Реферат на тему автоматическое повторное включение

Обновлено: 05.07.2024

Защита элементов системы электроснабжения, осуществляемая релейными устройствами, автоматическими выключателями и плавкими предохранителями, отключает защищаемые элементы в случаях устойчивых и неустойчивых повреждений, а также неселективного и ложного срабатывания защиты. В последних трех случаях защищаемый элемент может сразу после срабатывания защиты снова включиться и оставаться в работе. Автоматическое включение элемента после срабатывания защиты называется автоматическим повторным включением (АПВ) и применяется в случаях, когда вероятность возникновения неустойчивых (преходящих) повреждений и неселективного срабатывания защиты достаточно высока.

Наиболее частым проходящим повреждением в системах электроснабжения является КЗ в воздушных линиях, воздушных шинопроводах, на выводах электрических аппаратов, трансформаторов и кабельных разделок, на сборных шинах и т. п. Такое КЗ может быть вызвано пробоем воздушных защитных промежутков при грозовых перенапряжениях, разрядом вдоль изоляторов, попаданием случайных, сгораемых под воздействием дуги предметов на проводники (из-за занесения ветром, неправильного действия людей и т.п.), закорачиванием воздушных изоляционных или разрядных промежутков птицами и животными.

После отключения таких КЗ, канал дугового разряда быстро (при трехфазном отключении в зависимости от напряжения за 0,1—0,4 с) деионизируется и отключенный элемент готов к новому включению.

Проходящим следует считать также КЗ, осуществляемое короткозамыкателем и отключаемое при помощи отделителя. После отделения места КЗ линия готова к новому включению.

Если КЗ в течение без токовой паузы между отключением и автоматическим включением не исчезает, то срабатывание устройства АПВ оказывается неуспешным. Причиной неуспешного АПВ может быть устойчивость КЗ, а также недостаточная длительность бестоковой паузы для ликвидации КЗ. Второй случай имеет место достаточно часто на воздушных линиях 110 кВ и выше, иногда с этим необходимо считаться также в воздушных сетях 10, 20 и 35 кВ. Поэтому вместо однократного АПВ могут применяться двух- и трехкратное АПВ с большей выдержкой времени второго и третьего циклов.

Число отключений воздушных линий ВН релейной защитой или плавкими предохранителями в зависимости от напряжения, типа опор, климатических условий находится в пределах (0,5—5) ·10-2 1/(км·год). Первое АПВ обычно восстанавливает работу линий в 60—90 % всех случаев отключения, причем большие цифры относятся к линиям более высокого напряжения. При неуспешном первом АПВ второе АПВ характеризуется вероятностью восстановления работы дополнительно на 10—15 %, а третье АПВ (при неуспешном втором) — дополнительно на 3—5 % дальнейшее увеличение числа циклов АПВ является нецелесообразным.

В кабельных сетях число отключений защитой составляет (2—4)·10-2 1/(км-год), вероятность восстановления работы путем применения АПВ 20—30 % (в основном за счет дуговых КЗ в ошиновке распределительных пунктов, РУ и т. п.).

Устройства АПВ оправдают себя при определенной частоте успешных срабаваний, которая может определяться технико-экономичесим расчетом и обычно не водится ниже 0,1 1/год.

В России средняя частота успешного срабатывания АПВ составляет 0.5 1/год. Из этого следует, что эффективную работу АПВ можно ждать на воздушных и кабельных линиях длиной 10—100 км.

Во внутренних сетях промышленных предприятий длина одной линии редко превышает 10 км, поэтому применение АПВ отдельных линий может оказаться нецелесообразным. Однако вместо АПВ отдельной линии может применяться АПВ всей сети или сетевого участка.

8.6.4. АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА.Надежность электроснабжения ответственных приемников, относящихся к 1-й и 2-й категориям по бесперебойности питания,обеспечивается применением двух (или большего числа) независимых источников питания. При этом возможны три варианта:

1) источники находятся постоянно в параллельной работе и имеют такой запас

мощности, что отключение одного из них не приводит к недопустимым перегрузкам оставшихся в работе;

2) источники не работают параллельно, но имеют между собой резервные связи и запас мощности; при отключении одного из источников его нагрузка переключается по этим связям на другие;

3) один или несколько источников находятся в резерве и включаются при отключении основного источника.

Переключения, предпринимаемые в двух последних случаях, могут быть автоматическими и называются тогда автоматическим включением резерва (АВР).

Если предприятие питается от энергосистемы двумя независимыми линиями, то на всех ступенях системы электроснабжения предприятия (на ГПП, в распределительной сети ВН, на цеховых подстанциях, в цеховых сетях) при отключении основного питания, может быть предусмотрено автоматическое переключение на соседние работающие независимые источники (на другой трансформатор двухтрансформаторной подстанции, на соседние подстанции и т. п.). То же самое относится к случаю, когда предприятие питается одновременно от энергосистемы и собственной электростанции или только от собственной многоагрегатной электростанции. Необходимый для такого переключения запас мощности или пропускной способности отдельных элементов системы электроснабжения называется иногда неявным или скрытым резервом.

Стоимость неявного резерва, как правило, ниже, чем стоимость явного резерва (специальных резервных трансформаторов, генераторных или аккумуляторных установок и т. п.), и поэтому при АВР имеется в виду применение, как правило, неявного резерва.

На рис.18 показан принцип применения устройств АВР, действующих на секционные выключатели двухтрансформаторных подстанций. Принцип может быть распространен также на независимые однотрансформаторные подстанции, связанные между собой резервной линией. Автоматическое включение резерва происходит после срабатывания защиты минимального напряжения и отключения этой защитой основного питания. Во избежание одновременного срабатывания устройств АВР различных ступеней системы электроснабжения выдержка времени защиты минимального напряжения низших ступеней отстраивается от времени срабатывания аналогичной защиты высших ступеней, т. е.


,

где tC,i — время срабатывания защиты минимального напряжения, используемой в качестве пускового органа АВР на i-й ступени системы электроснабжения; tC(i+1) - время срабатывания аналогичной защиты на следующей (по удалению от источника питания) ступени системы электроснабжения;

t0 - время отстройки, принимаемое в пределах 0,5—0,7 с.

Во избежание лишних переключений, как правило, требуют, чтобы АВР происходило только в тех случаях, когда первый цикл применяемого в питающей сети АПВ оказался неуспешным.

Кроме неявного резерва, в системах электроснабжения могут предусматриваться специальные (явные) резервные источники. Необходимость в таких источниках возникает в основном в трех случаях:

1) при отсутствии двух постоянно работающих независимых источников питания, требуемых для приемников 1-й и 2-й категорий (например, при нецелесообразности двух вводов от энергосистемы из-за малой доли ответственных приемников в общей мощности предприятия);

2) при наличии приемников, относящихся к особой группе 1-й категории и требующих наличия трех независимых источников питания;

3) при жестких требованиях к максимально допускаемой длительности перерыва в питании, которые могут быть удовлетворены только путем применения быстроподключаемых резервных источников.

Основным требованием, предъявляемым к устройствам АВР, является однократность действия, т.е. исключение повторного срабатывания при неуспешном АВР. Выполнение этого требования может обеспечиваться теми же средствами, какие применяются в устройствах АПВ.

АВР применяется только в тех случаях, когда параллельная работа независимых источников питания невозможна или экономически нецелесообразна. При возможности параллельной работы и использования замкнутых сетей надёжность электроснабжения может обеспечиваться и без применения АВР.

8.6.5 РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ

Регулирование напряжения – это процесс изменения уровня напряжения в характерной точке сети при помощи технических средств. Контроль за уровнем отклонения напряжения U – производится тремя способами:

1. По уровню (сравнение реальных значений отклонения напряжения с нормированным).

2. По электрической системе, то есть в определенных точках системы.

3. По длительности существования отклонения (по времени).

Регулирование напряжения осуществляется с помощью АСДУ (автоматической системы диспетчерского управления). Локальное регулирование напряжения может быть централизованным и местным.

Местные в свою очередь делятся на:

1) групповое регулирование напряжения – для нескольких электроприемников;

2) индивидуальное регулирование – специальное регулирование.

В централизованном регулировании напряжения можно выделить три подтипа в зависимости от характера изменения нагрузки:

стабилизация – применяется для потребителей с почти неизменной нагрузкой; двухступенчатое – для предприятий с односменным графиком; встречно-регулируемое – при переменном графике нагрузок.

Учитывая требования по напряжению удаленных и близлежащих потребителей, основным средством регулирования напряжения выбраны трансформаторы и автотрансформаторы районных подстанций.

Различают два типа трансформаторов на подстанциях:

Раздел: Физика
Количество знаков с пробелами: 222453
Количество таблиц: 50
Количество изображений: 17

Во многих случаях короткие замыкания, вызывающиеотключение линий электропередачи, имеют преходящий характер и самоликвидируются в короткое время (попадание между проводами линий посторонних предметов, схлестывание проводов, замыкания из-за грозовых разрядов и др.). После .отключения дуга в месте к. з. исчезает, а линия остается неповрежденной. Для сокращения перерыва в электроснабжении потребителей линии снабжают устройствами автоматического повторноговключения (АПВ), автоматически включающими линию через 0,5 - 1,5 с после ее отключения защитой.
Опыт показывает, что число случаев, когда линия после первого повторного включения остается в работе, достигает 90%.
АПВ может быть применено как на линии передачи, питающей ряд нагрузок, так и на ответвлении для отдельных трансформатора, электродвигателя и т.п. Устройства АПВ широко применяют в системахэлектроснабжения нефтяных и газовых промыслов, установок транспорта и хранения нефти и газа. Наиболее распространенными здесь являются трехфазные устройства АПВ, включающие повторно одновременно все три фазы выключателя.
Существуют механические устройства АПВ, выполняющие вслед за действием защиты повторное включение при помощи механических приспособлений, устанавливаемых на приводахвыключателей, и электрические устройства, осуществляющие включение при помощи реле, воздействующих на включающий орган привода.

1. Описание технологического процесса

Рассмотрим основные условия выбора уставок трехфазных АПВ линий и трансформаторов распределительных сетей.
1. АПВ линии с односторонним питанием
Время срабатывания однократного АПВ определяется по следующим условиям:[pic], (1.1)
где tг.п. — время готовности привода, которое в зависимости от типа привода находится в пределах от 0,1 до 0,2 сек;
[pic] (1.2)
где tг.в — время готовности выключателя, которое в зависимости от типа выключателя обычно находится в пределах от 0,2 до 2 сек, но для некоторых типов может быть больше; tв.в — время включения выключателя;
[pic](1.3)
где tд — время деионизации среды в месте к.з., составляющее 0,1 ( 0,3 сек; tзап = 0,4 ( 0,5 сек, одинаково для всех предыдущих выражений.
Данные для расчета по условиям (1.1) и (1.2) находятся в технических паспортах приводов и выключателей. Опыт эксплуатации показывает, что для одиночных воздушных линий 6 — 110 кВ с односторонним питанием наиболее подходящим является [pic]сек.
При такой выдержке времени до момента срабатывания АПВ линии успевают в большинстве случаев самоустраниться причины, вызвавшие неустойчивое к. з. (падения деревьев, набросы веток, касания проводов передвижными механизмами), а также успевает произойти деионизация среды в месте к. з. Устройства АПВ, не имеющие выдержки времени ([pic] сек), характеризуются весьма низким процентом успешныхдействий.
Если потребители не терпят столь длительного перерыва электроснабжения, то время [pic] сек следует выбрать по условиям (1.1) - (1.3), а для повышения процента успешных действий выполнить двукратное АПВ линии.
Время автоматического возврата устройств АПВ, выполненных с помощью специальных реле серии РПВ, может не рассчитываться, так как оно.

Электрические сети характеризуются значительной протяжённостью, что во многом усложняет выполнение их технического обслуживания и ремонта, требуя времени на доставку персонала и необходимого оборудования. Решить эту проблему помогают системы автоматического повторного включения (АПВ), что позволяет предотвратить аварийные ситуации. Рассмотрим особенности применяемых АПВ и требования к ним.

Назначение АПВ

Назначение автоматического повторного включения предполагает запуск включающих устройств после аварийного обесточивания линий. Использование АПВ позволяет максимально сократить временной промежуток отключения ЛЭП.

назначение апв

Нештатные ситуации могут быть(короткие замыкания):

  • кратковременными – по случайной причине, действующей непродолжительное время (от перемещения животных, падения деревьев и пр.);
  • устойчивыми – если возобновление работы линии невозможно без вмешательства персонала, при обрыве провода, повреждении изолирующего покрытия и прочих последствиях.

В результате возникновения аварии АПВ срабатывает при любом исходе. Но возобновление работы становится возможным, только если устранено влияние воздействующего фактора.

Устройство и принцип работы

Ознакомиться с устройством и принципом работы АПВ можно на примере следующей схемы:

апв схема

Подача тока здесь осуществляется через управляющую шину ШУ. Управление АПВ производится с помощью следующих механизмов:

  • контролирующего синхронизацию;
  • управляющего контактами выключающего устройства;
  • запрещающим включение;
  • разрешающим подготовку.

Временное и промежуточное реле (РВ и РП) обеспечивают защиту. Промежуточное реле выполнено с двумя обмотками: токовой и напряжения. При нормальной работе на ШУ подаётся ток, заряжающий конденсирующий элемент С, если поступает соответствующий сигнал от цепи разрешения подготовки.

Возможность повторного включения предотвращается за счёт запрещающей схемы, настройка которой обеспечивается последовательно подключёнными резисторами R1 и R2.

При отключении линии АПВ срабатывает посредством подачи сигнала схемой, контролирующей синхронизацию. Замыкаются её контакты и шунтируется резистор R, а конденсатор разряжается на катушку РП. Одновременно также происходит возбуждение токовой катушки, замыкающей контакты реле в сети.

В случае прекращения трёхфазного КЗ, АПВ срабатывает, и обмотка РВ размыкается. Затем подключается резистор R, и происходит возврат реле к обесточенному состоянию.

Использование узла Н позволяет обеспечить безопасное выполнение работ по обслуживанию линии оперативным персоналом.

Классификация

Количество включений выключателя с помощью АПВ:

По способу воздействия на выключатель АПВ могут быть:

  1. Механические — они встраиваются в пружинный привод выключателя.
  2. Электрические — воздействуют на электромагнит включения выключателя.

АПВ классифицируются по числу фаз, используемых при срабатывании. Устройства могут быть:

  1. Однофазными – автоматически вводят только одну фазу при замыкании. Обычно задействованы для линий в 500 кВ и более;
  2. Трёхфазными – обеспечивают срабатывание выключателя, с включением всех трёх фаз;
  3. Комбинированными – могут срабатывать, благодаря возможности логического выбора схемы, нужной или нескольких фаз.

Трёхфазные устройства АПВ могут в зависимости от условий работы сети разделяться на

  • простые (ТАПВ);
  • несинхронные (НАПВ);
  • быстродействующие (БАПВ);
  • с проверкой наличия напряжения (АПВНН);
  • с проверкой отсутствия напряжения (АПВОН);
  • с ожиданием синхронизма (АПВОС);
  • с улавливанием синхронизма (АПВУС);
  • в сочетании с самосинхронизацией генераторов и синхронных компенсаторов (АПВС);
  • особой разновидностью АПВ является частотное автоматическое повторное включение (ЧАПВ).

В то же время предусмотрено разделение трёхфазных устройств на следующие подвиды:

  • с односторонней подачей напряжения – когда срабатывает только один высоковольтный выключатель, а питание производится из одного источника;
  • с двусторонней – с возможностью включения двух коммутационных аппаратов.

Двухсторонние АПВ делятся на:

  • схемы с несинхронным повторным включением – когда одновременно вводятся два выключателя без соблюдения синхронности;
  • ожидание синхронного срабатывания – происходит включение последовательно, с противоположных сторон;
  • улавливающие синхронизм – подбирается момент для одновременного включения, чтобы максимально сгладить возможные нежелательные эффекты;
  • быстрого действия – максимально сокращающие время ожидания повторного срабатывания.

Кроме указанного разделения, предусмотрена классификация по способам срабатывания – механическим включением или электрическим сигналом. Дополнительно АПВ разделяют по числу ступеней на одно- и многоступенчатые – пытающиеся включить питание разово или многократно.

Предъявляемые требования

Чтобы обеспечить штатную и безопасную работу АПВ, устройства должны соответствовать следующим требованиям:

  1. Скорости срабатывания – чтобы повторное включение производилось после того, как рассеется электрическая дуга;
  2. Устойчивости к работе в аварийном режиме – колебание характеристик тока и напряжения не должна вызывать выхода из строя и отказов;
  3. Избирательности – устройство должно быть настроено для совместной работы с другими элементами в системе;
  4. При отключении системы для оперативных работ, АПВ должно исключать возможность самопроизвольного включения;
  5. Обеспечения самовозврата в исходное положение;
  6. Возможность ограничения повторного срабатывания при некоторых разновидностях защиты;
  7. Наличие блокировки устройства от многократного включения при КЗ.

Перечисленные требования позволяют обеспечить безопасность обслуживающего персонала и исключить аварийные ситуации.

Особенности эксплуатации АПВ

Обслуживание АПВ должно быть закреплено за отдельными подразделениями. Посторонний персонал может допускаться только при постоянном контроле ответственных специалистов.

Персонал, обслуживающий АПВ, должен вести оперативные журналы, с фиксацией фактов включения устройств. Такие ситуации должны всесторонне анализироваться, чтобы исключить возможные аварии.

Оборудование должно проходить периодическое техническое обслуживание, с подключением линий на это время по резервной схеме.

Надлежащее техническое состояние и организованное обслуживание АПВ позволят предотвратить возможные аварии и обеспечить бесперебойную подачу напряжения потребителям.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Тема: Автоматическое повторное включение (АПВ) и Автоматического включения резерва (АВР)

Цель работы: изуцючить работу основных видов автоматики в системах электроснабжения предприятий - АПВ и АВР

Автоматика и телемеханика рассматривает следующие виды устройств:

1. АПВ линий или отдельных фаз после их автоматического отключения (например средствами РЗ и А).

2. АВР резервного питания или резервного оборудования (например насосы).

3. Включение СГ и СК на параллельную работу, синхронизация оборудования и линий.

4. Регулирования возбуждения (АРВ), напряжения и реактивной мощности.

5. Регулирование частоты и мощности, АЧР и АРТ.

6. Предотвращение нарушений устойчивости систем электроснабжения.

7. Прекращение асинхронного режима СД.

8. Ограничение снижения напряжения.

9. Ограничение повышения напряжения.

10. Предотвращение перегрузки оборудования.

11. Диспетчерского контроля и управления (АУ, ТС, ТУ, ТК, ТИ, ТР).

ПУЭ регламентируют: действие всех систем автоматики и автоматических устройств должно быть согласовано между собой. Все они должны быть включены в состав проекта предприятия.

АПВ предназначено для включения линии или отдельных фаз линий после их отключений в результате действия защиты или по другим причинам (кроме отключения персоналом).

АПВ - предусматривается для быстрого восстановления питания путем быстрого автоматического включения выключателей QF, отключаемых устройствами РЗ и А.

АПВ - обязательно для всех ВЛ и КЛ при напряжении от 1 до 35кВ, выше 35кВ - по проекту.

АПВ должно работать таким образом, чтобы оно не действовало при намеренном отключении QF персоналом местно, дистанционно или с помощью ТУ. АПВ не должно работать при внутренних повреждениях. Не допускается многократное включение на К3 при любых неисправностях в системе АПВ. Наиболее часто применяется однократное АПВ. Многократное АПВ применяется при напряжении выше 6 10кВ.

Время срабатывания АПВ:

первый раз - 0,5 1,5с

вторая попытка - 10 15с

третья попытка - 60 120с

АПВ бывает двух видов:

механическое (на пружинных и грузовых приводах QF) - однократное;

электрическое (на любых приводах) с помощью специального реле типа РПВ - может быть многократным.

АПВ обычно встраивается в конструкцию КРУ или легко совмещается с его электрической схемой. АПВ часто выполняется на базе реле РПВ-58; -258; -358 и их модификаций.

Рассмотрим работу схемы АПВ на базе реле РПВ-58. Схема состоит из силовой части и вспомогательной.

Силовая часть: Электромагнит включения привода силового выключателя QF включается с помощью контактора КМ. При срабатывании электромагнита УАС включается выключатель QF, привод встает на защелку и УАС обесточивается. QF включен питание потребителям подано.

Схема управления состоит из реле РПВ-58 (AKS), конденсатора С, ключа управления SA, блок-контактов выключателя QF, реле повторителей положения выключателя KQT и KQC, контактора КМ, отключающего электромагнита УАТ, реле запрета многократного АПВ KBS, реле времени КТ1, промежуточного реле с двумя обмотками KL1.

Назначение схемы - дать команду контактору КМ на повторное включение QF при его отключении.

При нормальном режиме конденсатор С заряжается через контакты ключа управления SA. Если в результате действия защиты отключится выключатель QF, то сработает KQT и замкнет контакты (3 - 5) и сработает реле времени КТ1. После выдержки времени сработает контакт КТ1.2 и конденсатор С разрядится

Рисунок 1. – Схема АПВ

на обмотку реле KL1, оно сработает. Далее сработает удерживающая обмотка KL1 и образуется цепь питания для контактора КМ (1, 3, контакт KL1.1, обмотка KL1, т.4, обмотка реле КН, перемычка, контакты KBS, QF, КМ). Контактор КМ сработал и привод УАС включил силовой выключатель QF. Питание потребителей восстановлено.

Если защита вновь сработает и QF отключится, то вторично АПВ не включится, т. к. конденсатор С не успеет зарядиться (прошло только 0,5с) и реле KL1 (нижнее) не сможет сработать.

Данные реле РПВ-58: = 1000 Ом; = 1,1 МОм; = 510 Ом; С = 20 мкф.

Электромагнит отключения УАТ может сработать от ключа SA или от действия защиты. Если отключение произведено персоналом от ключа SA, то АПВ не произойдет.

Требования к системам АВР.

1. АВР действует при исчезновении напряжения на шинах подстанции по любой причине.

2. Включение АВР производится как можно быстрее, сразу после отключения рабочего источника питания.

3. АВР действует однократно.

4. Включение резервной линии не должно быть ранее, чем отключится выключатель QF1 на Л1.

5. АВР действует только при отключении (аварии) на питающей линии (не на отходящих линиях, так как в этом случае включение на К3 не имеет смысла, так как срабатывает защита и на резервной линии).

Оперативный ток для АВР - постоянный или переменный.

Время срабатывания АВР зависит от количества и мощности электродвигателей, при пуске которых может произойти посадка напряжения, коэффициента срабатывания реле напряжения KV1 и допустимой величины минимального напряжения.

Описание схемы АВР.

Электрическая схема АВР состоит из силовой части, схемы управления и схемы включения электромагнитов приводов ПЭ-11 первого и второго выключателей.

1. Силовая часть . Линия 1 - основная, линия 2 - находится в резерве и включается только на время отключения питания по Л1. Как только питание по Л1 восстанавливается - линия Л2 должна отключиться. Выключатели QF1 и QF2 имеют электромагнитный привод (например ПЭ-11 или аналогичный ) разъединители QS1 и QS2 - включены. Трансформаторы TV1 и TV2 - измерительные, предназначены для питания реле напряжения KV1 и KV2. При наличии напряжения на Л1 реле KV1 включены, так же - на Л2.

2. Схема включения электромагнитов приводов - состоит из шинок питания +ЕУ и

-ЕУ, выключателя SF2 и двух соленоидов (мощных электромагнитов), приводов

силовых выключателей УАС1 и УАС2. В цепях электромагнитов имеются блок-контакты выключателей QF1 и QF2, что не позволяет включиться двум выключателям одновременно. Включение электромагнитов УАС1 или УАС2 происходит при срабатывании (кратковременном) контакторов КМ1 или КМ2. Электромагнит выключает силовой выключатель QF1, после чего сразу обесточивается, так как обесточивается КМ1. Оперативный ток - постоянный от независимого источника питания.

3. Схема управления.

3.1. Элементы схемы управления:

ЕС - шинки управления = 110 220В;

SA1, SA2 - ключи управления приводом;

КМ1, КМ2 - контакторы включения соленоидов приводов ПЭ 1 и 2;

SBC1, SBC2 - кнопки местного управления включением;

КТ1, КТ2 - реле времени включения контакторов КМ1 или КМ2;

УАТ1, УАТ2 - электромагниты отключения силовых выключателей QF1 и QF2;

АКS1, АКS2 - системы АПВ 1 и 2 линий.

SF1 - автомат включения схемы управления.

В схеме имеются так же блок-контакты силовых выключателей QF1 и QF2, соответствующие положению выключателей "включено" или "отключено". В некоторых схемах могут применяться промежуточные реле положения силовых выключателей KQC или KQT. Оперативный ток - постоянный от независимого источника.

3.2.Работа схемы. Исходное положение: Л1 - в работе, Л2 - в резерве. Задача схемы: при выходе из строя Л1 должна включиться Л2, т.е. должен отключиться QF1 и включиться QF2. Время безтоковой паузы - 0,3 0,5 секунд. Количество срабатываний АВР - 1 раз (1,5 с). Запрет на включение АВР - в случае срабатывания защиты на отходящей линии.

3.2.1.При наличии напряжения на Л1 реле KV1 получает питание от TV1 и контакты KV1 (строка 5 схемы) разомкнуты, реле KT2 отключены, контакты KT2 (строка - 11) разомкнуты. Выключатель QF1 - включен, его контакты QF1 (строка - 2) разомкнуты. Таким образом подготовленна цепь для отключения QF1 с помощью срабатывания УАТ1.

3.2.2.При исчезновении питания на Л1 реле KV1 обесточатся и замкнут свои контакты KV1 (в строке 5), реле KT2 сработает и с выдержкой времени замкнет контакты КТ2 (строка 11), затем включается контактор КМ2 и подключает соленоид электромагнитного привода УАС2, который включает выключатель QF2. Питание на шины от резервного источника подано. Блок контакты QF2 размыкают цепь включения УАС1 для предотвращения повторного включения выключателя QF1.

Рисунок 2 - Схема автоматического включения резерва (АВР)

  1. Для чего применяется АПВ?
  2. Когда применяется однократное АПВ, а когда - многократное?
  3. За счет чего обеспечивается однократность АПВ в данной схеме?
  4. Для чего реле KL1 имеет две обмотки?
  5. Из каких основных частей состоит реле РПВ-58?
  6. В каком случае система АПВ не будет срабатывать на повторное включение? Покажите как это реализовано в данной схеме.
  7. Для чего нужно реле времени КТ и какую выдержку на нем нужно установить?
  8. В каких случаях АПВ обязательно?
  9. Какие выдержки времени применяются в схемах АПВ для многократных включений?
  10. Какой элемент схемы дает команду на пуск АПВ?
  11. Для чего применяется АВР на линиях питания?
  12. Какова величина бестоковой паузы при использовании АВР?
  13. Допускается ли многократность АВР?
  14. АВР включается при отключении питающей или отходящей линий? Почему?
  15. Как осуществляется контроль напряжения в линиях Л1 и Л2?
  16. Какой из выключателей QF включен в нормальном режиме? Какой отключен?
  17. Найдите в схеме блок-контакты силовых выключателей QF. Для чего они нужны?
  18. В каком случае можно включить QF1 от кнопки? А отключить?
  19. Почему шинки ЕУ расположены отдельно от ЕС?
  20. Как отключить выключатель QF1?
  21. Составьте алгоритмы включения Л2 и Л1 при восстановлении питания на Л1.

Диплом на заказ

Узнать стоимость написания работы -->

Читайте также: