Реферат на тему алгоритм решения задач

Обновлено: 02.07.2024

Все методы спуска решения задачи безусловной минимизации различаются либо выбором направления спуска, либо способом движения вдоль направления спуска. Это позволяет написать общую схему методов спуска.

Решается задача минимизации функции j(x) на всём пространстве En. Методы спуска состоят в следующей процедуре построения последовательности k>. Â качестве начального приближения выбирается любая точка x0ÎEn. Последовательные приближения x1, x2, … строятся по следующей схеме:

1) в точке xk выбирают направление спуска — Sk;

Направление Sk выбирают таким образом, чтобы обеспечить неравенство j(xk+1) 0.

В случае, если =0, полагают xk+1=xk и переходят к следующей итерации.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Опишем первый цикл метода, состоящий из n итераций. В произвольной точке x0 выбирают S0=±e, и определяет величину b0 способом удвоения так, чтобы было j(x1)=j(x0-b0S0) 2 +y 2 -xy-3y c точностью e, используя описанные выше методы.

Нахождение минимума моей функции с помощью метода покоординатного спуска.

Для получения результата программой было выполнено 24 итерации.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Нахождение минимума с помощью метода градиентного спуска.

Программа, использованная мной для выполнения этой задачи представлена ниже.

Поскольку входные параметры этой программы совпадают со входными параметрами задачи №1, то я взял их такие же, что и для первой задачи, чтобы, сравнив полученные результаты и количество итераций, необходимых для поиска минимума, я смог сделать какие-либо выводы о преимуществах и недостатках обеих задач из практики.

Итак, взяв те же начальные условия я получил следующие результаты:

Количество итераций, которое потребовалось для нахождения точки минимума равно 20. Видно, что количество итераций, потребовавшееся первой программе больше, чем количество итераций, необходимых второй программе. Это следует из того, что антиградиент указывает направление наискорейшего убывания функции.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Ниже также представлен график сходимости вышеописанного процесса для моей функции и моих начальных условий.

Необходимо также добавить несколько важных моментов. Во-первых, из того, что количество итераций, потребовавшееся для нахождения минимума в первой задаче больше, чем во второй не следует тот факт, что вторая программа работает быстрее, чем первая, поскольку для второй задачи необходимо вычислять не только значение функции в какой-либо точке, но и её производной в этой точке, которая может быть более громоздка, чем сама функция.

Наконец, второй метод плох ещё и потому, что для произвольной функции производную вычислить невозможно; придётся сначала аппроксимировать её, а затем искать минимум (за счёт аппроксимации значительно вырастает время и погрешность измерений).

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Алгоритм — точная инструкция исполнителю выполнить определенную последовательность действий для достижения цели в ограниченном количестве шагов.

Алгоритм может быть сконструирован таким образом, что он может быть выполнен человеком или автоматическим устройством. Создание алгоритма, даже самого простого, — это творческий процесс. Она доступна только живым существам, и долгое время считалось, что она только человеческая. Латинский перевод его математического трактата был подготовлен в 19 в. Европейцы узнали о десятичной системе счисления и правилах арифметики для многозначных чисел. Именно эти правила тогда назывались алгоритмами.

По этой причине они обычно формулируют несколько общих свойств алгоритмов, которые позволяют отличать алгоритмы от других утверждений.

Такие качества:

  • Дискреция (разрыв, разделение) — алгоритм должен представлять процесс решения задачи в виде последовательности простых (или заранее определенных) шагов. Любое действие, предусмотренное алгоритмом, выполняется только после завершения предыдущего.
  • Определение — каждое правило алгоритма должно быть четким и однозначным и не оставлять места для произвола. Благодаря этой характеристике, выполнение алгоритма является механическим и не требует дополнительных инструкций или информации о решаемой задаче.
  • Эффективность (конечность) — алгоритм должен приводить к решению задачи за конечное число шагов.
  • Массовый — алгоритм решения задачи разрабатывается в общем виде, т.е. он должен быть применим к классу задач, отличающихся только исходными данными. В этом случае исходные данные могут быть выбраны из диапазона, называемого областью действия алгоритма.

Во-первых, неправильно связывать алгоритм с решением проблемы. Алгоритм может вообще не решить проблему.

Типы алгоритмов

Типы алгоритмов как логико-математических средств отражают указанные составляющие человеческой деятельности и тенденции, а сами алгоритмы классифицируются в соответствии с назначением, исходными условиями задачи, способами ее решения, определением действий исполнителя следующим образом:

Линейный алгоритм — набор команд (инструкций), которые выполняются одна за другой во времени.

Разветвленный алгоритм — алгоритм, содержащий хотя бы одно условие, в результате которого компьютер позволяет перейти на один из двух возможных этапов.

Циклический алгоритм — алгоритм, обеспечивающий многократное повторение одного и того же действия (одних и тех же операций) для новых исходных данных. На циклических алгоритмах сокращено большинство методов вычислений, поиск вариантов.

Цикл программы — это последовательность инструкций (серия, тело цикла), которую можно выполнять много раз (для новых исходных данных) до тех пор, пока не будет выполнено определенное условие.

Вспомогательный алгоритм (алгоритм slave) — алгоритм, который был ранее разработан и полностью использован при алгоритмизации конкретной задачи. В некоторых случаях, когда существуют одинаковые последовательности инструкций (команд) для разных данных, чтобы сократить набор данных, также назначается вспомогательный алгоритм.

На всех этапах подготовки к алгоритмизации задачи часто используется структурное представление алгоритма.

Структурная (блочная, графическая) схема алгоритма — графическое представление алгоритма в виде схемы, соединенной стрелками (переходными линиями) блоков — графические символы, каждый из которых соответствует одному шагу алгоритма. Внутри блока находится описание соответствующего действия.

Графическое представление алгоритма широко используется перед программированием задачи благодаря своей наглядности, так как визуальное восприятие обычно облегчает процесс написания программы, ее исправление в случае возможных ошибок, понимание процесса обработки информации.

Требования к алгоритму

В языках программирования выделение памяти осуществляется декларативными операторами (операторами описания переменных). В языке Basic описаны не все переменные, обычно описываются только массивы. Но все же при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и выделяет память для соответствующих переменных.

Третье правило — усмотрение. Алгоритм состоит из отдельных шагов (действий, операций, команд). Множество шагов, из которых алгоритм естественно составлен.

Четвертое правило — тюремное заключение. После каждого шага вы должны указать, за каким шагом следует следующий, или дать команду останова. Пятое правило — конвергенция (эффективность). Алгоритм должен перестать работать после окончательного количества шагов. В этом случае необходимо указать, что следует считать результатом работы алгоритма.

Алгоритм — неопределенный термин в теории алгоритмов. Алгоритм задает конкретный набор выходных данных в соответствии с каждым конкретным набором входных данных, т.е. вычисляет (реализует) функцию.

Заключение

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Характеристика алгоритма как набора инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий. Механические, стохастические и эвристические алгоритмы. Специфика их обозначения в блок-схемах.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 12.01.2015
Размер файла 199,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Часто в качестве исполнителя выступает некоторый механизм (компьютер, токарный станок, швейная машина), но понятие алгоритма необязательно относится к компьютерным программам, так, например, чётко описанный рецепт приготовления блюда также является алгоритмом, в таком случае исполнителем является человек.

Понятие алгоритма относится к первоначальным, основным, базисным понятиям математики. Вычислительные процессы алгоритмического характера (арифметические действия над целыми числами, нахождение наибольшего общего делителя двух чисел и т. д.) известны человечеству с глубокой древности. Однако в явном виде понятие алгоритма сформировалось лишь в начале XX века.

Виды алгоритмов

Особую роль выполняют прикладные алгоритмы, предназначенные для решения определённых прикладных задач. Алгоритм считается правильным, если он отвечает требованиям задачи (например, даёт физически правдоподобный результат). Алгоритм (программа) содержит ошибки, если для некоторых исходных данных он даёт неправильные результаты, сбои, отказы или не даёт никаких результатов вообще. Последний тезис используется в олимпиадах по алгоритмическому программированию, чтобы оценить составленные участниками программы.Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей ее решения, определения действий исполнителя подразделяются следующим образом:

* Механические алгоритмы, или иначе детерминированные, жесткие (например, алгоритм работы машины, двигателя и т. п.) -- задают определенные действия, обозначая их в единственной и достоверной последовательности, обеспечивая тем самым однозначный требуемый или искомый результат, если выполняются те условия процесса, задачи, для которых разработан алгоритм.

* Гибкие алгоритмы, например, стохастические, то есть вероятностные и эвристические.

* Вероятностный (стохастический) алгоритм дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.

* Линейный алгоритм -- набор команд (указаний), выполняемых последовательно во времени друг за другом.

* Разветвляющийся алгоритм -- алгоритм, содержащий хотя бы одно условие, в результате проверки которого может осуществляться разделение на несколько параллельных ветвей алгоритма. Во многих случаях требуется, чтобы при одних условиях выполнялась одна последовательность действий, а при других - другая. Если пошел дождь, то надо открыть зонт. Если прозвенел будильник, то надо вставать. Если встречу Сашу, то скажу ему … Если встречу Сашу, то скажу ему …, иначе зайду к нему сам.

* Циклический алгоритм -- алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы -- последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторого условия.

Для счетчика от нач. значения до кон. значения выполнить действие. Часто бывает так, что необходимо повторить тело цикла, но заранее не известно, какое количество раз это надо сделать. В таких случаях количество повторений зависит от некоторого условия. Такие циклы называются циклы с условием. Циклы в которых сначала проверяется условие, а затем, возможно, выполняется тело цикла называют циклы с предусловием. Если условие проверяется после первого выполнения тела цикла, то циклы называются циклы с постусловием.

Например, в субботу вечером вы смотрите телевизор. Время от времени поглядываете на часы и если время меньше полуночи, то продолжаете смотреть телевизор, если это не так, то вы прекращаете просмотр телепередач.

В общем случае схема циклического алгоритма с условием будет выглядеть так: Пока условие повторять действие. При составлении циклических алгоритмов важно думать о том, чтобы цикл был конечным. Ситуация, при которой выполнение цикла никогда не заканчивается, называется зацикливанием.

* Вспомогательный (подчиненный) алгоритм (процедура) -- алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи. В некоторых случаях при наличии одинаковых последовательностей указаний (команд) для различных данных с целью сокращения записи также выделяют вспомогательный алгоритм. На всех этапах подготовки к алгоритмизации задачи широко используется структурное представление алгоритма.

* Структурная блок-схема, граф-схема алгоритма -- графическое изображение алгоритма в виде схемы связанных между собой с помощью стрелок (линий перехода) блоков -- графических символов, каждый из которых соответствует одному шагу алгоритма. Внутри блока дается описание соответствующего действия. Графическое изображение алгоритма широко используется перед программированием задачи вследствие его наглядности, так как зрительное восприятие обычно облегчает процесс написания программы, ее корректировки при возможных ошибках, осмысливание процесса обработки информации.

Можно встретить даже такое утверждение: "Внешне алгоритм представляет собой схему -- набор прямоугольников и других символов, внутри которых записывается, что вычисляется, что вводится в машину и что выдается на печать и другие средства отображения информации".

Время работы

Основная статья: Класс сложности

Распространенным критерием оценки алгоритмов является время работы и порядок роста продолжительности работы в зависимости от объема входных данных.

Для каждой конкретной задачи составляют некоторое число, которое называют ее размером. Например, размером задачи вычисления произведения матриц может быть наибольший размер матриц-множителей, для задач на графах размером может быть количество ребер графа.Время, которое тратит алгоритм как функция от размера задачи , называют временной сложностью этого алгоритма T(n). Асимптотику поведения этой функции при увеличении размера задачи называют асимптотичной временной сложностью, а для ее обозначения используют специальную нотацию.

Именно асимптотическая сложность определяет размер задач, которые алгоритм способен обработать. Например, если алгоритм обрабатывает входные данные размером за время cnІ, где c -- некоторая константа, то говорят, что временная сложность такого алгоритма O(nІ).

Грубо говоря, анализ средней асимптотической временной сложности можно разделить на два типа: аналитический и статистический. Аналитический метод дает более точные результаты, но сложен в использовании на практике. Зато статистический метод позволяет быстрее осуществлять анализ сложных задач

Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований:

Дискретность -- алгоритм должен представлять процесс решения задачи как последовательное выполнение некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, то есть преобразование исходных данных в результат осуществляется во времени дискретно.

Понятность -- алгоритм должен включать только те команды, которые доступны исполнителю и входят в его систему команд.

Завершаемость (конечность) -- при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов.[источник не указан 1472 дня] С другой стороны, вероятностный алгоритм может и никогда не выдать результат, но вероятность этого равна 0.

Массовость (универсальность). Алгоритм должен быть применим к разным наборам исходных данных.

Результативность -- завершение алгоритма определёнными результатами.

Алгоритм содержит ошибки, если приводит к получению неправильных результатов либо не даёт результатов вовсе.Алгоритм не содержит ошибок, если он даёт правильные результаты для любых допустимых исходных данных.

Формы записи алгоритма:

словесная или вербальная (языковая, формульно-словесная);

псевдокод (формальные алгоритмические языки);

графическая (блок-схемы и ДРАКОН-схемы);

структурограммы (диаграммы Насси-Шнейдермана).

Обычно сначала (на уровне идеи) алгоритм описывается словами, но по мере приближения к реализации он обретает всё более формальные очертания и формулировку на языке, понятном исполнителю (например, машинный код).

Требования, предъявляемые к алгоритму

Первое правило - при построении алгоритма прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (закодированное) представление этих объектов носит название данных. Алгоритм приступает к работе с некоторым набором данных, которые называются входными, и в результате своей работы выдает данные, которые называются выходными. Таким образом, алгоритм преобразует входные данные в выходные. Это правило позволяет сразу отделить алгоритмы от “методов” и “способов”. Пока мы не имеем формализованных входных данных, мы не можем построить алгоритм.

Второе правило - для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т.е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т. е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти. В школьной “теории алгоритмов” эти два правила не рассматриваются. В то же время практическая работа с алгоритмами (программирование) начинается именно с реализации этих правил.

В языках программирования распределение памяти осуществляется декларативными операторами (операторами описания переменных). В языке Бейсик не все переменные описываются, обычно описываются только массивы. Но все равно при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и отводит память под соответствующие переменные.

Третье правило - дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Множество шагов, из которых составлен алгоритм, конечно.

Четвертое правило - детерминированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки. Пятое правило - сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.

Блок-схемы

Схема алгоритма (блок-схема) -- в программировании -- графическое представление программы или алгоритма с использованием стандартных графических элементов (прямоугольников, ромбов, трапеций и др.), обозначающих команды, действия, данные и т. п.

Блок-схема -- условное изображение алгоритма, программы для ЭВМ, процесса принятия решения, документооборота и т.п., предназначенное для выявления их структуры и общей последовательности операций.Правила выполнения блок-схем

Существующие правила выполнения блок-схем определяются ГОСТ 19.701-90 (ИСО 5807-85) - Схемы алгоритмов, программ, данных и систем. Условные обозначения и правила выполнения.

ГОСТ - государственный стандарт

ИСО - стандарт, подготовленный Международной организацией по стандартизации

Последнее число в названии ГОСТ и ИСО означает год издания стандарта.

Блок-схемы в наши дни. Понятие блок-схем до сих пор применяется в образовательных программах по информатике, и даже включено в ЕГЭ по информатике, но на практике блок-схемы подходят лишь для представления достаточно простых алгоритмов и не удовлетворяют требованиям современного программирования. В настоящее время, для графического представления объектного моделирования в области разработки программного обеспечения применяется UML (сокр. от англ. Unified Modeling Language -- унифицированный язык моделирования).

Обозначения в блок-схемах (основные элементы)

? Прямоугольником обозначается операция. Например, присваивание. Внутри блока пишут операции, которые выполняются на данном шаге алгоритма.

? Ромбом обозначается оператор ветвления. Внутри ромба пишутся проверяемые условия. Например, «a

Исключительно важно использовать язык блок-схем при разработке алгоритма решения задачи. Решение одной и той же задачи может быть реализовано с помощью различных алгоритмов, отличающихся друг от друга как по времени счета и объему вычислений, так и по своей сложности. Запись этих алгоритмов с помощью блок-схем позволяет сравнивать их, выбирать наилучший алгоритм, упрощать, находить и устранять ошибки.

Отказ от языка блок-схем при разработке алгоритма и разработка алгоритма сразу на языке программирования приводит к значительным потерям времени, к выбору неоптимального алгоритма. Поэтому необходимо изначально разработать алгоритм решения задачи на языке блок-схем, после чего алгоритм перевести на язык программирования.

При разработке алгоритма сложной задачи используется метод пошаговой детализации. На первом шаге продумывается общая структура алгоритма без детальной проработки отдельных его частей. Блоки, требующие детализации, обводятся пунктирной линией и на последующих шагах разработки алгоритма продумываются и детализируются.

В процессе разработки алгоритма решения задачи можно выделить следующие этапы:

  • Этап 1 . Математическое описание решения задачи.
  • Этап 2 . Определение входных и выходных данных.
  • Этап 3 . Разработка алгоритма решения задачи.

Базовые алгоритмические конструкции

В теории программирования доказано, что для записи любого, сколь угодно сложного алгоритма достаточно трех базовых структур:

  • следование (линейный алгоритм);
  • ветвление (разветвляющийся алгоритм);
  • цикл-пока (циклический алгоритм).

Линейные алгоритмы

Линейный алгоритм образуется из последовательности действий, следующих одно за другим. Например, для определения площади прямоугольника необходимо сначала задать длину первой стороны, затем задать длину второй стороны, а уже затем по формуле вычислить его площадь.

alt

Пример

ЗАДАЧА. Разработать алгоритм вычисления гипотенузы прямоугольного треугольника по известным значениям длин его катетов a и b.

На примере данной задачи рассмотрим все три этапа разработки алгоритма решения задачи:

Этап 1. Математическое описание решения задачи.

Математическим решением задачи является известная формула:

,

где с-длина гипотенузы, a, b – длины катетов.

Этап 2. Определение входных и выходных данных.

Этап 3. Разработка алгоритма решения задачи.

На данной схеме цифрами указаны номера элементов алгоритма, которые соответствуют номерам пунктов словесного описания алгоритма.

Блок-схема

Разветвляющиеся алгоритмы

Алгоритм ветвления содержит условие, в зависимости от которого выполняется та или иная последовательность действий.

Алгоритм ветвления

Пример

ЗАДАЧА. Разработать алгоритм вычисления наибольшего числа из двух чисел x и y.

Этап 1. Математическое описание решения задачи.

блок-схема

В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма, которые соответствуют номерам шагов словесного описания алгоритма

В рассматриваемом алгоритме (рис.3) имеются три ветви решения задачи:

  • первая: это элементы 1, 2, 3, 4, 8.
  • вторая: это элементы 1, 2, 3, 5, 6, 8
  • третья: это элементы 1, 2, 3, 5, 7, 8.

Циклические алгоритмы

Циклический алгоритм – определяет повторение некоторой части действий (операций), пока не будет нарушено условие, выполнение которого проверяется в начале цикла. Совокупность операций, выполняемых многократно, называется телом цикла.

Алгоритмы, отдельные действия в которых многократно повторяются, называются циклическими алгоритмами, Совокупность действий, связанную с повторениями, называют циклом.

При разработке алгоритма циклической структуры выделяют следующие понятия:

  • параметр цикла – величина, с изменением значения которой связано многократное выполнение цикла;
  • начальное и конечное значения параметров цикла;
  • шаг цикла – значение, на которое изменяется параметр цикла при каждом повторении.

Цикл организован по определенным правилам. Циклический алгоритм состоит из подготовки цикла, тела цикла и условия продолжения цикла.

Циклический алгоритм

В подготовку цикла входят действия, связанные с заданием исходных значений для параметров цикла:

  • начальные значения цикла;
  • конечные значения цикла;
  • шаг цикла.

В тело цикла входят:

  • многократно повторяющиеся действия для вычисления искомых величин;
  • подготовка следующего значения параметра цикла;
  • подготовка других значений, необходимых для повторного выполнения действий в теле цикла.

В условии продолжения цикла определяется допустимость выполнения повторяющихся действий. Если параметр цикла равен или превысил конечное значение цикла, то выполнение цикла должно быть прекращено.

Пример

ЗАДАЧА. Разработать алгоритм вычисления суммы натуральных чисел от 1 до 100.

Этап 1. Математическое описание решения задачи.

Обозначим сумму натуральных чисел через S. Тогда формула вычисления суммы натуральных чисел от 1 до 100 может быть записана так:

сумма натуральных чисел

где Xi – натуральное число X c номером i, который изменяется от 1 до n, n=100 – количество натуральных чисел.

Этап 2. Определение входных и выходных данных.

Выходные данные – значение суммы членов последовательности натуральных чисел.

Параметр цикла – величина, определяющая количество повторений цикла. В нашем случае i – номер натурального числа.

Подготовка цикла заключается в задании начального и конечного значений параметра цикла.

  • начальное значение параметра цикла равно 1,
  • конечное значение параметра цикла равно n,
  • шаг цикла равен 1.

Для корректного суммирования необходимо предварительно задать начальное значение суммы, равное 0.

Тело цикла. В теле цикла будет выполняться накопление значения суммы чисел, а также вычисляться следующее значение параметра цикла по формулам:

Условие продолжения цикла: цикл должен повторяться до тех пор, пока не будет добавлен последний член последовательности натуральных чисел, т.е. пока параметр цикла будет меньше или равен конечному значению параметра цикла.

Этап 3. Разработка алгоритма решения задачи.

Введем обозначения: S – сумма последовательности, i – значение натурального числа.

Начальное значение цикла i=1, конечное значение цикла i =100, шаг цикла 1.

Читайте также: