Реферат на тему аккумуляторы нового поколения

Обновлено: 05.07.2024

Известно, что чрезвычайные условия окружающей среды очень плохо сказываются на работоспособности литий-ионных аккумуляторных батарей. Однако, при понижении окружающей температуры аккумуляторы существенно теряют емкость, а по достижению отметки ниже -23 градусов Цельсия некоторые из них полностью теряют свою работоспособность и иногда выходят из строя.

Технология же самоподогрева литий-ионных аккумуляторов позволит эксплуатировать эти батареи в условиях полярного и даже космического холода.
Батарея, которая способна работать в холодных условиях, может быть очень полезна во многих областях, начиная от космической техники и заканчивая высотными беспилотными летательными аппаратами. Но самым перспективным направлением применения таких батарей являются электрические автомобили, которые в настоящее время не очень приспособлены для эксплуатации в северных регионах. Температуры ниже точки замерзания воды приводят к существенному замедлению процесса зарядки, к снижению эффективности работы технологий рекуперационного торможения, а снижение дальности поездки на одном заряде за счет понижения температуры может достигать 40 процентов.

Функцию самоподогрева можно реализовать при помощи никелевой фольги, включенной в конструкцию аккумуляторной батареи. Интегрированный датчик температуры изменяет силу протекающего через фольгу электрического тока, который подогревает батарею изнутри, поддерживая ее температуру в заданных рамках. Это не позволяет электролиту батареи замерзнуть, а в случае отсутствия необходимости подогрева датчик полностью отключает ток и не расходует энергию, накопленную в батарее. Для системы самоподогрева можно использовать достаточно распространенные и недорогие материалы. Наличие такой системы увеличивает вес батареи всего на 1.5 процента, а ее стоимость увеличивается на смехотворные 0.04 процента.

Еще одним негативным фактором эксплуатации литий-ионных батарей является их перегрев. Новый тип безопасных литий-ионных аккумуляторных батарей может самостоятельно отключаться в случае их перегрева выше определенной температуры. Это позволит избежать повторения случаев возгорания батарей ноутбуков, смартфонов и других электронных устройств, которые происходят с завидной периодичностью. При понижении температуры батареи до нормального уровня ее нормальное функционирование полностью возобновляется.

Типичный литий-ионный аккумулятор состоит из двух электродов и слоя жидкого или гелеобразного электролита, через который производится ионный обмен. Достаточно большая часть аккумуляторных батарей выпускается в бескорпусном исполнении и любой прокол, деформация или даже приложение усилия к мягкому пакету батареи приводит к возникновению короткого замыкания, в точке которого при заряде начинает интенсивно выделяться тепло. При нагреве электролита до 150 градусов Цельсия может произойти возгорание электролита и даже небольшой взрыв.

В основе структуры новой батареи лежат принципы, использованные ранее для создания датчика, контролирующего температуру человеческого тела. Датчик представляет собой лист пластика, заполненного внутри крошечными никелевыми частицами, поверхность которых усеяна наноразмерными шипами. Однако в аккумуляторной батарее остроконечные никелевые частицы дополнительно покрыты слоем графена, углерода одноатомной толщины, что позволило увеличить электрическую проводимость материала.

Для того, чтобы пластиковая пленка могла проводить электрический ток, требуется чтобы никелевые частицы физически касались друг друга своими шипами. Однако, при нагреве полиэтиленовой пленки она расширяется, расстояние между никелевыми частицами увеличивается, электрический контакт пропадает и ток не может больше течь через батарею. По мере охлаждения полиэтилен сокращается, частицы снова начинают контактировать друг с другом и работоспособность батареи постепенно восстанавливается.

Следует отметить, что чувствительность такой системы тепловой защиты аккумуляторной батареи в 10 тысяч раз превышает чувствительность других устройств защиты, использующих твердотельные датчики температуры, прикрепляемые к наружной поверхности батареи. Диапазон температуры срабатывания защиты и некоторые другие параметры могут регулироваться в процессе производства устройств путем изменения плотности частиц в полимере, типа полимера и геометрических размеров никелевых частиц. В случае угрозы перегрева такая батарея может самостоятельно отключаться. При охлаждении батарея снова самовосстанавливается, не претерпевая изменений ее электрической емкости и других параметров.

Аккумуляторы нового поколения

Новое поколение аккумуляторов в десять раз увеличит время работы мобильных устройств и сделает электромобили конкурентоспособными на рынке. В этой статье мы расскажем про самые перспективные разработки.


Закон Мура, постулируемый в IT-индустрии, обещает увеличение производительности процессоров каждые два года. Развитие аккумуляторов отстает: их эффективность увеличивается в среднем на 7% в год. И хотя литий-ионные батареи в современных смартфонах работают все дольше и дольше, это во многом связано с оптимизированной производительностью чипов.

Литий-ионные батареи доминируют на рынке из-за их малого веса и высокой плотности накапливаемой энергии.

Ежегодно миллиарды аккумуляторов устанавливаются в мобильные устройства, электромобили и системы для хранения электричества от возобновляемых источников энергии. Однако современная техника достигла своего предела.

Хорошей новостью является то, что следующее поколение литий-ионных батарей уже почти соответствует требованиям рынка. В качестве аккумулирующего материала в них применяется литий, который теоретически позволяет в десять раз увеличить плотность хранения энергии.

Наряду с этим приводятся исследования других материалов. Хотя литий и обеспечивает приемлемую плотность энергии, однако речь идет о разработках на несколько порядков оптимальнее и дешевле. В конце концов, природа могла бы предоставить нам лучшие схемы для высококачественных аккумуляторов.

Научно-исследовательские лаборатории университетов разрабатывают первые образцы органических аккумуляторов. Однако до выхода таких биобатарей на рынок может пройти не одно десятилетие. Мостик в будущее помогают протянуть малогабаритные батареи, которые заряжаются путем улавливания энергии.

Мобильные источники питания

По данным компании Gartner, в этом году будет продано более 2 млрд. мобильных устройств, в каждом из которых установлен литий-ионный аккумулятор. Эти аккумуляторы сегодня считаются стандартом, отчасти потому, что они весьма легкие. Тем не менее они обладают максимальной плотностью энергии только 150-200 Вт·ч/кг.

Литий-ионные батареи заряжаются и отдают энергию путем перемещения ионов лития. При зарядке положительно заряженные ионы двигаются от катода через раствор электролита между слоями графита анода, накапливаются там и присоединяют электроны тока зарядки.

При разрядке они отдают электроны в контур тока, ионы лития перемещаются обратно к катоду, в котором они вновь связываются с находящимся в нем металлом (в большинстве случаев — кобальтом) и кислородом.

Емкость литий-ионных аккумуляторов зависит от того, какое количество ионов лития может располагаться между слоями графита. Однако благодаря кремнию сегодня можно добиться более эффективной работы аккумуляторов.

Для сравнения: для связывания одного иона лития требуется шесть атомов углерода. Один атом кремния, напротив, может удерживать четыре иона лития.

battery

Литий-ионный аккумулятор сохраняет свою элетроэнергию в литии. При зарядке анода атомы лития сохраняются между слоями графита. При разрядке они отдают электроны и перемещаются в виде ионов лития в слоистую структуру катода (кобальтит лития).

Кремний повышает емкость

Емкость аккумуляторов растет при включении кремния между слоями графита. Она увеличивается в три-четыре раза при соединении кремния с литием, однако после нескольких циклов зарядки графитовый слой разрывается.

Решение этой проблемы найдено в стартап-проекте Amprius, созданном учеными из Стэндфордского университета. Проект Amprius получил поддержку таких лю­дей, как Эрик Шмидт (председателя совета директоров Google) и лауреат Нобелевской премии Стивен Чу (до 2013 года — министр энергетики США).

Poroeses Silizium

Пористый кремний в аноде увеличивает эффективность литий-ионных аккумуляторов до 50%. В ходе реализации стартап-проекта Amprius же произведены первые кремниевые аккумуляторы.

Более эффективно, чем пористый кремний, накапливает энергию слой кремниевых нанотрубок. В прототипах было достигнуто почти двукратное увеличение зарядной емкости (до 350 Вт·ч/кг).

Но есть и третий метод. Исследователи проекта Ampirus внедрили в углеродную оболочку группы частиц кремния, которые непосредст­венно не соприкасаются, а обеспечивают свободное пространство для увеличения частиц в объеме. Литий может накапливаться на этих частицах, а оболочка остается неповрежденной. Даже после тысячи циклов зарядки емкость прототипа снизилась только на 3%.

Graphit

Кремний соединяется с несколькими атомами лития, но при этом расширяется. Для предотвращения разрушения графита исследователи используют структуру растения граната: они вводят кремний в графитовые оболочки, размер которых достаточно велик, чтобы дополнительно присоединять литий.

Эффективные аккумуляторы

Эффективность элементов питания напрямую связана с плотностью энергии химических веществ. График ниже показывает, что комбинации материалов, например, литий-сера или металл-воздух, значительно лучше аккумулируют энергию. Литиево-серные (LiS) аккумуляторы обеспечивают усовершенствование катода: сера в катоде, так же как и кремний в аноде, может накапливать больше лития.

LiS

В следующем поколении аккумуляторов используются сера и цинк. Большим потенциалом обладают только биоаккумуляторы.

Ранее разработанные LiS-прототипы со значением 350 Вт·ч/кг обеспечивают большую плотность энергии, чем литий-ионные аккумуляторы, однако они тоже не достигли предела. На пути увеличенной эффективности стоят две проблемы: теоретическая плотность энергии на практике может быть достигнута только в том случае, если использовать в аноде чистый литий.

accums

Сера может хранить больше лития в катоде, что увеличивает плотность энергии. Литий-серные аккумуляторы (разработка университета Беркли) дополнительно используют оксид графена как переносчик энергии и дезинфицирующее средство (СТАВ) в качестве защитного слоя.

Сера может хранить больше лития в катоде, что увеличивает плотность энергии. Литий-серные аккумуляторы (разработка университета Беркли) дополнительно используют оксид графена как переносчик энергии и дезинфицирующее средство (СТАВ) в качестве защитного слоя.

Это затруднительно, так как он реагирует с электролитом. Однако то же самое делает и сера, а именно — ионы полисульфида, которые подобным же образом перемещаются к аноду и там разлагают литий или осаждаются в форме сульфида лития Li2S. Такой аккумулятор выдерживает лишь небольшое число циклов зарядки.

К 2020 году Альтуэс ожидает выхода на рынок LiS-аккумуляторов с плотностью энергии около 600 Вт·ч/кг, что примерно втрое превышает значения литий-ионных аккумуляторов.

Хранение энергии

Imprint Energy

Цинково-воздушные аккумуляторы пригодны для не слишком тяжелых устройств, так как при разрядке они используют кислород. Специалисты стартап-проекта Imprint Energy разработали подобный гибкий аккумулятор, подходящий для применения в лэптопах.

Химическую реакцию лития с кислородом используют металл-воздушные аккумуляторы: при разрядке атомы металла в аноде реагируют с кислородом воздуха и выделяют электроны. Затем они перемещаются через электролит в форме ионов к катоду. Потенциальная плотность энергии (1100 Вт·ч/кг) намного превышает значения литий-ионных аккумуляторов.

Цинково-воздушные батареи применяются уже давно, однако цинк разрушается при разрядке. Чтобы этого не происходило в аккумуляторах, во время подзарядки кислород на катоде должен быть удален.

Таким образом из ионов металла вновь возникает цинк. Кроме того, требуется особый катализатор, такой как раствор калия, в качестве защиты от воздуха для цинкового электрода с целью предотвращения его нежелательного окисления.

В стартап-проекте Imprint Energy разработаны даже готовые к печати аккумуляторы с полимерным катализатором, которые благодаря своей гибкости превосходно подходят для малогабаритных уст­ройств.

Поскольку для цинково-воздушных аккумуляторов требуется постоянный обмен воздуха, они мало пригодны для мобильных устройств, однако в будущем смогут использоваться в электромобилях, тем более что они не содержат горючих материалов. Накопленная энергия едва ли уменьшается в течение десятилетий, что делает эти аккумуляторы весьма интересными.

Использование сил природы

В современных аккумуляторах электроны испускают только твердые материалы. Но существует также концепция окислительно-восстановительного потока или жидкостных ячеек: две растворенные соли металлов перемещаются рядом в отдельных контурах. Они приводятся в движение с помощью насосов и соприкасаются на проницаемой мембране. Происходит ионообмен, а ячейка разряжается и вновь заряжается при подаче тока.

QUANT WALCH

Автомобиль Quant массой 2,3 т приводится в действие от 400-литровой жидкостной ячейки и якобы предлагает дальность поездки около 600 км.

На Женевском автосалоне в 2014 году был представлен подобный автомобиль (Quante), дальность поездки которого якобы составляет 600 км, однако данные получены только в процессе моделирования. Ответы на проблемы материалов жидкостных ячеек до сих пор могут дать только исследовательские лаборатории.

В Массачусетском технологическом институте разработана жидкостная ячейка без мембраны, в которой две жидкости в процессе ионообмена не смешиваются при ламинарном течении. Благодаря этому исследователи смогли работать с бромом, который во время разрядки восстанавливается до бромоводорода. Использование брома позволит еще вдвое увеличить плотность энергии ванадиево-жидкостной ячейки.

AQDS

Аккумуляторы, действующие на принципе окислительно-восстановительного потока (разработка Гарвардского университета), дости­гают восьмикратной плотности энергии по сравнению с жидкостными ячейками. Для этого они используют AQDS (антрахинон-дисульфонат) и бромид, получаемые из ревеня. Электроды освобождаются и заряжаются путем обмена ионами водорода.

Биоаккумуляторы побеждают всех

Органические вещества очень хороши в качестве энергоносителей. Они недороги и, как правило, не ядовиты. Исследователи Гарвардского университета разработали жидкостную ячейку, извлекающую энергию хранения из антрахинона-дисульфоната (AQDS) — составной части ревеня. Однако они не могут отказаться от использования брома.

Энергия из сахара

Аккумулятор, разработанный в Виргинском техническом колледже, в качестве накопителя энергии использует сахар (мальтодекстрин), который разрушается ферментами при разрядке. В нем достигается примерно десятикратная плотность энергии по сравнению с литий-ионными моделями.

Пока неясно, сможет ли выдержать биоячейка несколько тысяч циклов зарядки, однако барьер в несколько сотен циклов она уже преодолела.

Так, компания Sony еще семь лет назад заявила о разработках в области биоаккумуляторов, но с тех пор мало что произошло. Опыт показывает, что для разработки чудо-батарей требуется довольно много времени.

Зарядка без розетки

В будущем электроэнергию для смартфонов можно будет вырабатывать даже посреди лесной глуши. Исследователи из США и Китая разработали крошечные генераторы, которые способны использовать для зарядки даже самые слабые вибрации. Эти устройства состоят из поливинилиденфторида (PVDF) — материала, генерирующего ток при давлении и деформации. Как правило, фторопласты используются для уплотняющих покрытий и фильтров, а также находят применение в динамиках и микрофонах.

Для производства генераторов в полимерную массу вводят частицы оксида цинка, которые затем растворяют соляной кислотой. В результате остается губчатая структура, изготовленная из мягкого и гибкого материала с крупными отверстиями, являющаяся чрезвычайно чувствительной к колебаниям всех видов.

PVDF Nano Xuang Wang

Наногенераторы на базе PVDF подходят для любого современного смартфона

В конце производственного процесса получается PVDF-пленка, на которую с обеих сторон наносится тонкая медная фольга в качестве электродов. Если наногенераторы устанавливаются на смартфон, достаточно, чтобы устройство во время поездки просто лежало на пассажирском сиденье. Вибрации заряжают аккумулятор: при частоте колебаний 40 Гц прототип достиг пиковых значений 11 В и 9,8 микроампер.

Использование энергии радиоволн

В ходе тестов система отправляла до 1000 бит в секунду и использовала для этого волны ТВ-передатчиков, расположенных на расстоянии от 800 м до 11 км.

Volvo Batterie

Аккумуляторы для элементов автомобиля

В электромобилях или гибридных машинах аккумуляторы обычно располагаются в багажнике. Европейский исследовательский проект StorAGE хочет устранить этот недостаток,
и Volvo в качестве участника данного проекта представила решение.

Производитель разработал легкие аккумуляторы. Их электроды из углеродных волокон окружают углеродные нанотрубки, покрытые литием. Вся конструкция заливается полимерной смолой, а в качестве изолирующего слоя применяется стекловолоконный холст.

Аккумулятор получается настолько плоским, гибким и прочным, что его можно использовать в качестве несущей конструкции автомобиля.

Также с каждым движением тела мы производим небольшое количество энергии, которая может быть преобразована в ток. Генератор на колесе велосипеда — лучший пример. Было бы неплохим вариантом использовать эту энергию для подзарядки смартфона. В технологическом институте Джорджии (Атланта) исследователи изобрели генератор, который вырабатывает электричество из трения.

Все устройство невелико и помещается в кармане: при диаметре 10 см и объеме 0,6 см 3 его вес составляет1,1 г. В будущем у нас всегда будет под руками источник питания — стоит лишь немного потереть его.

Фотографии в статье: Eliza Grinnell/Harvard School of Engineering and Applied Sciences; Lawrence Berkeley National Laboratory, Imprint Energy, Inc.; Nanoflowcell; Sensor Systems Laboratory/University of Washington; Xudong Wang; Volvo

1. Определение
2. Выбор технологии
3. Классификация аккумуляторов
4. Таблица аккумуляторов и их характеристики
5. Свинцово-кислотные аккумуляторы (SLA)
6. Никель-кадмиевые аккумуляторы (NiCd)
7. Никель-металлгидридные аккумуляторы (NiMH)
8. Литий-ионные аккумуляторы (Li-Ion)
9. Литий-полимернные аккумуляторы (Li-PoL,Li-Polymer)


ОпределениеАккумулятор (лат. accumulator собиратель, от лат. accumulo собираю, накопляю) — устройство для накопления энергии с целью её последующего использования.


Классификация аккумуляторов
Аккумуляторные батареи используются в автономных источниках энергии в самых различных областях. Требования, предъявляемые к этим устройствам, тоже различаются весьма значительно. При выборе конкретноготипа аккумулятора с потребительской точки зрения во внимание принимаются следующие характеристики:
• рабочее напряжение;
• планируемый режим разряда (постоянный или импульсный разряд);
• максимальный ток разряда;
• температурный режим при разрядке;
• допустимый режим зарядки (стандартный, ускоренный, быстрый или режим постоянной подзарядки, называемый также буферным);
• масса и габаритныехарактеристики;
• срок службы.
В зависимости от электрохимической технологии можно выделить следующие основные типы современных источников тока для мобильных устройств:
• герметизированные свинцово-кислотные (SLA);
• никель-кадмиевые (NiCd);
• никель-металлгидридные (NiMH);
• литий-ионные (Li-Ion);
• литий-полимерные (Li-Pol).
Основные формфакторы аккумуляторов следующие:
• цилиндрический;• дисковый;
• призматический.

Свинцово-кислотные аккумуляторы (SLA)
Для обозначения таких аккумуляторов применяется аббревиатура SLA (Sealed Lead Acid — герметизированные свинцово-кислотные). Это старейшие перезаряжаемые аккумуляторы, предназначенные для коммерческого использования, причем они до сих пор остаются наиболее дешевыми автономными источниками энергии. Видимо, самым существеннымнедостатком, присущим свинцово-кислотным элементам, является выделение газов — кислорода и водорода.
Сегодня SLA-аккумуляторы применяются в основном там, где требуется большая мощность при низкой стоимости устройств, а их вес и габаритные характ Из особенностей современных свинцово-кислотных аккумуляторов следует отметить:
• зарядка от простейших зарядных устройств
•.


Новое поколение аккумуляторов в десять раз увеличит время работы мобильных устройств и сделает электромобили конкурентоспособными на рынке. В этой статье мы расскажем про самые перспективные разработки.

Закон Мура, постулируемый в IT-индустрии, обещает увеличение производительности процессоров каждые два года. Развитие аккумуляторов отстает: их эффективность увеличивается в среднем на 7% в год. И хотя литий-ионные батареи в современных смартфонах работают все дольше и дольше, это во многом связано с оптимизированной производительностью чипов.

ЛИТИЙ-ИОННЫЕ БАТАРЕИ ДОМИНИРУЮТ НА РЫНКЕ ИЗ-ЗА ИХ МАЛОГО ВЕСА И ВЫСОКОЙ ПЛОТНОСТИ НАКАПЛИВАЕМОЙ ЭНЕРГИИ.

Ежегодно миллиарды аккумуляторов устанавливаются в мобильные устройства, электромобили и системы для хранения электричества от возобновляемых источников энергии. Однако современная техника достигла своего предела.

Хорошей новостью является то, что следующее поколение литий-ионных батарей уже почти соответствует требованиям рынка. В качестве аккумулирующего материала в них применяется литий, который теоретически позволяет в десять раз увеличить плотность хранения энергии.

Наряду с этим приводятся исследования других материалов. Хотя литий и обеспечивает приемлемую плотность энергии, однако речь идет о разработках на несколько порядков оптимальнее и дешевле. В конце концов, природа могла бы предоставить нам лучшие схемы для высококачественных аккумуляторов.

Научно-исследовательские лаборатории университетов разрабатывают первые образцы органических аккумуляторов. Однако до выхода таких биобатарей на рынок может пройти не одно десятилетие. Мостик в будущее помогают протянуть малогабаритные батареи, которые заряжаются путем улавливания энергии.

Мобильные источники питания

По данным компании Gartner, в этом году будет продано более 2 млрд. мобильных устройств, в каждом из которых установлен литий-ионный аккумулятор. Эти аккумуляторы сегодня считаются стандартом, отчасти потому, что они весьма легкие. Тем не менее они обладают максимальной плотностью энергии только 150-200 Вт·ч/кг.

Литий-ионные батареи заряжаются и отдают энергию путем перемещения ионов лития. При зарядке положительно заряженные ионы двигаются от катода через раствор электролита между слоями графита анода, накапливаются там и присоединяют электроны тока зарядки.

При разрядке они отдают электроны в контур тока, ионы лития перемещаются обратно к катоду, в котором они вновь связываются с находящимся в нем металлом (в большинстве случаев — кобальтом) и кислородом.

Емкость литий-ионных аккумуляторов зависит от того, какое количество ионов лития может располагаться между слоями графита. Однако благодаря кремнию сегодня можно добиться более эффективной работы аккумуляторов.

Для сравнения: для связывания одного иона лития требуется шесть атомов углерода. Один атом кремния, напротив, может удерживать четыре иона лития.


Литий-ионный аккумулятор сохраняет свою элетроэнергию в литии. При зарядке анода атомы лития сохраняются между слоями графита. При разрядке они отдают электроны и перемещаются в виде ионов лития в слоистую структуру катода (кобальтит лития).

Кремний повышает емкость

Емкость аккумуляторов растет при включении кремния между слоями графита. Она увеличивается в три-четыре раза при соединении кремния с литием, однако после нескольких циклов зарядки графитовый слой разрывается.

Решение этой проблемы найдено в стартап-проекте Amprius, созданном учеными из Стэндфордского университета. Проект Amprius получил поддержку таких лю­дей, как Эрик Шмидт (председателя совета директоров Google) и лауреат Нобелевской премии Стивен Чу (до 2013 года – министр энергетики США).


Пористый кремний в аноде увеличивает эффективность литий-ионных аккумуляторов до 50%. В ходе реализации стартап-проекта Amprius же произведены первые кремниевые аккумуляторы.

Более эффективно, чем пористый кремний, накапливает энергию слой кремниевых нанотрубок. В прототипах было достигнуто почти двукратное увеличение зарядной емкости (до 350 Вт·ч/кг).

Но есть и третий метод. Исследователи проекта Ampirus внедрили в углеродную оболочку группы частиц кремния, которые непосредст­венно не соприкасаются, а обеспечивают свободное пространство для увеличения частиц в объеме. Литий может накапливаться на этих частицах, а оболочка остается неповрежденной. Даже после тысячи циклов зарядки емкость прототипа снизилась только на 3%.


Кремний соединяется с несколькими атомами лития, но при этом расширяется. Для предотвращения разрушения графита исследователи используют структуру растения граната: они вводят кремний в графитовые оболочки, размер которых достаточно велик, чтобы дополнительно присоединять литий.

Эффективные аккумуляторы

Эффективность элементов питания напрямую связана с плотностью энергии химических веществ. График ниже показывает, что комбинации материалов, например, литий-сера или металл-воздух, значительно лучше аккумулируют энергию. Литиево-серные (LiS) аккумуляторы обеспечивают усовершенствование катода: сера в катоде, так же как и кремний в аноде, может накапливать больше лития.

В следующем поколении аккумуляторов используются сера и цинк. Большим потенциалом обладают только биоаккумуляторы.

Ранее разработанные LiS-прототипы со значением 350 Вт·ч/кг обеспечивают большую плотность энергии, чем литий-ионные аккумуляторы, однако они тоже не достигли предела. На пути увеличенной эффективности стоят две проблемы: теоретическая плотность энергии на практике может быть достигнута только в том случае, если использовать в аноде чистый литий.


Сера может хранить больше лития в катоде, что увеличивает плотность энергии. Литий-серные аккумуляторы (разработка университета Беркли) дополнительно используют оксид графена как переносчик энергии и дезинфицирующее средство (СТАВ) в качестве защитного слоя.

Это затруднительно, так как он реагирует с электролитом. Однако то же самое делает и сера, а именно — ионы полисульфида, которые подобным же образом перемещаются к аноду и там разлагают литий или осаждаются в форме сульфида лития Li2S. Такой аккумулятор выдерживает лишь небольшое число циклов зарядки.

К 2020 году Альтуэс ожидает выхода на рынок LiS-аккумуляторов с плотностью энергии около 600 Вт·ч/кг, что примерно втрое превышает значения литий-ионных аккумуляторов.

Хранение энергии


Цинково-воздушные аккумуляторы пригодны для не слишком тяжелых устройств, так как при разрядке они используют кислород. Специалисты стартап-проекта Imprint Energy разработали подобный гибкий аккумулятор, подходящий для применения в лэптопах.

Химическую реакцию лития с кислородом используют металл-воздушные аккумуляторы: при разрядке атомы металла в аноде реагируют с кислородом воздуха и выделяют электроны. Затем они перемещаются через электролит в форме ионов к катоду. Потенциальная плотность энергии (1100 Вт·ч/кг) намного превышает значения литий-ионных аккумуляторов.

Цинково-воздушные батареи применяются уже давно, однако цинк разрушается при разрядке. Чтобы этого не происходило в аккумуляторах, во время подзарядки кислород на катоде должен быть удален.

Таким образом из ионов металла вновь возникает цинк. Кроме того, требуется особый катализатор, такой как раствор калия, в качестве защиты от воздуха для цинкового электрода с целью предотвращения его нежелательного окисления.

В стартап-проекте Imprint Energy разработаны даже готовые к печати аккумуляторы с полимерным катализатором, которые благодаря своей гибкости превосходно подходят для малогабаритных уст­ройств.

Поскольку для цинково-воздушных аккумуляторов требуется постоянный обмен воздуха, они мало пригодны для мобильных устройств, однако в будущем смогут использоваться в электромобилях, тем более что они не содержат горючих материалов. Накопленная энергия едва ли уменьшается в течение десятилетий, что делает эти аккумуляторы весьма интересными.

Использование сил природы

В современных аккумуляторах электроны испускают только твердые материалы. Но существует также концепция окислительно-восстановительного потока или жидкостных ячеек: две растворенные соли металлов перемещаются рядом в отдельных контурах. Они приводятся в движение с помощью насосов и соприкасаются на проницаемой мембране. Происходит ионообмен, а ячейка разряжается и вновь заряжается при подаче тока.

Автомобиль Quant массой 2,3 т приводится в действие от 400-литровой жидкостной ячейки и якобы предлагает дальность поездки около 600 км.

На Женевском автосалоне в 2014 году был представлен подобный автомобиль (Quante), дальность поездки которого якобы составляет 600 км, однако данные получены только в процессе моделирования. Ответы на проблемы материалов жидкостных ячеек до сих пор могут дать только исследовательские лаборатории.

В Массачусетском технологическом институте разработана жидкостная ячейка без мембраны, в которой две жидкости в процессе ионообмена не смешиваются при ламинарном течении. Благодаря этому исследователи смогли работать с бромом, который во время разрядки восстанавливается до бромоводорода. Использование брома позволит еще вдвое увеличить плотность энергии ванадиево-жидкостной ячейки.


Аккумуляторы, действующие на принципе окислительно-восстановительного потока (разработка Гарвардского университета), дости­гают восьмикратной плотности энергии по сравнению с жидкостными ячейками. Для этого они используют AQDS (антрахинон-дисульфонат) и бромид, получаемые из ревеня. Электроды освобождаются и заряжаются путем обмена ионами водорода.

Биоаккумуляторы побеждают всех

Органические вещества очень хороши в качестве энергоносителей. Они недороги и, как правило, не ядовиты. Исследователи Гарвардского университета разработали жидкостную ячейку, извлекающую энергию хранения из антрахинона-дисульфоната (AQDS) — составной части ревеня. Однако они не могут отказаться от использования брома.


Аккумулятор, разработанный в Виргинском техническом колледже, в качестве накопителя энергии использует сахар (мальтодекстрин), который разрушается ферментами при разрядке. В нем достигается примерно десятикратная плотность энергии по сравнению с литий-ионными моделями.

Энергия из сахара

Пока неясно, сможет ли выдержать биоячейка несколько тысяч циклов зарядки, однако барьер в несколько сотен циклов она уже преодолела.

Так, компания Sony еще семь лет назад заявила о разработках в области биоаккумуляторов, но с тех пор мало что произошло. Опыт показывает, что для разработки чудо-батарей требуется довольно много времени.

Зарядка без розетки

В будущем электроэнергию для смартфонов можно будет вырабатывать даже посреди лесной глуши. Исследователи из США и Китая разработали крошечные генераторы, которые способны использовать для зарядки даже самые слабые вибрации. Эти устройства состоят из поливинилиденфторида (PVDF) — материала, генерирующего ток при давлении и деформации. Как правило, фторопласты используются для уплотняющих покрытий и фильтров, а также находят применение в динамиках и микрофонах.

Для производства генераторов в полимерную массу вводят частицы оксида цинка, которые затем растворяют соляной кислотой. В результате остается губчатая структура, изготовленная из мягкого и гибкого материала с крупными отверстиями, являющаяся чрезвычайно чувствительной к колебаниям всех видов.


Наногенераторы на базе PVDF подходят для любого современного смартфона

В конце производственного процесса получается PVDF-пленка, на которую с обеих сторон наносится тонкая медная фольга в качестве электродов. Если наногенераторы устанавливаются на смартфон, достаточно, чтобы устройство во время поездки просто лежало на пассажирском сиденье. Вибрации заряжают аккумулятор: при частоте колебаний 40 Гц прототип достиг пиковых значений 11 В и 9,8 микроампер.

Использование энергии радиоволн

В ходе тестов система отправляла до 1000 бит в секунду и использовала для этого волны ТВ-передатчиков, расположенных на расстоянии от 800 м до 11 км.

Аккумуляторы для элементов автомобиля

В электромобилях или гибридных машинах аккумуляторы обычно располагаются в багажнике. Европейский исследовательский проект StorAGE хочет устранить этот недостаток,
и Volvo в качестве участника данного проекта представила решение.

Производитель разработал легкие аккумуляторы. Их электроды из углеродных волокон окружают углеродные нанотрубки, покрытые литием. Вся конструкция заливается полимерной смолой, а в качестве изолирующего слоя применяется стекловолоконный холст.

Аккумулятор получается настолько плоским, гибким и прочным, что его можно использовать в качестве несущей конструкции автомобиля.



Также с каждым движением тела мы производим небольшое количество энергии, которая может быть преобразована в ток. Генератор на колесе велосипеда — лучший пример. Было бы неплохим вариантом использовать эту энергию для подзарядки смартфона. В технологическом институте Джорджии (Атланта) исследователи изобрели генератор, который вырабатывает электричество из трения.

Все устройство невелико и помещается в кармане: при диаметре 10 см и объеме 0,6 см3 его вес составляет1,1 г. В будущем у нас всегда будет под руками источник питания — стоит лишь немного потереть его.

Фотографии в статье: Eliza Grinnell/Harvard School of Engineering and Applied Sciences; Lawrence Berkeley National Laboratory, Imprint Energy, Inc.; Nanoflowcell; Sensor Systems Laboratory/University of Washington; Xudong Wang; Volvo

Читайте также: