Реферат излучение в природе

Обновлено: 04.07.2024

2 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ Явление радиоактивности Естественная и искусственная радиоактивность Характеристики радиоактивности. 6 1) α-распад. 6 2) β-распад. 7 3) γ-распад. 7 4) Спонтанное деление и двупротонная радиоактивность. 7 5) Закон радиоактивного распада. 8 ЗАКЛЮЧЕНИЕ. 10 СПИСОК ЛИТЕРАТУРЫ

6 в). Продукты наведенной радиоактивности, образующиеся в результате ядерных реакций элементарных частиц. Нейтроны, образующиеся при цепной реакции деления урана или плутония воздействуют на ядра стабильных элементов окружающей среды, превращая их в радиоактивные Оба вида радиоактивности подчиняются одним и тем же законам. 3. Характеристики радиоактивности. Радиоактивный распад возможен только тогда, когда он энергетически выгоден, т.е. сопровождается выделением энергии. Условием этого является превышение массы М исходного ядра суммы масс m i продуктов распада, т.е. неравенство: M > m i. Из около 3000 известных ядер (большинство из них получено искусственно) лишь 264 не являются радиоактивными. Основными видами радиоактивного распада являются альфа-распад, бетараспад, гамма-распад и спонтанное деление (распад ядра на два осколка сравнимой массы). 1). α-распад. Альфа-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4 He). Альфа-распад происходит в тяжёлых ядрах с массовым числом А 140. Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α- частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако она может преодолеть его и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера очень быстро (экспоненциально) уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше. α-распад:! X. Y +! He где A-атомная масса элемента, Z-зарядовое число элемента (Z равно числу протонов в элементе). α-распад обусловлен сильным взаимодействием. 6

7 2). β-распад. Бета-распад бывает трех видов:! a) β - распад:! X. Y + e! + ν!! b) β - распад:! X. Y + e! + ν! c) e захват. X + e. Y + ν! Главной особенностью β-распада является то, что он обусловлен слабым взаимодействием. Бета-распад - процесс не внутриядерный, а внутринуклонный. В ядре распадается одиночный нуклон. 3). γ-распад. Переход ядра из возбужденного состояния в основное состояние или в состояние с меньшей энергией возбуждения может происходить различными способами, в том числе путем испускания электромагнитного γ-излучения. Из этого следует, что γ-излучение это самопроизвольное коротковолновое электромагнитное излучение, испускаемое возбужденными атомными ядрами*. Переходы ядра из возбужденного состояния, сопровождающиеся испусканием γ-лучей, называются радиационными переходами. Радиационный переход может быть: однократным, когда ядро, испустив один квант, сразу переходит в основное состояние. каскадным, когда снятие возбуждения происходит в результате последовательного испускания нескольких γ-квантов. По своей физической природе γ-излучение представляет собой коротковолновое электромагнитное излучение ядерного происхождения. Обычно при радиоактивном распаде ядер, энергия ядерных γ-квантов заключена в пределах примерно от 10 кэв до 5 МэВ, а при ядерных реакциях рождаются γ-кванты до 20 МэВ. Так как в γ-распаде не происходит рождения протона или нейтрона, то, в отличие от α- и β-распадов, каждый из которых является ядерным превращением, при γ-распаде ядерного превращения не происходит. γ-распад: X!! X!! + γ *Возбуждённые состояния ядер состояния, в которых энергия системы превышает наименьшее возможное значение энергии, которое называется основным состоянием. Возбуждённое состояние ядра является неустойчивым, и с течением времени ядро переходит в состояние с меньшей энергией возбуждения и в результате таких переходов оказывается в основном состоянии. 4). Спонтанное деление - деление ядра на осколки (чаще всего на два) сравнимых масс и зарядов: A, Z = A!, Z! + A!, Z! ; A = A! + A!, Z = Z! + Z! 7

8 Двупротонная радиоактивность: (A,Z) 2р + (A-2,Z-2). При протонной и двупротонной радиоактивности протоны проникают через кулоновский потенциальный барьер благодаря туннельному эффекту. Это явление наблюдается для нейтронодефицитных ядер с Z 9 Сложный радиоактивный распад может протекать в двух случаях: 1. В первом случае исследуемый препарат содержит несколько сортов радиоактивных ядер. Пусть исследуемый препарат содержит два сорта радиоактивных ядер с постоянными распада λ 1 и λ 2. В этом случае общее число радиоактивных ядер будет изменяться со временем по закону: N = N! e!!"!+n! e. 2. Во втором случае происходит последовательные распады одного и того же ядра. Часто бывает что ядро, получившееся в результате радиоактивного распада, само оказывается радиоактивным, так что происходит последовательный распад исходного ядра 1 в ядро 2, а ядро 2 в ядро 3. В этом случае изменение числа N 1 ядер 1 и числа N 2 ядер 2 определяется системой уравнений:!"! = λ!"!n. "! = λ!"!n! λ! N!. Если T 1 >> T 2 (λ 1 > T 2 (λ 2 t >> 1) приближается к своему предельному значению: lim N! t =. N!" = const При t > 10T равенство выполняется уже с точностью около 0.1%. Обычно оно записывается в форме: λ 1 N 1 = λ 2 N 2 и носит название векового равновесия. 9

Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Вопрос о действии радиации на человека и окружающую среду, всегда приковывают к себе постоянное внимание общественности и вызывал много споров.

Чаще всего аргументация противников атомной энергетики опирается исключительно на чувства и эмоции, столь же часто выступления сторонников ее развития сводятся к мало обоснованным успокоительным заверениям.

Между тем, радиация действительно смертельно опасна. При больших дозах она вызывает серьезнейшие поражения тканей, а при малых может вызвать рак и индуцировать генетические дефекты, которые, возможно, проявятся у детей и внуков человека, подвергшегося облучению, или у его более отдаленных потомков.

Целью настоящей работы является рассмотрение различных видов излучений, как от естественных, так и от техногенных источников, их основных свойств, а также их воздействия на человека и окружающую среду.

Наиболее значимы следующие типы ионизирующего излучения: коротковолновое электромагнитное излучение (рентгеновское и гамма-излучения), потоки заряженных частиц: бета-частиц (электронов и позитронов), альфа-частиц (ядер атома гелия-4), протонов, других ионов, мюонов и др., а также нейтронов [1][2][6][7] .

В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна). Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение) [8][6][7] .

http://wreferat.baza-referat.ru/1_268990564-12969.wpic

Альфа-излучение представляет собой поток альфа-частиц — ядер гелия-4. Альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги.

Бета-излучение — это поток электронов, возникающих при бета-распаде; для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров.

Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом; для защиты эффективны тяжёлые элементы (свинец и т.д.), поглощающие МэВ-ные фотоны в слое толщиной несколько см. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц — фотонов и нейтронов). По механизму образования — первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электронвольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 10 15 — 10 20 и выше электрон-вольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии).

В зависимости от типа частиц и их энергии сильно различаются длина пробега и проникающая способность ионизирующего излучения — от долей миллиметра в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей).

Важными показателями взаимодействия ионизирующего излучения с веществом служат такие величины, как линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества, а также поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества. В Международной системе единиц (СИ) единицей поглощённой дозы является грэй (Гр), численно равный отношению 1 Дж к 1 кг. Ранее широко применялась также экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Наиболее часто применяющейся единицей экспозиционной дозы был рентген (Р), численно равный 1 СГСЭ-единицы заряда к 1 см³ воздуха [1][2][3][4] .

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации) [9] .

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки Хиросимы и Нагасаки. Японские специалисты в течение всех лет после атомной бомбардировки двух городов наблюдали тех 87 500 человек, которые пережили ее. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9%. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил. [10]

  • персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Ионизирующие излучения применяются в различных отраслях тяжёлой (интроскопия) и пищевой (стерилизация медицинских инструментов, расходных материалов и продуктов питания) промышленности, а также в медицине (лучевая терапия, ПЭТ-томография).

Для лечения опухолей используют тяжёлые ядерные частицы такие как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий. Создаваемые на ускорителях пучки тяжёлых заряженных частиц имеют малое боковое рассеяние, что дает возможность формировать дозные поля с чётким контуром по границам опухоли.

Таким образом, изучая различную литературу о радиационной безопасности, можно прийти к выводу о том, что малые дозы облучения не представляют серьезной опасности для населения.

Многие легко мирятся с факторами, связанными с гораздо большим риском для жизни и здоровья, такими, например, как курение или езда на автомобиле. Для гражданина какой-либо промышленно развитой страны, получающего сполна всю среднюю индивидуальную дозу облучения как от естественных, так и от техногенных источников радиации, вероятность погибнуть в автомобильной катастрофе в пять раз, а вероятность преждевременной смерти из-за курения (при выкуривании 20 сигарет в день) более чем в 100 раз превышает вероятность умереть от рака вследствие облучения.

Мало кто обращает внимание на естественную радиацию, вклад от которой в среднегодовую эффективную эквивалентную дозу облучения населения земного шара составляет примерно 4/5. Много ли людей переселяется, к примеру, из мест с повышенным естественным радиационным фоном в места с более низким уровнем естественной радиации с целью уменьшения риска заболевания раком? Почти не привлекают к себе внимания и такие аспекты, как последствия экономии энергии и чрезмерного облучения при рентгенологических обследованиях, - два основных фактора, ведущие к неоправданному облучению населения. Создается впечатление, что все внимание общественности и все опасения по поводу радиационной опасности сосредоточились главным образом на атомной энергетике, вклад от которой в суммарную дозу облучения населения один из самых скромных.

При этом атомная энергетика является той экологически чистой индустрией, на которую возлагает свои надежды все передовое человечество. Маяки на трассе Северного морского пути и кардиостимуляторы сердца, АЭС и ледоколы, системы пожарной охраны и g-дефектоскопы. вот, лишь далеко не полный список благ, где атомная энергетика успешно себя проявила. А сколько еще ждет впереди атомную энергетику трудно представить.

Данная работа посвящена детальному описанию различных видов излучения, их предельно допустимых уровней воздействия на человека. По моему мнению, именно такой информацией должен обладать каждый человек, живущий в современном мире и не безразличный к своему здоровью.

1. Гусев Н. Г., Климанов В. А., Машкович В. П., Суворов А. П. Защита от ионизирующих излучений. В 2-х томах. M., Энергоатомиздат, 1989

2. Ионизирующие излучения и их измерения. Термины и понятия. М.: Стандартинформ, 2006.

3. Моисеев А. А., Иванов В. И. Справочник по дозиметрии и радиационной гигиене. 2-е изд., перераб. и доп. М., Атомиздат, 1974

4. Нормы радиационной безопасности (НРБ-99/2009) Минздрав России, 2009.

6. Зигбан К., ред. Альфа-, бета- и гамма-спектроскопия. Пер. с англ. М., Атомиздат, 1969.

7. Волков Н. Г., Христофоров В. А., Ушакова Н. П. Методы ядерной спектрометрии. М. Энергоатомиздат, 1990.

8. Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики. 3-е изд., перераб. и доп. М., Энергоатомиздат, 1985

9. International Commission on Radiological Protection. Publication 60: Recommendations of the International Commission on Radiological Protection.

Если заглянуть в учебник физики, радиоактивность - это неустойчивость ядер некоторых атомов. Из-за этой неустойчивости происходит распад ядра, сопровождаемый выходом так называемого ионизирующего излучения, то есть радиации. Существует несколько видов радиации: альфа-частицы, бета-частицы, гамма-излучение, нейтроны и рентгеновские лучи. Первые три - наиболее опасны для человека.[1]

Главная особенность радиоактивных превращений заключается в том, что они происходят самопроизвольно. Радиоактивные превращения протекают непрерывно и всегда сопровождаются выделением определенного количества энергии, которое зависит от силы взаимодействия атомных частиц между собой. На скорость протекания реакций внутри атомов не влияет ни температура, ни наличие электрического и магнитного полей, ни применение самого эффективного химического катализатора, ни давление, ни агрегатное состояние вещества.

Прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени называется дозиметром. Само измерение называется дозиметрией.

Помимо измерения дозы излучения могут измерять активность радионуклида в каком либо образце: предмете, жидкости, газе и т. д. Дозиметры-радиометры могут измерять плотность потока ионизирующих излучений для проверки на радиоактивность различных предметов или оценки радиационной обстановки на местности.

Недорогие индивидуальные дозиметры, которые измеряют мощность дозы ионизирующего излучения на бытовом уровне с не высокой точностью измерения - для проверки продуктов питания, строительных материалов.

2. Источники радиации

Теперь, имея представление о воздействии радиационного облучения на живые ткани, необходимо выяснить, в каких ситуациях мы наиболее подвержены этому воздействию.

Существует два способа облучения: если радиоактивные вещества находятся вне организма и облучают его снаружи, то речь идет о внешнем облучении. Другой способ облучения - при попадании радионуклидов внутрь организма с воздухом, пищей и водой - называют внутренним.

Источники радиоактивного излучения весьма разнообразны, но их можно объединить в две большие группы: естественные и искусственные (созданные человеком). Причем основная доля облучения (более 75% годовой эффективной эквивалентной дозы) приходится на естественный фон.

1. Естественные источники радиации

Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14).

Разные виды излучения попадают на поверхность Земли либо из космоса, либо поступают от радиоактивных веществ, находящихся в земной коре, причем земные источники ответственны в среднем за 5/6 годовой эффективной эквивалентной доз, получаемой населением, в основном вследствие внутреннего облучения.

Всего за счет использование воздушного транспорта население Земли получало в год эффективную эквивалентную дозу.

2. Источники радиации, созданные человеком (техногенные)

Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных. Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природное обусловленное загрязнение.

Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия.

Основной вклад в загрязнение от искусственных источников вносят различные медицинские процедуры и методы лечения, связанные с применением радиоактивности.

Следующий источник облучения, созданный руками человека - радиоактивные осадки, выпавшие в результате испытания ядерного оружия в атмосфере. В результате взрыва часть радиоактивных веществ выпадает неподалеку от полигона, часть задерживается в тропосфере и затем в течение месяца перемещается ветром на большие расстояния, постепенно оседая на землю, при этом оставаясь примерно на одной и той же широте. Однако большая доля радиоактивного материала выбрасывается в стратосферу и остается там более продолжительное время, также рассеиваясь по земной поверхности.

Один из наиболее обсуждаемых сегодня источников радиационного излучения является атомная энергетика. На самом деле, при нормальной работе ядерных установок ущерб от них незначительный.

Но на примере Чернобыльской трагедии мы можем сделать вывод о чрезвычайно большой потенциальной опасности атомной энергетики: при любом минимальном сбое АЭС, особенно крупная, может оказать непоправимое воздействие на всю экосистему Земли.

Радиоактивные изотопы используются также в других светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах и т.д.

При производстве детекторов дыма принцип их действия часто основан на использовании -излучения. При изготовлении особо тонких оптических линз применяется торий, а для придания искусственного блеска зубам используют уран. Очень незначительны дозы облучения от цветных телевизоров и рентгеновских аппаратов для проверки багажа пассажиров в аэропортах.

3. Влияние радиоактивного облучения на живые организмы

Процесс воздействия на организм радиации называют облучением. Во время облучения негативная энергия радиации передаётся клеткам, меняя и разрушая их. Облучение может изменить ДНК, привести к генетическому повреждению и мутации, причём для этого достаточно одного кванта (частицы радиации). И чем выше уровень радиации, чем дольше воздействие, тем выше риск. Существует несколько путей поступления радиоактивных веществ в организм: при вдыхании воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку во-первых, объем легочной вентиляции очень большой, а во-вторых, значения коэффициента усвоения в легких более высоки. Излучения радиоактивных веществ оказывает очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001°С, нарушает жизнедеятельность клеток. [3]

При попадании радиоактивных веществ в организм любым путём они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается.

На чёрном счету облучения ряд страшных и тяжёлых заболеваний: острая лучевая болезнь, всевозможные мутации в организме человека, бесплодие, нарушения в центральной нервной системе, иммунные заболевания, нарушения обмена веществ, инфекционные осложнения, раковые опухоли.

По результатам независимых исследований профессора Гофмана (1994), заболевания способны вызывать даже малые дозы радиации. Бич нашего времени, онкологические заболевания, ежегодно уносят жизни почти 8 миллионов человек по всему миру, и это страшное число непрерывно растёт. По прогнозам врачей, если ситуация не изменится, уже к 2030 году от рака ежегодно будет умирать 17 миллионов жителей нашей планеты.

Живые организмы обладают различной радиорезистентностью, т.е. устойчивостью к воздействию ионизирующих излучений. В целом она снижается по мере усложнения органического мира: максимальна у низших организмов (мхи и лишайники) и минимальная у высших (человек, животные).

4. Радиация друг или враг?

Чтобы изучить доступные сведения о радиации, мы собрали данные о том, в каких случаях радиация приносит пользу и используется в мирных целях, а когда становится угрозой для человечества. Полученные результаты представлены в таблице 1.


Излучение - это физический процесс, результатом которого является передача энергии с помощью электромагнитных волн. Обратный излучению процесс называется поглощением. Рассмотрим этот вопрос подробнее, а также приведем примеры излучения в быту и природе.

Физика возникновения излучения

Любое тело состоит из атомов, которые, в свою очередь, образованы ядрами, заряженными положительно, и электронами, которые образуют электронные оболочки вокруг ядер и заряжены отрицательно. Атомы устроены таким образом, что они могут находиться в разных энергетических состояниях, то есть обладать как большей, так и меньшей энергией. Когда атом имеет наименьшую энергию, то говорят о его основном состоянии, любое другое энергетическое состояние атома называется возбужденным.

Существование различных энергетических состояний атома связано с тем, что его электроны могут располагаться на тех или иных энергетических уровнях. Когда электрон переходит с более высокого уровня на более низкий, то атом теряет энергию, которую он излучает в окружающее пространство в виде фотона - частицы-носителя электромагнитных волн. Наоборот, переход электрона с более низкого на более высокий уровень сопровождается поглощением фотона.

Излучение фотона атомом

Перевести электрон атома на более высокий энергетический уровень можно несколькими способами, которые предполагают передачу энергии. Это может быть как воздействие на рассматриваемый атом внешнего электромагнитного излучения, так и передача ему энергии механическим или электрическим способами. Кроме того, атомы могут получать, а затем выделять энергию в результате химических реакций.

Электромагнитный спектр

Спектр видимого излучения

Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.

Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон - это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой). Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.

Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.

Тепловое излучение тел

Всякое тело, которое имеет некоторую отличную от абсолютного нуля температуру, излучает энергию, в этом случае говорят о тепловом или температурном излучении. При этом температура определяет как электромагнитный спектр теплового излучения, так и количество испускаемой телом энергии. Чем больше температура, тем большую энергию излучает тело в окружающее пространство, и тем сильнее его электромагнитный спектр смещается в высокочастотную область. Процессы теплового излучения описываются законами Стефана-Больцмана, Планка и Вина.

Примеры излучения в быту

Как выше было сказано, энергию в виде электромагнитных волн излучает абсолютно любое тело, однако видеть невооруженным глазом этот процесс можно не всегда, поскольку температуры окружающих нас тел, как правило, слишком маленькие, поэтому их спектр лежит в низкочастотной невидимой для человека области.

Ярким примером излучения в видимом диапазоне является электрическая лампа накаливания. Проходя по спирали, электрический ток разогревает вольфрамовую нить до 3000 К. Такая высокая температура приводит к тому, что нить начинает испускать электромагнитные волны, максимум которых приходится на длинноволновую часть видимого спектра.

Микроволновая печь

Еще один пример излучения в быту - микроволновая печь, которая испускает микроволны, невидимые для человеческого глаза. Эти волны поглощаются объектами, содержащими воду, тем самым увеличивая их кинетическую энергию и, как следствие, температуру.

Наконец, примером излучения в быту в инфракрасном диапазоне является радиатор батареи отопления. Его излучения мы не видим, но чувствуем это тепло.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда - Солнце. Температура на поверхности Солнца около 6000 К, поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Биолюнинисценция светлячка

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

Читайте также: