на основании клинических изменений, или его отклонение.

Позволяет прогнозировать возможный исход заболевание, или развитие осложнений при данной патологии.

6. ТАКТИКА БИОХИМИЧЕСКОГО ОБСЛЕДОВАНИЯ

1. Лабораторные тесты, назначаемые обследуемому, должны соответствовать основной клинической цели обследования: а) выявлению ранее не наблюдавшегося отклонения от нормы (профилактическое обследование); б) установлению диагноза бо­лезни (диагностическое, большей частью дифференциально­диагностическое обследование); в) оценке эффективности ле­чебных мер (контроль за лечением); г) оценке степени выздо­ровления и восстановления нарушенных болезнью функций (прогностическое обследование, диспансерное наблюдение). Цель исследования должна определять набор, комбинацию и частоту назначения тестов.

3. Детерминированное назначение одновременного выпол­нения комплекса (констелляции) тестов предпочтительнее по­следовательного назначения этих же тестов, растянутого во вре­мени. В состав констелляции должны подбираться тесты, отве­чающие задаче диагностики определенного заболевания и его дифференциации от других форм патологии в соответствии с наиболее высокими значениями диагностической чувствитель­ности, специфичности и эффективности лабораторных тестов по отношению к данному заболеванию.

4. Более высокой формой рационализации лабораторной диагностики являются дифференциальные диагностические программы, включающие несколько констелляций, применяе­мых поэтапно. Констелляция 1-го этапа имеет ориентирующий характер; в зависимости от ее результатов включается одна из альтернативных констелляций 2-го (если нужно и 3-го) этапа, позволяющая получить наиболее точную диагностическую ин­формацию о форме патологии.

5. Лабораторные тесты должны назначаться с учетом ихдиаг- ностической ценности при различных стадиях болезненного процесса (скрытое течение, острая фаза, криз) и возможностей наблюдения за течением болезни.

6. Нагрузочные тесты (функциональные и фармакологиче­ские пробы) обладают большей способностью выявлять скры­тые и неявные изменения биохимических параметров, резерв­ные возможности систем, чем исследования в состоянии по­коя. Назначение нагрузочных тестов должно проводиться с уче­том состояния больного и возможных отрицательных эффектов пробы.

7. При биохимическом контроле за результатами действия определенного вида лечения следует учитывать возможные вли­яния других лечебных воздействий, а также диагностических мероприятий.

2. Литература

3. Клиническая интерпретация лабораторных исследований /Под ред. А.Б. Белевитина, С.Г. Щербакова. - Санкт-Петербург: ЭЛЬБИ-СПб, 2006. -384 с.

4. Полотнянко Л.И. Клиническая химия: учебное пособие/ Л.И. Полотнянко – М.; ВЛАДОС-ПРЕСС, 2008.-343 с.

Дополнительная

5. Березов Т.Т. Биологическая химия: Учебник для вузов. / Т.Т. Березов Б.Ф. Коровкин - М.: Медицина, 1990. – 528 с.

6. Бышевский А. Ш. Биохимия для врача. / А. Ш. Бышевский, О.А.Терсенов – Екатеринбург: Уральский рабочий, 1994. – 384 с.

7. Клиническая биохимия: учебное пособие. /Под ред.В.А. Ткачука, М.: ГЭОТАР-Медиа, 2008. – 264 с.

8. Комаров Ф.И. Биохимические исследования в клинике. /Ф.И. Комаров, Б.Ф. Коровкин, В.В. Меньшиков – Элиста: АПП Джингар, 1998. – 250 с.

9. Марри Р. Биохимия человека: в 2-х томах. / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл – М.: Мир, 1993. – 384 с.

3. Интернет- ресурсы

4. Глоссарий

Биохимия – это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах, а также связи этих превращений с деятельностью органов и тканей.

Статическая биохимия - это анализ химического состава живых организмов.

Динамическая биохимия - изучает совокупность превращения веществ и энергии в организме.

Функциональная биохимия - исследует процессы, лежащие в основе различных проявлений жизнедеятельности.

Электрофорез – это перемещение заряженных частиц в электрическом поле.

III . Контролирующий блок

5. Вопросы для активизации познавательной деятельности студентов при изучении нового материала

1. Что изучает биохимия?

2. Какие задачи решает биохимия?

3. Как подразделяют биохимию по объектам изучения?

4. Какие методы используются в биохимии?

6. В опросы для закрепления и систематизации полученных знаний

Биохимический метод – основной метод в биохимии из основных методов диагностики различных заболеваний, которые вызывают нарушение обмена веществ. Именно об этом методе анализа и пойдет речь в данной статье.

Объекты диагностики

Объектами диагностики биохимического анализа являются:

  • кровь;
  • моча;
  • пот и другие биологические жидкости;
  • ткани;
  • клетки.

Биохимический метод исследования позволяет определять активность ферментов, содержание продуктов метаболизма в различных биологических жидкостях, а также выявлять нарушения в обмене веществ, которые обусловлены наследственным фактором.

биохимический метод

История

Открыт биохимический метод английским врачом А. Гарродом в начале ХХ века. Он изучал алкаптонурию, и в ходе изучения им было установлено, что врожденный метаболизм или заболевание обмена веществ можно определить по признаку отсутствия специфических ферментов.

Различные наследственные заболевания обуславливаются мутациями в генах, которые изменяют структуру и скорость синтеза белков в организме. При этом нарушается углеводный, белковый и липидный обмен.

Основное

В целях клинической диагностики изучается химсостав биологических материалов и тканей, так как при патологии могут проявиться изменения концентрации, отсутствие компонентов или наоборот появление какого-либо другого компонента. По биохимическому анализу определяют количество определенных веществ, гормональный баланс, ферменты.

биохимический метод исследования

Исследуются молекулы, белки, нуклеиновые кислоты и другие вещества, которые входят в состав живого организма.

Результаты

Результат биохимического метода исследования может быть разделен на качественный (обнаружен или не обнаружен) и количественный (каково содержание того или иного вещества в биоматериале).

В качественном методе исследования используются свойства, характерные для используемого вещества, которые проявляются при определенных химических воздействиях (при нагревании, при прибавлении реагентов).

биохимический метод генетики

Прямой количественный метод исследования определяется на основе этого же принципа, но сначала определяют обнаружение какого-либо вещества, а затем уже измеряют его концентрацию.

Гормоны, медиаторы содержатся в организме в очень малых количествах, поэтому их содержание измеряют при помощи биологических тест-объектов (например, отдельного органа или целого экспериментального животного). Этим повышается чувствительность и специфичность исследований.

Историческая эволюция

Биохимический метод совершенствуется, чтобы получать наиболее точный результат и информацию о состоянии обменных процессов в организме, процессов обмена веществ в определенных органах и клетках. В последнее время биологические методы диагностики сочетают с другими методами исследований, такими как иммунные, гистологические, цитологические и другие. Для использования более сложного метода или методов обычно используют специальное оборудование.

Существует другое направление биохимического метода, которое не вызывается запросом клинической диагностики. С помощью разработки и применения быстрого и максимально упрощенного метода, который может позволить за несколько минут определить оценку нужных биохимических показателей.

В наше время лаборатории оснащены новейшим усовершенствованным оборудованием и механическими и автоматическими системами и приборами (анализаторами), которые позволяют быстро и точно определить нужный показатель.

Биохимический метод изучения: способы

Измерение какого-либо вещества в биологических жидкостях и их определение осуществляется разными многочисленными способами. Например, определить такой показатель как холестеринэстераза, можно сотнями вариантов методов биохимического исследования. Выбор конкретной методики во многом зависит от характера исследуемых биологических жидкостей.

биохимический метод анализа

Биохимический метод исследования используется для определения одного вещества или показателя как однократно, так и в динамике. Этот показатель проверяют при определенном времени суток, под определенной нагрузкой, в процессе заболевания, при приеме каких-либо препаратов.

Особенности метода

Особенности биохимического метода:

  • минимальное количество используемого биоматериала;
  • скорость выполнения анализа;
  • возможное многократное применение данного метода;
  • точность;
  • биохимический метод можно использовать в процессе болезни;
  • прием препаратов не влияет на результат исследования.

Биохимические методы генетики

В генетике чаще всего используется цитогенетический метод исследования. Он позволяет подробно изучить хромосомные структуры и их кариотип. С помощью данного метода можно выявить наследственные и моногенные заболевания, которые связаны с мутациями и полиморфизмами генов и их структур.

Биохимический метод генетики сейчас широко используется для того, чтобы находить новые формы мутантных аллелей в ДНК. При помощи данного метода было выявлено и описано больше 1000 вариантов заболеваний обмена веществ. Большинство описанных заболеваний – это болезни, которые связаны с дефектами ферментов и других структурных белков.

Диагностика нарушений обменных процессов биохимическими методами проводится двумя этапами.

  • проводится отбор предположительных случаев заболевания.
  • уточняется диагноз заболевания более точной и сложной методикой.

Новорожденным детям в пренатальный период при помощи биохимического метода исследования проводится диагностика наследственных заболеваний, что позволяет своевременно обнаружить патологию и вовремя начинать лечение.

биохимические методы диагностики

Виды метода

Биохимический метод генетики может иметь множество видов. Все они делятся на две группы:

  1. Биохимические методы, в основе которых лежит выявление определенных биохимических продуктов. Это обусловлено изменениями действий различных аллелей.
  2. Метод, который основывается на том, чтобы непосредственно выявить измененные нуклеиновые кислоты и белки при помощи гель-электрофореза в сочетании с другими методиками, такими как блот-гибридизация, авторадиография.

Биохимический метод помогает выявить гетерозиготные носители различных заболеваний. Мутационные процессы в человеческом организме ведут к появлению аллелей и к хромосомным перестройкам, которые плохо влияют на здоровье человека.

биохимический метод изучения

Также биохимические методы диагностики позволяют выявить различные полиморфизмы и мутации генов. Усовершенствование биохимического метода и биохимической диагностики в наше время помогает выявить и подтвердить большое количество различных нарушений обменных процессов организма.

Цель реферата: Изучение истории развития и методы биохимических исследований
Задачи:
- Изучить и проанализировать литературу и интернет источники по биохимическим исследованиям
- Сделать выводы и заключение.
Объект исследования: Биохимические методы исследования

Содержание

1.1. Первые зачатки биохимии
4
1.2. Развитие в 19 века
4
1.3. Развитие в 20 века
6
2. Методы биохимических исследований
7
2.1. Хромотография
2.2. Электрофорез
2.3 Центрифугирование
7
7
8
Заключение
9
Список использованной литературы

Вложенные файлы: 1 файл

Kak_pisat_referat (1).docx

Государственное бюджетное образовательное учреждение

среднего профессионального образования

Тольяттинский медицинский колледж

Специальность Лабораторная диагностика

Дисциплина Введение в специальность: общая компетенция специалиста

Биохимические исследовния и их развитие

студента группы Д- 201

Преподаватель: Скворцова Вера Николаевна

1.1. Первые зачатки биохимии

1.2. Развитие в 19 века

1.3. Развитие в 20 века

2. Методы биохимических исследований

Список использованной литературы

Рассказать студентам о биохимических исследованиях и о истории ее развития

Цель реферата: Изучение истории развития и методы биохимических исследований

- Изучить и проанализировать литературу и интернет источники по биохимическим исследованиям

- Сделать выводы и заключение.

Объект исследования: Биохимические методы исследования

Предмет исследования: История развития и методы биохимических исследований

Метод исследования: теоретический.

1. Историческое развитие

1.1 Первые зачатки биохимии

Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечение, сыроварение, виноделие, выделка кож. Необходимость борьбы с болезнями заставляла задумываться о превращениях веществ в организме, искать объяснения целебным свойствам лекарственных растений. Использование растений в пищу, для изготовления красок и тканей т акже приводило к попыткам понять свойства веществ растительного происхож дения.

Итальянский учёный и художник Леонардо да Винчи на основании своих опытов сделал важный вывод о том, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.

1.2 Развитие с 19 века

XVIII век ознаменовался трудами М. В. Ломоносова и А. Л. Лавуазье. На основе открытого ими закона сохранения массы веществ и накопленных к концу столетия экспериментальных данных, была объяснена сущность дыхания и исключительная роль в этом процессе кислорода.

В 1882 году Иван Горбачевский впервые в мире осуществил синтез мочевой кислоты из глицина. В дальнейших исследованиях он установил источник и пути её образования в человеческом и животном организмах. В 1885 году ему удалось получить метилмочевую кислоту из метилгидантоина и карбамида. В 1886 году он предложил новый метод синтеза креатина, а в 1889—1891 годах открыл фермент ксантиноксидазу. Иван Горбачевский одним из первых указал, что аминокислоты являются составляющими белков.

Новый толчок развитию биологической химии дали работы по изучению брожения, инициированные Луи Пастером. В 1897 г. Эдуард Бухнер доказал, что ферментация сахара может происходить в присутствии бесклеточного дрожжевого экстракта, и это процесс не столько биологический, сколько химический. На рубеже XIX и XX веков работал немецкий биохимик Э. Фишер. Он сформулировал основные положения пептидной теории строения белков, установил структуру и свойства почти всех входящих в их состав аминокислот. Но лишь в 1926 г. Джеймсу Самнеру удалось получить первый чистый фермент, уреазу, и доказать, что фермент — это белок.

Биохимия стала первой биологической дисциплиной с развитым математическим аппаратом благодаря работам Холдейна, Михаэлиса, М ентен и других биохимиков, создавших ферментативную кинетику, основным законом которой является уравнение Михаэлиса-Ментен.

Открытие ферментов позволило начать грандиозную работу по полному описанию всех процессов метаболизма, не завершённую до сих пор. Одними из первых значительных находок в этой области стали открытия витаминов, гликолиза и цикла трикарбоновых кислот.

1.3 Развитие в 20 веке

В 1928 г. Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бак терий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок, а нуклеиновая кислота. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма. В 1953 году американский биолог Дж. Уотсон и английский физик Ф. Крик опираясь на работы М. Уилкинса и Р. Франклинописали структуру ДНК — ключ к пониманию принципов передачи наследственной информации. Это открытие означало рождение нового направления науки — молекулярной биологии.

2. Методы проведения биохимических исследований

Хроматография - это метод установления химического состава смеси, основанный на определенном распределении веществ, находящихся в разном агрегатном состоянии (газ, жидкость, твердые частицы) между двумя фазами (подвижной или неподвижной). К подвижной фазе относятся газы и жидкости, а к неподвижной - твердые вещества. В определенных условиях вещества в смеси начинают распределяться по фазам: газы перемещаются вверх, твердые частицы осаждаются, между ними скапливается слой жидкости, некоторые жидкости тоже могут расслаиваться. Вещества подвижной фазы перемещаются с различной скоростью, что тоже позволяет судить о составе смеси. Распределяясь в анализаторе по фазам, компоненты смеси образуют цветовой столб, при этом для каждого вещества существуют свои цветовые характеристики.

Биохимические анализы, основанные на принципе электрофореза, в медицинской практике используют очень широко, так как одновременно информативны и экономичны. Метод электрофореза, разработанный в 1937 г. шведским биохимиком А. Тиселиусом, позволяет разделять макромолекулы по фракциям и основан на свойствах макромолекул при растворении в воде приобретать электрический заряд. При воздействии на раствор электрического поля молекулы притягиваются к электроду с противоположным зарядом.
Скорость перемещения молекул зависит от их размера и электрического заряда. Так, молекулы белка амфотерны, т. е. имеют положительный заряд на одном конце и отрицательный на другом, поэтому их скорость и направление перемещения зависят от среды (кислая или щелочная). На заряд белковых молекул в средах с одинаковой кислотностью влияют аминокислоты, входящие в их состав. При распаде белковой молекулы образуются цепи аминокислот с разным электрическим зарядом, которые под воздействием электрического поля притягиваются к противоположно заряженному электроду и таким образом разделяются.
Гель - это смесь нескольких веществ, обладающая свойствами твердых тел (сохраняет форму), но очень пластичных (деформируется). Одно вещество при этом всегда состоит из крупных молекул, образующих сетку (каркас), заполненную молекулами малого размера второго вещества.
Для упрощения разделения веществ электрофорез проводят на фильтровальной бумаге, целлюлозе, гелях и агарозе, в этом случае гели выступают в качестве ионного фильтра: мелкие ионы проникают в поры геля, а крупные - нет, что дает дополнительную информацию для исследования.
Наиболее часто электрофорез применяют для разделения белков по фракциям (все белки крови подразделяются на альбумины и несколько видов глобулинов). При многих заболеваниях изменяется не только общее количество белка в крови, но и соотношение его различных фракций. Результаты таких исследований важны для диагностики заболеваний печени, почек, злокачественных опухолей, нарушений иммунитета, инфекционных заболеваний и наследственных болезней.

С помощью центрифуги можно разделить жидкие смеси с компонентами разной удельной плотности, так как при очень быстром вращении смеси расслаиваются и частицы разных компонентов в центробежном поле осаждаются с разной скоростью, которая зависит от их
размера и плотности.
Например, при центрифугировании крови в пробирке образуются несколько слоев: верхний желтый слой - плазма, нижний темный слой - клетки крови. При этом у границы жидкости можно заметить тонкий сероватый слой тромбоцитов.
Вещества, имеющие диагностическое значение, могут находиться в клетках крови или в плазме, некоторые химические элементы и вещества определяются и там, и там, поэтому разделение крови по фракциям позволяет провести точную диагностику.

Биохимические методы исследования различны по своим происхождениям, но без них было бы невозможно получиться полную картину о здоровье организма или патогенных процессах которые происходят (или зарождаются) в организме человека. Биохомия, как наука, относительно недавно отделилась и в ней очень многого неоткрытого и не изведанного.


БИОХИМИЧЕСКИЙ ПОДХОД В ГЕНЕТИЧЕСКОМ АНАЛИЗЕ ЧЕЛОВЕКА

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Биохимические методы изучают наследственные заболевания, обусловленные генными мутациями, а также полиморфизм по нормальным первичным продуктам генов.

Впервые эти методы стали применять для диагностики генных болезней еще в начале XX в. В последние 30 лет их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Наиболее распространенными среди таких заболеваний являются болезни, связанные с дефектностью ферментов, структурных, транспортных или иных белков. Для исследования берут кровь, лимфу, мочу, слюну, пот, околоплодные воды. В них изучают структуру белков, промежуточные продукты обмена веществ, определяют активность ферментов.

Дефекты структурных и циркулирующих белков выявляются при изучении их строения. Установлено большое разнообразие гемоглобинов у человека, связанное с изменением структуры его пептидных цепей, что нередко является причиной развития заболеваний.

Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме.

Диагностика нарушений обменных процессов биохимическими методами проводится двумя этапами.

Первый этап: проводится отбор предположительных случаев заболевания.

На этом этапе используют 2 вида программ диагностики: массовые и селективные.

Массовые просеивающие программы применяют для диагностики у новорожденных таких заболеваний как фенилкетонурия, врожденный гипотериоз, муковисцедоз, галактоземия. Например, для диагностики фенилкетонурии кровь новорожденных берут на 3-5 день после рождения. Капли крови помещают на хроматографическую или фильтровальную бумагу и пересылают в лабораторию для определения фенилаланина.

Для определения врожденного гипотереоза в крови ребенка на 3 день жизни определяют уровень тироксина. Просеивающая программа массовой диагностики наследственных болезней применяются не только среди новорожденных. Они могут быть организованны для выявления тех болезней которые распространены в каких либо группах населения. Например с США организована просеивающая биохимическая программа по выявлению гетерозиготных носителей болезни Тея-Сакса. На Кипре и в Италии организовано биохимическое исследование гетерозиготных носителей талассемии.

Селективные диагностические программы предусматривают проверку биохимических аномалий обмена у пациентов с подозрением на генные наследственные болезни.

В селективных программах могут использоваться простые качественные реакции (например, тест с хлоридом железа для выявления фенилкетонурии или тест с динитрофенилгидрозином для выявления кетокислот в моче) или более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать наследственные нарушения обмена аминокислот и мукополисахаридов. С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий.

Второй этап: уточняется диагноз заболевания более точной и сложной методикой.

На этом этапе, применяя методы тонкослойной хроматографии мочи и крови, можно выявить более 140 наследственных болезней обмена веществ, такие как болезни углеводного обмена, лизосомальные болезни накопления, болезни обмена металлов, аминоацидопатии и т.д.

Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии.

Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.

Биохимический метод генетики может иметь множество видов.

Все они делятся на две группы:

Биохимические методы, в основе которых лежит выявление определенных биохимических продуктов. Это обусловлено изменениями действий различных аллелей.

Метод, который основывается на том, чтобы непосредственно выявить измененные нуклеиновые кислоты и белки при помощи гель-электрофореза в сочетании с другими методиками, такими как блот-гибридизация, авторадиография.

Биохимический метод помогает выявить гетерозиготные носители различных заболеваний. Мутационные процессы в человеческом организме ведут к появлению аллелей и к хромосомным перестройкам, которые плохо влияют на здоровье человека.

Использование биохимического метода оказалось эффективным в решении диагностических задач и выяснении существенных звеньев патогенеза обширной группы наследственных болезней обмена веществ: аминокислот (альбинизм, фенилкетонурия), углеводов (гликогенозы, глюкозурии, галактоземия), липидов (липидозы, семейная гиперхолистеринемия), стероидных гормонов (адреногенитальный синдром), эритрона (гемолитические анемии), пуринов и пиримидинов (синдром Криглера-Найяра), металлов (болезнь Вильсона-Коновалова), лизосомных болезней (мукополисахаридозы), пероксисомных болезней (синдром Цельвегера) и др.

Также биохимические методы диагностики позволяют выявить различные полиморфизмы и мутации генов. Усовершенствование биохимического метода и биохимической диагностики в наше время помогает выявить и подтвердить большое количество различных нарушений обменных процессов организма.

Биология: учебник: в 2 т. / под ред. В. Н. Ярыгина. - 2011. - Т. 1. - 736 с.: ил.

Читайте также: