Реферат линзы очковые линзы

Обновлено: 30.06.2024

разработать технологический процесс изготовления очковой линзы с F ’ v-2,25дптр, произвести расчет параметров очковой линзы диаметром 60 мм, толщиной линзы по центру 1,5 мм, разработать маршрутную карту технологического процесса изготовления очковой линзы, разработать мероприятия по технике безопасности на участке полирование.

При выполнении курсовой работы на указанную тему должны быть представлены:

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

____1. Общая часть__________________________________________________________ _

____2. Специальная часть_____________________________________________________ _

____3. Мероприятия по ТБ___________________________________________________ __

____4. Заключительная часть__________________________________________________ _

____Список литературы______________________________________________________ _

2.ГРАФИЧЕСКАЯ ЧАСТЬ РАБОТЫ

1. Графическое построение очковой линзы

2. Чертеж очковой линзы.

Дата выдачи __________________ Срок окончания ____________

Преподаватель-руководитель курсовой работы Антонова В.В.

СОДЕРЖАНИЕ

1.1.Основные операции технологического процесса изготовления очковых линз

1.2.Вспомогательныеоперации технологического процесса изготовления очковых линз

1.3.Специальные операции технологического процесса изготовления очковых линз

1.4.Контрольные операции технологического процесса изготовления очковых линз

2.1. Расчёт конструктивных параметров очковой линзы

2.2.Блок-схема технологического процесса изготовления очковых линз

2.3. Маршрутная карта технологического процесса изготовления очковых линз

3.Мероприятия по ТБ на участке полировка

Список используемой литературы

Изм.
Лист
№ докум.
Подпись
Дата
Лист
Разраб.
Шайдовский
Провер.
Антонова В.В
Реценз
Н. Контр.
Утверд.
Лит.
Листов
О -221

Введение

Изм.
Лист
№ документа
Подпись
Дата
Лист
Рынок очковой оптики в России в настоящее время является одним из наиболее динамично развивающихся коммерческих секторов медицины.

По материалу изготовления очковых линз выделяются минеральные и органические линзы. На сегодняшний день на российском рынке доля, занимаемая минеральными линзами, составляет 36%, доля органических линз с показателем преломления 1,50 составляет 42%, органические линзы с высокими и средними показателями преломления, а также поликарбонатные линзы занимают 22% рынка.Все основные новинки в области материалов для очковых линз связаны с органическими полимерами. Главной характеристикой очковых линз, как известно, является показатель преломления материала, из которого изготовлены линзы. Высокий показатель преломления позволяет получать более тонкие и легкие линзы. А именно такие эстетичные и комфортные линзы максимально отвечают современному потребительскому спросу. Бурное развитие органических материалов привело к созданию в последние годы оптических пластмасс с показателем преломления выше 1,7(и при этом с достаточно высоким числом Аббе) Одной из первых использовала высокопреломляющий полимер японская компания Hoya, предложившая линзы серии Teslalid 1,71. В настоящее время уже несколько компаний выпускают органические линзы с показателем преломления 1,74: Essilor(Fusio 1,74), Seiko(RS-22 1,74), Rodenstock(Cosmolit 1,74).. Эти линзы, особенно в сочетании с асферическим дизайном, на сегодняшний день самые тонкие и плоские, к тому же они очень легкие.

Новые покрытия

Органические линзы, особенно из высокопреломляющих полимеров, требуют нанесения упрочняющих покрытий для предохранения поверхности линзы от образования царапин. Линзы с просветляющими покрытиями не только выглядят более эстетично, но и обеспечивают пользователю более высокое качество зрения и зрительный комфорт. Поэтому технология нанесения на очковые линзы различных покрытий интенсивно развивается, и в настоящее время все крупные производители линз имеют свои фирменные покрытия, улучшающие оптические и механические свойства линз. Причем все чаще применяются многофункциональные покрытия, сочетающие в себе несколько просветляющих слоев с упрочняющим слоем. Последние новинки в этой области связаны с применением дополнительного верхнего слоя, который не только придает поверхности водо- и грязеотталкивающие свойства, но и уменьшает электростатический заряд поверхности линзы, в результате чего к линзе меньше притягиваются загрязняющие частицы. Сегодня многие профессиональные оптические журналы активно обсуждают влияние синего диапазона видимого излучения на здоровье человека. Многие производители средств коррекции зрения выпустили новые виды оптических покрытий для очковых линз, которые уменьшают пропускание синего света. На рынке нашей страны уже представлен целый ряд очковых линз с оптическими покрытиями, которые помогают уменьшить влияние синего света на глаза.

Изм.
Лист
№ документа
Подпись
Дата
Лист
Crizal Prevencia В ассортименте компании Essilor International,Blue Control компанииHoya Vision Care,See Coat Blue компанииNikon,Super Resistant Blueкомпании Seiko Optical Products,Neva Max Blue UVвыпустила компания BBGR

Новые дизайны очковых линз

Тенденция в развитии очковой оптики не стоит на месте,Производители линз, стремясь максимально полно удовлетворить потребности аметропов, пользующихся очковой коррекцией зрения, постоянно ведут поиски новых материалов, покрытий и дизайнов. Так что в ближайшем будущем нас обязательно ждут новые открытия, которые обеспечат более высокое качество зрения в очках и принесут пользователям очками еще больший комфорт, удобство и эстетичность.

Оборудование

Изм.
Лист
№ документа
Подпись
Дата
Лист

Общая часть

1.1Основные операции технологического процесса изготовления очковых линз.
К основным операциям технологического процесса изготовления линз относятся: фрезерование, шлифование и полирование.

Эти операции обеспечивают требуемые конструктивные параметры (форму и размер детали),чистоту поверхности и шероховатость.

Фрезерование - грубая обработка поверхности линзы с целью нанесения предварительного радиуса кривизны. При фрезеровании максимально удаляется припуск и обеспечивается определенная шероховатость преломляющих поверхностей.
Операцию проводят на фрезерных станках, в качестве инструмента -алмазная фреза .По типу станки бывают вертикальные и горизонтальные .
Заготовку линзы закрепляют на шпиндель в цанговый патрон и при обработка деталь вращается , фриза подходит к детали под определённым углом , его рассчитывают исходя из радиуса кривизны .При обработка фреза также вращается .Ось вращения инструмента пересекается с осью вращения линзы в центре радиуса кривизны обрабатываемой поверхности .В зону обработки подаётся СОЖ, она уменьшает трение и удаляет обработанный материал .Операцию проводят с припуском на дополнительную обработку

Пресбиопия, или возрастная дальнозоркость; основные понятия. История офтальмологических очков: изобретение линз для коррекции близорукости. Идея бифокальных очков; изготовление и строение прогрессивных очковых линз: зоны, основные типы, ассортимент.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 09.09.2012
Размер файла 77,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Желание оставаться здоровым и работоспособным как в юности, так и в старости естественно для человека.

История офтальмологических очков насчитывает столетия. Марко Поло, описывая свои путешествия, отмечал, что многие китайцы носили очки. А это была вторая половина 13 века. Приблизительно в это же время очки стали использоваться и в Европе. Можно лишь предполагать, кто был первым их изобретателем: историки называют имена и доминиканского монаха Алессандро да Спина, и итальянца Сальвино д'Армато, и Роджера Бекона. Первые очки имели выпуклые линзы и корректировали дальнозоркость, лишь через несколько десятилетий Николас из Кузы изобрел линзы для коррекции близорукости.

Идея соединить две пары очков в одну впервые возникла в 1784 году у известного ученого Бенджамина Франклина, впоследствии ставшего президентом Соединенных штатов. Он с детства был близорук, а когда в дополнение к этому появилась и дальнозоркость, ему пришлось носить с собой две пары очков и постоянно менять их. Он нашел простой выход: разрезал линзы каждой пары и соединил в одну оправу: сверху поместил половинки линз для близорукости, а снизу для дальнозоркости. Такие очки стали называть бифокальными.

Попытки изготовить такую линзу начались еще в 1909 году и в течение десятилетий были неудачными: только узкая полоска, проходящая через центр линзы по косой вниз, отвечала задуманному, стоило слегка скосить взгляд в сторону, и линза за счет множественных аберраций работала хуже простого стекла, искажая и размывая видимый мир.

В течение последующего времени прогрессивные линзы постоянно совершенствовались и становились все более популярными. Причины этого очевидны:

Не было проблем с видением не только вдали или вблизи, но и на всех промежуточных расстояниях.

Линзы были идеальны для тех, кто не хотел подчеркивать свой возраст, ведь внешне они напоминали обычные однофокальные. А, то, как человек выглядит, во многом определяет его внутренне состояние. Так что можно сказать, что очки с прогрессивными линзами в определенной степени продлевают молодость.

Вдвое уменьшалось количество носимой оптики: очки на лице трудно повредить по неосторожности, а лежащие в кармане или сумке гораздо проще.

Оставались и проблемы: к линзам приходилось долго привыкать, зона зрения была ограничена, и в определенных ситуациях требовалось сильно вертеть головой.

Строение прогрессивных очковых линз

Зоны прогрессивных линз

Зона для дали: через эту верхнюю линзу очковой линзы Вы абсолютно точно видите на дальних расстояниях.

Промежуточная зона: эта область прогрессивной линзы обеспечивает плавный переход от зоны для дали к зоне для близи.

Зона для близи: эта зона четко отображает находящиеся вблизи объекты, а именно все, что глаз воспринимает при опущенном взгляде.

Прогрессивные очковые линзы - это сложное оптическое устройство, при изготовлении которого используются новейшие научные и технологические достижения.

В верхней части прогрессивной очковой линзы расположена зона зрения вдаль, центр которой находится напротив зрачка при взгляде прямо вперед при естественном положении тела и головы. Поэтому человек в прогрессивных очковых линзах при взгляде вдаль пользуется прогрессивными очками, как обычными.

бифокальный прогрессивный очковый линза

Основные типы прогрессивных очковых линз

В настоящее время существует много различных типов прогрессивных очковых линз. Они отличаются назначением, дизайном, степенью учета индивидуальных параметров пациента и выбранной им оправы для очков, технологией изготовления.

По назначению прогрессивные очковые линзы бывают универсальными и специальными. Универсальные прогрессивные очковые линзы обеспечивают высокое качество зрения на всех расстояниях. Специальные прогрессивные очковые линзы предназначены для зрения на определенном расстоянии или при выполнении определенных видов занятий. Типичными примерами специальных очковых линз являются офисные и компьютерные очковые линзы. Эти очковые линзы предназначены для работы в офисе (где расстояние не превышает 3-5 м) или на компьютере (рабочие расстояния от 30-40 см до 70 см). Поскольку в этих очковых линзах нет необходимости в зоне зрения вдаль, то удается значительно расширить коридор прогрессии, который в основном и используется для зрения на этих расстояниях. Многие компании-производители выпускают специальные очковые линзы для занятий спортом (например, для игры в гольф или стрельбы).

По сложности расчета дизайна очковой линзы и процесса ее изготовления прогрессивные очковые линзы можно разделить на традиционные, оптимизированные и индивидуальные. Традиционные очковые линзы изготавливают из полуготовых очковых линз, имеющих готовую прогрессивную поверхность (переднюю), а необходимые для коррекции зрения параметры рефракции (параметры, указанные в рецепте на очковые линзы) получают путем придания необходимой сферо-цилиндрической формы задней поверхности очковой линзы. Причем для изготовления очковых линз используется ограниченный набор полуготовых линз со сформированной уже прогрессивной поверхностью. Эта ограниченность приводит к тому, качество зрения в таких прогрессивных очковых линзах будет неоптимальным. Однако, учитывая относительно невысокую стоимость таких очковых линз и достаточно высокое качество зрения в них, такие очковые линзы очень широко распространены в мире.

В настоящее время на рынке имеются более современные прогрессивные очковые линзы (оптимизированные и индивидуальные), при изготовлении которых используются специальные высокоточные технологии получения поверхностей свободной формы, позволяющие реализовывать дизайны (конструкции поверхностей очковой линзы) практически любой сложности. Эти технологии основаны на использовании для придания поверхностям очковой линзы необходимой формы высокоточных алмазных резцов, движением которых управляет компьютер.

Индивидуальные прогрессивные очковые линзы отличаются от оптимизированных тем, что их дизайны рассчитываются с учетом индивидуальных зрительных параметров пациента (например, расстояния от зрачка до задней поверхности очковой линзы, особенностей зрительных движений головы и глаз и др.) и выбранной им оправы для очков (например, угла изгиба плоскости оправы). Индивидуальные очковые линзы изготавливаются по технологии FreeForm, и для объяснения их главных преимуществ перед другими очковыми линзами, используют сравнение костюма, сшитого в ателье на заказ, и из магазина готовой одежды. В настоящее время индивидуальные прогрессивные очковые линзы представляют собой самый совершенный тип прогрессивных очковых линз, обеспечивающих максимально высокое качество зрения. Однако их преимущества проявляются особенно сильно в тех случаях, когда индивидуальные параметры пациента или выбранной им оправы для очков значительно отличаются от среднестатистических значений, заложенных в расчет оптического дизайна очковых линз. В других случаях (т.е. для большинства пациентов) современные прогрессивные очковые линзы, изготовленные по технологии FreeForm, обеспечат высокое качество зрения на всех расстояниях.

Ассортимент прогрессивных линз

Хорошей демонстрацией трудностей в предсказании успеха на рынке данного типа прогрессивных линз является рассмотрение изоцилиндрических зон более простых линз, типа однофокальных. На рисунке 12.28 приведены изоцилиндрическая диаграмма с интервалом 0,25 дптр и изолинии средней рефракции для сферической линзы +4,00 дптр с базовой кривизной профиля -1,50 дптр (оптические характеристики этой конструкции подробно рассмотрены в главе 2). Считается, что такая форма обеспечивает более плоские, более тонкие линзы, чем обычная, более изогнутая форма линз оптимальной формы. Если производитель решит, что зоной четкого зрения является зона, в которой аберрационный астигматизм не превышает 0,50 дптр, то эту линзу можно определить как имеющую эффективную апертуру приблизительно 28 мм. В то же время если зона четкого зрения определяется как зона, в пределах которой значение сферической рефракции изменяется не более чем на 0,50 дптр, то эту линзу можно считать имеющей эффективную апертуру 35 мм.

Другие конструкции прогрессивных линз

В дизайнах прогрессивных линз последнего поколения других производителей сочетаются аторические вогнутые поверхности с асферическими прогрессивными поверхностями, что обеспечивает наилучшие характеристики линз в тех случаях, когда рецепт содержит цилиндр. Например, конструкция Multigressiv фирмы Rodenstock имеет аторическую вогнутую поверхность, что позволяет не только обеспечить оптимальную коррекцию для рецепта, включающего астигматическую составляющую, но и в комбинации с асферической прогрессивной поверхностью улучшить оптические характеристики каждой зоны линзы.

Минеральное стекло – это неорганический материал, который получают из кварцевого песка. Показатель преломления (n) стандартного минерального стекла – 1,523. Как известно, от показателя преломления зависит толщина линзы. Чтобы линзы были более тонкими, индекс преломления должен быть выше. Утонченные минеральные линзы с показателями преломления – 1,6, 1,7 и выше (до 1,9) получают путем добавления различных уплотняющих компонентов. Но при этом происходит также увеличение удельного веса стекла. Поэтому минеральные линзы с большими диоптриями, даже утонченные, будут довольно тяжелыми.

Содержание

Введение. 3
1 Современные материалы для изготовления очковых линз…. 5
1.1 Минеральные линзы ……………..………………………………….………..5
1.2 Полимерные линзы…………………………………………………………. 6
1.3 Поликарбонатные линзы……………………………………….….……. …..8
1.4 Трайвекс……..……………………………………………………………….11
Заключение. 15
Список использованных источников и литературы. 16

Вложенные файлы: 1 файл

004.docx

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

Государственное автономное образовательное учреждение СПО г.Москвы

Колледж предпринимательства №11

______________________________ ______________________________ _

РЦ Московская школа медицинской оптики

по дисциплине: Проектирование дизайна линз и оправ

Современные материалы для изготовления очковых линз

Выполнил студент Папилин Е.С.

Проверил преподаватель Ерохин В.Е.

1 Современные материалы для изготовления очковых линз…. .5

Список использованных источников и литературы. . 16

Все очковые линзы в зависимости от материала, применяемого для их изготовления, подразделяются на два больших класса: минеральное стекло (неорганические материалы) и пластмассы (органические материалы).

Независимо от того, к какому из этих классов относится материал для линз, он должен быть:

    • прозрачным для излучений видимого диапазона света,
    • гомогенным,
    • не иметь высокой дисперсии (т.е. не вызывать хроматические аберрации).

    Основными характеристиками материалов, из которых изготавливают линзы, являются:

      • показатель преломления
      • дисперсия (число Аббе)
      • плотность материала
      • устойчивость к механическим и химическим воздействиям
      • технологичность

      Показатель преломления (n) характеризует оптические качества очковой линзы: чем выше коэффициент преломления, тем лучше оптические свойства линзы. Материалы для изготовления очковых линз в зависимости от коэффициента преломления различают:

        • материалы со стандартным показателем преломления: 1,54>n>1,48
        • среднепреломляющие материалы: 1,64 > n> 1,54
        • высокопреломляющие материалы: 1,74 > n> 1,64
        • сверхвысокопреломляющие материалы: n> 1,74.

        От коэффициента преломления зависит количество и качество аберраций, т.е. степень искажения очковой линзы. Качество аберраций определяется числом Аббе, чем выше коэффициент преломления, тем меньше аберраций и следовательно меньше число Аббе. Ниже приведена зависимость числа Аббе от коэффициента преломления очковой линзы.

        Все материалы для изготовления очковых линз можно разделить на 4 основных группы:

          • Минеральные линзы
          • Полимерные линзы
          • Поликарбонатные линзы
          • Трайвекс

          Рассмотрим данные материалы более подробно в основной части работы.

          1 Современные материалы для изготовления очковых линз

          1.1 Минеральные линзы

          Минеральное стекло – это неорганический материал, который получают из кварцевого песка. Показатель преломления (n) стандартного минерального стекла – 1,523. Как известно, от показателя преломления зависит толщина линзы. Чтобы линзы были более тонкими, индекс преломления должен быть выше. Утонченные минеральные линзы с показателями преломления – 1,6, 1,7 и выше (до 1,9) получают путем добавления различных уплотняющих компонентов. Но при этом происходит также увеличение удельного веса стекла. Поэтому минеральные линзы с большими диоптриями, даже утонченные, будут довольно тяжелыми.

          Линзы из минерального стекла могут быть бесцветными, окрашенными и фотохромными. Для придания линзам дополнительных свойств на них могут наносить специальные покрытия. Например, для защиты глаз от вредного воздействия ультрафиолетового излучения солнечного спектра в состав минерального стекла необходимо вводить дополнительные УФ-поглощающие агенты.

          Достоинства минеральных очковых линз:

          • устойчивость к образованию царапин: если выбирать из стеклянной и пластиковой линзы без дополнительных покрытий, то минеральная линза прослужит дольше;
          • возможность изготовления очень тонкой линзы с показателем преломления 1,9 – при очень больших диоптриях из стекла можно получить более тонкую линзу, чем из пластика, при этом надо учесть, что вес минеральной линзы будет, конечно, больше, чем пластиковой.

          Недостатки минеральных линз:

          • более низкая степень безопасности по сравнению с полимерными линзами - при сильном ударе бьются на осколки, поэтому не рекомендованы для изготовления детских или спортивных очков в силу возможного травматизма;более высокий вес;
          • невозможность использования минеральных линз в полуободковых (на леске) и безободковых (на винтах) оправах.

          1.2 Полимерные линзы

          Линзы из различных полимерных материалов называются органическими линзами. С каждым годом их популярность растет, все больше вытесняя минеральные линзы. Органические очковые линзы изготавливают из разных видов прозрачных полимеров (пластмасс). Наиболее распространенный оптический полимер называется CR-39, многие фирмы-производители присваивают собственные названия стандартным полимерам.

          Сначала очковые линзы изготавливали только из CR-39, материала с низким показателем преломления. А органические материалы с высоким показателем преломления начали создавать лишь в середине 1980-х годов.

          Показатель преломления стандартного оптического полимерного материала около 1,5. На рынке представлены различные полимеры с широким диапазоном показателя преломления: 1.53, 1.54, 1.56, 1.6, 1.61, 1.67, 1,74. Соответственно, можно изготовить линзы различной толщины, исходя из необходимых диоптрий и финансовых возможностей – чем тоньше линза, тем выше ее стоимость. Полимерные линзы также могут быть прозрачными, окрашенными или фотохромными.

          Преимущества полимерных линз:

          • высокая ударопрочность и высокая степень безопасности – при сильном ударе покрывается трещинами, а не разбивается на осколки;
          • пластиковые поликарбонатные очковые линзы считаются самыми прочными, эффективно защищают от УФ-излучения и термостойки, т.е. сохраняют свою форму при высоких температурах. К тому же, они очень легкие, так как кроме достаточно высокого показателя преломления (1.59) имеют малый удельный вес. Поликарбонатные линзы рекомендованы для изготовления спортивных, детских и специальных защитных очков;
          • меньший вес по сравнению с минеральными линзами;
          • возможность нанесения многослойных покрытий, придающих линзам различные дополнительные свойства;
          • возможность создания линз асферического дизайна, которые являются более плоскими и тонкими по сравнению со сферическими линзами и дают качественное изображение на периферии;
          • возможность производства пластиковых линз самой разнообразной окраски путем добавления в жидкий состав различных красителей.

          Основной недостаток полимерных линз - на них легко образуются царапины, поэтому необходимо наносить специальные упрочняющие покрытия.

          В настоящее время при создании новых органических материалов ученые стремятся добиться не только высокого показателя преломления, но и хороших эксплуатационных качеств, высокой ударопрочности, низких хроматических аберраций и хорошей окрашиваемости. Все это делается для того, чтобы даже те, кому прописаны очки с линзами высоких рефракций, могли пользоваться легкими, тонкими и плоскими пластмассовыми линзами.

          Пластиковые линзы из материала CR 39 (n=1.49) нашли в России очень широкое применение. Эти линзы по своим оптическим характеристикам близки к стеклу.

          1.3 Поликарбонатные линзы

          С 1950-х годов поликарбонат начинает использоваться в промышленном производстве – для изготовления дисплеев и элементов электропроводки, остекления парников и окон зданий. Постепенно благодаря исключительной ударопрочности и малому удельному весу поликарбонат находит все более широкое применение: на его основе стали выпускать защитные щитки, ударопрочные окна, компакт-диски, линзы для защитных очков, детали автомобилей и т.д. Применение поликарбоната для защитных очков было обусловлено его необыкновенной устойчивостью к ударным нагрузкам, однако светопропускание линз из этого материала было далеко от совершенства.

          Неудовлетворительная прозрачность первых поликарбонатных линз была связана с низким качеством очистки исходного материала и несовершенством технологического процесса изготовления линз. Изобретение компакт-дисков и их массовое внедрение в производство в 1980-х годах обусловили резкое улучшение качества исходных материалов; от этих разработок выиграла и оптическая индустрия: появилась возможность получать поликарбонатные линзы с высоким светопропусканием.

          Активному внедрению поликарбонатных линз на самый крупный оптический рынок США способствовало принятие в 1971 году закона, согласно которому все линзы должны проходить испытание на ударопрочность. Органические линзы стали доминировать на американском рынке, затем они постепенно потеснили минеральные линзы во всем мире. В США линзы из поликарбоната вследствие их более высокой по сравнению с CR-39 ударопрочностью в обязательном порядке стали назначать детям, взрослым, ведущим активный образ жизни, и спортсменам.

          Поначалу одним из существенных недостатков поликарбоната как материала для производства очковых линз являлась его низкая абразивостойкость. Решением проблемы стало нанесение высокоэластического промежуточного покрытия между поликарбонатной линзой и упрочняющим покрытием, которое нивелировало разность в их расширении. В настоящее время крупные производители поликарбонатных линз владеют технологией нанесения многофункциональных покрытий на их поверхность, которые защищают линзы от царапин, компенсируют потери на отражение, облегчают уход во время эксплуатации.

          Чем меньше число Аббе, тем больше эффект хроматической аберрации, испытываемый пользователем очков. По значению числа Аббе поликарбонат намного уступает стандартному минеральному стеклу и CR-39. На практике эффект хроматической аберрации зрительно воспринимается в виде радуги либо желтого, либо голубого света вокруг объекта, и чем больше зрачок отклоняется от оптического центра линзы, тем сильнее будет такой эффект.

          Результаты исследования 1999 года показали, что при пользовании поликарбонатными линзами их минимальная оптическая сила, при которой хроматическая аберрация начинает оказывать влияние на остроту зрения, составляет ±7,0 дптр.

          Поликарбонатные линзы имеют достаточно высокий показатель преломления – 1,59, но по цене они позиционируются ниже, чем линзы из высокопреломляющих материалов (от nd = 1,60 и выше). Однако у поликарбоната есть преимущество перед этими материалами: из него можно делать линзы (отрицательных рефракций) с минимальной толщиной по центру – на 0,5 мм меньшей по сравнению с линзами из многих высокопреломляющих материалов.

          Как и все линзы из материалов с более высоким показателем преломления, поликарбонат пропускает меньше света, чем линзы из стандартного минерального стекла или CR-39. Светопропускание стандартных линз из CR-39 составляет примерно 92%, а потери на отражение с одной стороны – 4%. В случае линз из поликарбоната количество света, отраженного от обеих поверхностей, немного превышает 10%, таким образом, количество света, достигающего глаз, ниже 90%-го уровня. Однако современные многофункциональные покрытия, имеющие в своем составе широкополосные многослойные просветляющие покрытия, позволяют преодолеть этот недостаток, увеличивая светопропускание поликарбонатных линз до 99,5%.

          Основным средством коррекции и защиты органов зрения являются очки, выполненные в виде очковой оправы с вмонтированными в нее очковыми линзами или защитными стеклами.

          Очковые линзы предназначены для коррекции органа зрения в случаях различных нарушений его функций: аномалиях рефрак-ций, пресбиопии и других расстройствах аккомодации._

          Очковые линзы применяются с целью коррекции любых нарушений зрительного аппарата и предупреждения дальнейшего увеличения степени этих нарушений.

          Качество очковых линз регламентирует ГОСТ 23205-78, в котором предусмотрены практически все типы линз. Их виды представлены на


          Виды очковых линз

          Афокальные линзы не фокусируют изображение. К ним относят линзы с нулевой рефракцией, призматические (при косоглазии), азейконические (при анизейконии).

          Однофокальные линзы предназначены для коррекции аметропии (миопия, гиперметропия, астигматизм, анизометропия). С их помощью изображение перемещается на сетчатку.

          Коррекция миопии осуществляется с применением отрицательных (-) рассеивающих линз (конкаф). Гиперметропия корректируется положительными (+) собирающими линзами (конвекс). Эти два вида носят название неастигматических линз.

          С помощью неастигматических линз корректируется и незначительная часть анизейконии, для чего применяются изейконические линзы категории афокальных (увеличительные стекла с увеличением от 0,5 до 8%).

          Для коррекции астигматизма применяют астигматические линзы с разными комбинациями рефракций. Линзы выпускаются с астигматической разностью до 8,0 D с рефракцией в главных сечениях от —20,0 до +16,0 D. Астигматические линзы могут быть положительными, отрицательными и отрицательно-положительными.

          Бифокальные (двухфокусные) линзы имеют в верхней и нижней частях разные рефракции. Большей частью они применяются для коррекции пресбиопии, когда верхняя часть служит для дали, а нижняя — для работы на близком расстоянии для чтения. Бифокальные линзы бывают положительные, отрицательные и отрицательно-положительные.

          В случае значительного уменьшения объема аккомодации при сильной степени пресбиопии применяются трифокальные линзы.

          На каждой линзе отмечается оптический центр (легко смываемая черная точка) и наклеивается этикетка с обозначением знака величины рефракции. Линзы хранят в индивидуальных конвертах и картонных коробках. В зависимости от качества изготовления линзы подразделяют на группы I и II.

          При приемке проверяется диаметр, толщина стекла, величина задней вершины рефракции и смещение оптического центра, качество стекла и чистота поверхности линзы. Проверка линз на точность изготовления осуществляется с помощью диоптри-метра.

          Читайте также: