Кислородный долг биохимия реферат

Обновлено: 05.07.2024

Впроцессе мышечной работы расходуются кислородный запас организма, фосфагены (АТФ и КрФ), углеводы, (гликоген мышц и печени, глюкоза крови) и жиры. После работы происходит их восстановление. Исключение составляют жиры, восстановления которых может и не быть.

Восстановительные процессы, происходящие в организме после работы, находят свое энергетическое отражение в повышенном (по сравнению с предрабочим состоянием) потреблении кислорода - кислородном долге (см. рис. 12). Согласно оригинальной теории А. Хйлла (1922), кислородный долг - это избыточное потребление О2 сверх предрабочего уровня покоя, которое обеспечивает энергией организм для восстановления до предрабочего состояния, включая восстановление израсходованных во время работы запасов энергии и устранение молочной кислоты. Скорость потребления О2 после работы снижается экспоненциально: на протяжении первых 2-3 мин очень быстро (быстрый, или алактатньш, компонент кислородного долга), а затем более медленно (медленный, или лактатный, компонент кислородного долга), пока не достигает (через 30-60 мин) постоянной величины, близкой к предрабочей.

Рис. 24. О2-долг (1) и О2-дефицит (2) при упражнениях разной относительной аэробной мощности (X. Кнуттген. и Б. Салтин, 1972)

После работы мощностью до 60% от МПК кислородный долг не намного превышает кислородный дефицит. После более интенсивных упражнений кислородный долг значительно превышает кислородный дефицит, причем тем больше, чем выше мощность работы (рис. 24).

Быстрый (алактатный) компонент О2-долга связан главным образом с использованием О2 на быстрое восстановление израсходованных за время работы высокоэнергетических фосфагенов в рабочих мышцах, а также с восстановлением нормального содержания О2 в венозной крови и с насыщением миоглобина кислородом.

Медленный (лактатный) компонент О2-долга связан со многими факторами. В большой мере он связан с после-рабочим устранением лактата из крови и тканевых жидкостей. Кислород в этом случае используется в окислительных реакциях, обеспечивающих ресинтез гликогена из лактата крови (главным образом, в печени и отчасти в почках) и окисление лактата в сердечной и скелетных мышцах. Кроме того, длительное повышение потребления О2 связано с необходимостью поддерживать усиленную деятельность дыхательной и сердечно-сосудистой систем в период восстановления, усиленный обмен веществ и другие процессы, которые обусловлены длительно сохраняющейся повышенной активностью симпатической нервной и гормональной систем, повышенной температурой тела, также медленно снижающимися на протяжении периода восстановления.

Восстановление запасов кислорода. Кислород находится в мышцах в форме химической связи с миоглобином. Эти запасы очень невелики: каждый килограмм мышечной массы содержит около 11 мл О2. Следовательно, общие запасы "мышечного" кислорода (из расчета на 40 кг мышечной массы у спортсменов) не превышают 0,5 л. В процессе мышечной работы он может быстро расходоваться, а после работы быстро восстанавливаться. Скорость восстановления запасов кислорода зависит лишь от доставки его к мышцам.

Сразу после прекращения работы артериальная кровь, проходящая через мышцы, имеет высокое парциальное напряжение (содержание) О2, так что восстановление О2-миоглобина происходит, вероятно, за несколько секунд. Расходуемый при этом кислород составляет некоторую часть быстрой фракции кислородного долга, в которую входит также небольшой объем О2 (до 0,2 л), идущий, на восполнение нормального содержания его в венозной крови.

Таким образом, уже через несколько секунд после прекращения работы кислородные "запасы" в мышцах и крови восстанавливаются. Парциальное напряжение О2 в альвеолярном воздухе и в артериальной крови не только достигает предрабочего уровня, но и превышает его. Быстро восстанавливается также содержание О2 в венозной крови, оттекающей от работавших мышц и других активных .органов и тканей тела, что указывает на достаточное их обеспечение кислородом в послерабочий период. Поэтому нет никаких физиологических оснований использовать дыхание чистым кислородом или смесью с повышенным содержанием кислорода после работы для ускорения процессов восстановления.

Рис. 25. Снижение за время и васстановление концентрации фосфагенов после субмаксимальной анаэробной работы до отказа (Л. Хермансен и Д. Хултман, 1972). (данные четырех опытов)

Восстановление фосфагенов (АТФ и КрФ). Фосфагены, особенно АТФ, восстанавливаются очень быстро (рис. 25). Уже на протяжении 30 с после прекращения работы восстанавливается до 70% израсходованных фосфагенов, а их полное восполнение заканчивается за несколько минут, причем почти исключительно за счет энергии аэробного метаболизма, т. е. благодаря кислороду, потребляемому в быструю фазу О2-долга. Действительно, если сразу после работы жгутировать работающую конечность и таким образом лишить мышцы кислорода, доставляемого с кровью, то восстановление КрФ не произойдет.

Чембольше расход фосфагенов за. время работы, тем больше требуется О2 для их восстановления (для восстановления 1 моля АТФ необходимо 3,45 л О2). Величина быстрой (алактатной) фракции О2-долга прямо связана со степенью- снижения фосфагенов в мышцах к концу работы. Поэтому данная величина указывает на количество израсходованных в процессе работы фосфагенов.

Восстановление гликогена.По первоначальным представлениям Р. Маргария и др. (1933), израсходованный за время работы гликоген ресинтезируется из молочной кислоты на протяжении 1-2 ч после работы. Расходуемый в этот период восстановления кислород определяет вторую, медленную, или лактатную, фракцию О2-Долга. Однако в настоящее время установлено, что восстановление гликогена в мышцах может длиться до 2-3 дней

Скорость восстановления гликогена и количество его восстанавливаемых запасов в мышцах и печени зависит от двух основных факторов: степени расходования гликогена в процессе работы и характера пищевого рациона в период восстановления. После очень значительного (более 3/4 исходного содержания), вплоть до полного, истощения гликогена в рабочих мышцах его восстановление в первые часы при обычном питании идет очень медленно, и для достижения предрабочего уровня требуется до 2 суток. При пищевом рационе с высоким содержанием углеводов (более 70% суточного калоража) этот процесс ускоряется - уже за первые 10 ч в рабочих мышцах восстанавливается более половины гликогена, к концу суток происходит его полное восстановление, а в печени содержание гликогена значительно превышает обычное. В дальнейшем количество гликогена в рабочих мышцах и в.печени продолжает увеличиваться и через 2-3 суток после "истощающей" нагрузки может превышать предрабочее в 1,5-3 раза - феномен суперкомпенсации (см. рис. 21, кривая 2).

Рис. 26. Динамика изменения содержания гликогена в рабочих мышцах при ежедневных тренировках (пробегание 16,2 км за час обозначено штриховкой): 1 - с обычным питанием (40% суточного калоража за счет углеводов) и 2 - с повышенным углеводным литанией (70% калоража за счет углеводов) (Д. Костилл, 1976).

Приежедневных интенсивных и длительных тренировочных занятиях содержание гликогена в рабочих мышцах и печени существенно снижается ото дня ко дню, так как при обычном пищевом рационе даже суточного перерыва между тренировками недостаточно для полного восстановления гликогена. Увеличение содержания углеводов в пищевом рационе спортсмена может обеспечить полное восстановление углеводных ресурсов организма к следующему тренировочному занятию (рис. 26).

Рис. 27. Уменьшение концентрации лактата в крови в период восстановления после трех повторных одноминутных максимальных нагрузок на велоэргометре (Л. Хермансени И. Стенвольд, 1972): столбики со штриховкой - работа, без штриховки - отдых

Устранение молочной кислоты. В период восстановления происходит устранение молочной кислоты из рабочих мышц, крови и тканевой жидкости, причем тем быстрее, чем меньше образовалось молочной кислоты во время работы. Важную роль играет также послерабочий режим. Так, после максимальной нагрузки для полного устранения накопившейся молочной кислоты требуется 60-90 мин в условиях полного покоя - сидя или лежа (пассивное восстановление). Однако, если после такой нагрузки выполняется легкая работа (активное восстановление), то устранение молочной Кислоты происходит значительно быстрее. У нетренированных людей оптимальная интенсивность "восстанавливающей" нагрузки - примерно 30-45% от МПК (например, бег трусцой), а. у хорошо тренированных спортсменов - 50-60% от МПК, общей продолжительностью примерно 20 мин (рис. 27).

Существует четыре основных пути устранения молочной кислоты: 1) окисление до СО2 и ШО (так устраняется примерно 70% всей накопленной молочной кислоты); 2) превращение в гликоген (в мышцах и печени) и в глюкозу (в печени) -около 20%; 3) превращение в белки (менее 10%); 4) удаление с мочой и потом (1-2%). При активном восстановлении доля молочной кислоты, устраняемой аэробным путем, увеличивается. Хотя окисление молочной кислоты может происходить в самых разных органах и тканях (скелетных мышцах, мышце сердца, печени, почках и др.), наибольшая ее часть окисляется в скелетных мышцах (особенно их медленных волокнах) . Это делает понятным, почему легкая работа (в ней участвуют в основном медленные мышечные волокна) способствует более быстрому устранению лактата после тяжелых нагрузок.

Значительная часть медленной (лактатной) фракции О2-долга связана с устранением молочной кислоты. Чем интенсивнее нагрузка, тем больше эта фракция. У нетренированных людей она достигает максимально 5-10 л, у спортсменов, особенно у представителей скоростно-силовых видов спорта, - 15-20 л. Длительность ее - около часа. Величина и продолжительность лактатной фрак-ции О2-долга уменьшаются при активном восстановлении.

Кислородный долг и восстановление энергетических запасов организма
В процессе мышечной работы расходуются кислородный запас организма, фосфагены (АТФ и КрФ), углеводы, (гликоген мышц и печени, глюкоза крови) и жиры. После работы происходит их восстановление. Исключение составляют жиры, восстановления которых может и не быть.
Восстановительные процессы, происходящие в организме после работы,находят свое энергетическое отражение в повышенном по сравнению с предрабочим состоянием) потреблении кислорода - кислородном долге. Согласно оригинальной теории А. Хйлла (1922), кислородный долг - это избыточное потребление О2 сверх предрабочего уровня покоя, которое обеспечивает энергией организм для восстановления до предрабочего состояния, включая восстановление израсходованных во время работызапасов энергии и устранение молочной кислоты. Скорость потребления О2 после работы снижается экспоненциально: на протяжении первых 2-3 мин очень быстро (быстрый, или алактатньш, компонент кислородного долга), а затем более медленно (медленный, или лактатный, компонент кислородного долга), пока не достигает (через 30-60 мин) постоянной величины, близкой к предрабочей.
После работы мощностью до 60% от МПКкислородный долг не намного превышает кислородный дефицит. После более интенсивных упражнений кислородный долг значительно превышает кислородный дефицит, причем тем больше, чем выше мощность работы.
Быстрый (алактатный) компонент О2-долга связан главным образом с использованием О2 на быстрое восстановление израсходованных за время работы высокоэнергетических фосфагенов в рабочих мышцах, а также свосстановлением нормального содержания О2 в венозной крови и с насыщением миоглобина кислородом.
Медленный (лактатный) компонент О2-долга связан со многими факторами. В большой мере он связан с после-рабочим устранением лактата из крови и тканевых жидкостей. Кислород в этом случае используется в окислительных реакциях, обеспечивающих ресинтез гликогена из лактата крови (главным образом, в печени иотчасти в почках) и окисление лактата в сердечной и скелетных мышцах. Кроме того, длительное повышение потребления О2 связано с необходимостью поддерживать усиленную деятельность дыхательной и сердечнососудистой систем в период восстановления, усиленный обмен веществ и другие процессы, которые обусловлены длительно сохраняющейся повышенной активностью симпатической нервной и гормональной систем,повышенной температурой тела, также медленно снижающимися на протяжении периода восстановления.
Восстановление запасов кислорода. Кислород находится в мышцах в форме химической связи с миоглобином. Эти запасы очень невелики: каждый килограмм мышечной массы содержит около 11 мл О2. Следовательно, общие запасы "мышечного" кислорода (из расчета на 40 кг мышечной массы у спортсменов) не превышают 0,5л. В процессе мышечной работы он может быстро расходоваться, а после работы быстро восстанавливаться. Скорость восстановления запасов кислорода зависит лишь от доставки его к мышцам.
Сразу после прекращения работы артериальная кровь, проходящая через мышцы, имеет высокое парциальное напряжение (содержание) О2, так что восстановление О2-миоглобина происходит, вероятно, за несколько секунд.Расходуемый при этом кислород составляет некоторую часть быстрой фракции кислородного долга, в которую входит также небольшой объем О2 (до 0,2 л), идущий, на восполнение нормального содержания его в венозной крови.
Таким образом, уже через несколько секунд после прекращения работы кислородные "запасы" в мышцах и крови восстанавливаются. Парциальное напряжение О2 в альвеолярном воздухе и в артериальной крови нетолько достигает предрабочего уровня, но и превышает его. Быстро восстанавливается также содержание О2 в венозной крови, оттекающей от работавших мышц и других активных .органов и тканей тела, что указывает на достаточное их обеспечение кислородом в послерабочий период. Поэтому нет никаких физиологических оснований использовать дыхание чистым кислородом или смесью с повышенным.

Чтобы читать весь документ, зарегистрируйся.

Связанные рефераты

Кислородный коктейль

. У человека существуют две биологически активные (коферментные) формы витамина.

2 Стр. 25 Просмотры

Кислородный коктейль

. Реферат на тему "кислородный коктель" Кислородный коктейль. Кислоро́дный.

2 Стр. 498 Просмотры

. Раздумья о врачебном долге Врач - это одна из самых древних профессий. Люди всегда.

Кислородный стресс

. “Кислородный стресс” В процессах, которые протекают в живом организме, существенную роль.

3 Стр. 133 Просмотры

. Долг – категория этики, означающая отношение личности к обществу, другим людям, выражающееся.


Способность человеческого организма поддерживать высокий потребительский уровень кислорода после физической нагрузки называется кислородным долгом. Что это дает? Возможность иметь кислородный долг гарантирует организму требуемый запас прочности. Подробнее об этом – далее в статье.

Определение

Итак, что это за характеристика? Кислородный долг представляет собой количество О2, которое необходимо для окисления накопившихся в человеческом организме продуктов обмена при интенсивной мышечной работе.

кислородный и кислородный запрос

Обуславливаются процессы долга тем, что при длительной физической активности ткани могут функционировать в ишемическом режиме. Это объясняется нехваткой кислорода. Кислородный долг по праву считается классическим примером отсроченного действия на организм физической нагрузки.

Данный долг бывает следующих разновидностей:

  1. Алактатный. Как он образуется? Алактатный долг в организме человека возникает в результате физической нагрузки. Он устраняется в течение нескольких минут.
  2. Лактатный – возрастает в процессе превышения показателей кислородного запроса МПК в организме человека. Компенсация такого рода долга происходит в течение нескольких часов.

Алактатный кислородный долг – это количество О2, которое потребуется затратить для пополнения резерва. Его еще называют быстрым, так как восстановление после физических нагрузок происходит стремительно и занимает не более четырех минут времени.

Лактатный кислородный долг связан с многочисленными факторами и называется медленным. В таком случае О2 участвует в процессах окислительных реакций и обеспечивает из лактата крови ресинтез гликогена, а также окисление в скелетных и сердечных мышцах.

кислородный запрос

Все компоненты кислородного долга играют важную роль и зависят от физической активности и подготовки человеческого организма к нагрузкам.

Причины снижения

В состоянии покоя человек расходует в среднем около 250 миллилитров О2 в минуту. Данная величина может варьироваться в зависимости от веса, пола и условий существования, а также при физической активности. Во время физических нагрузок отмечается значительное увеличение потребляемого кислорода примерно в двадцать раз.

Когда человек находится в спокойном состоянии, то тогда затрачивается примерно двадцать процентов общего расхода энергии, из них требуется не менее пяти процентов от общего потребления О2. Во время физической активности происходит вентиляция легких и изменение параметров кислородного давления в зависимости от интенсивности нагрузок и возраста человека.

кислородный долг и кислородный

После завершения физических нагрузок потребление О2 начинает постепенно снижаться и в итоге возвращается к исходным параметрам. Как показывает практика, размер долга О2 напрямую зависит от прилагаемых усилий и физической подготовки человека. Максимальный кислородный долг может варьироваться в зависимости от этих факторов. Например, при физической нагрузке, которая длится на протяжении нескольких минут у нетренированного человека, долг составляет в среднем от трех до пяти литров. Показатель у спортсмена в такой ситуации составляет от пятнадцати литров и более. При этом следует иметь в виду, что максимальный кислородный долг – это мера анаэробной мощности, которая характеризует собой общую емкость анаэробных процессов, что происходят при максимальных нагрузках и условиях.

Максимальное потребление О2

Предельное количество О2, которое доставляется в течение одной минуты к работающим мышцам человека, называется максимальным потреблением. Этот показатель напрямую зависит от следующих факторов:

  • от увеличения физической нагрузки на организм;
  • массы работающей мускулатуры;
  • состояния систем транспортировки кислорода;
  • сердечной производительности;
  • периферического кровообращения.

кислородный долг и кислородный запрос что

Предельное потребление кислорода в человеческом организме измеряется в литрах. В детском возрасте показатели варьируются в соответствии с ростом и возрастом ребенка. Для того чтобы провести тщательную оценку физического состояния человека, необходимо в первую очередь определить кислородный пульс. Именно данный показатель свидетельствует об экономичности работы сердца. Чем меньше частота сердечных сокращений, тем большее количество кислорода надобно организму.

Кислородный запрос

Количество кислорода, которое требуется человеку для выполнения определенной работы на единицу времени, является кислородным запросом. Связано ли это с другими характеристиками? Кислородный долг и кислородный запрос тесно взаимосвязаны между собой. Если органы снабжения О2 не могут быстро удовлетворить запрос, в организме организуется долг.

Методы восстановления

После любой физической активности в организме человека проистекают противоположные процессы и трансформации в деятельности функциональных систем, которые снабжали органы для выполнения определенного упражнения.

кислородный долг и запрос

Любые физические нагрузки требуют последующего восстановления организма, которое может быть как активным, так и пассивным. Если речь идет об активном восстановлении, то в таком случае каждая тренировка должна обязательно заканчиваться постепенным уменьшением нагрузки. Именно благодаря этому подходу предотвращается появление судорожных состояний в мышцах, а также значительно облегчается процесс восстановления.

Если речь идет о пассивном подходе, то в таком случае человеку требуется меньше кислорода, чем при нахождении в привычном состоянии. В результате этого происходит высвобождение кислорода в определенном количестве, организм восстанавливается. Рекомендуется пассивное восстановление в том случае, если нагрузки не выходили за рамки равномерного потребления кислорода.

Восстановительный период в таком случае длится короткий промежуток времени, после которого можно заново приступать к выполнению упражнений. По мнению ученых, именно пассивный метод считается наиболее актуальным. Выбирать способ восстановления следует правильно, так как именно от этого напрямую зависят нагрузки на сердце.

кислородный долг

Заключение

Когда человек выполняет работу, требующую высокой мощности, системы доставки О2 не могут обеспечить потребность энергетических процессов. В результате этого происходит накапливание в тканях недоокисленных продуктов. Как только человек завершает физические нагрузки, происходит ликвидация кислородного долга. Оценка такого состояния должна проводиться в каждом случае персонально в зависимости от физической подготовки, нагрузки, пола и возраста человека. Именно кислородный долг считается классическим примером отсроченного действия на человеческий организм физической нагрузки.

а) Аэробная система. Аэробная система представляет собой окисление питательных веществ в митохондриях для получения энергии. Это значит, что глюкоза, жирные кислоты и аминокислоты пищевых веществ, как показано слева на рисунке, после некоторой промежуточной обработки соединяются с кислородом, высвобождая громадное количество энергии, которая используется для превращения АМФ и АДФ в АТФ.

Сравнение аэробного механизма получения энергии с системой гликоген-молочная кислота и фосфагенной системой по относительной максимальной скорости генерации мощности, выраженной в молях АТФ, образующихся в минуту, дает следующий результат.

Аэробная система энергообеспечения мышц. Кислородный долг

При сравнении этих систем с точки зрения длительности обеспечиваемой ими активности относительные значения выглядят так:

Аэробная система энергообеспечения мышц. Кислородный долг

Таким образом, можно легко понять, что фосфагенную систему используют мышцы для всплесков мощности длительностью в несколько секунд, но аэробная система необходима для длительной спортивной активности. Между ними располагается система гликоген-молочная кислота, которая особенно важна для обеспечения дополнительной мощности во время промежуточных по длительности нагрузок (например, забеги на 200 и 800 м).

Аэробная система энергообеспечения мышц. Кислородный долг

Основные метаболические системы, снабжающие энергией мышечное сокращение

б) Какие энергетические системы используются в разных видах спорта? Зная силу физической активности и ее длительность для разных видов спорта, легко понять, какая из энергетических систем используется для каждого из них. Примерное соответствие представлено в таблице ниже.

Аэробная система энергообеспечения мышц. Кислородный долг

г) Восстановление мышечных метаболических систем после физической деятельности. Подобно тому, как энергия фосфокреатина может использоваться для восстановления АТФ, энергия системы гликоген-молочная кислота может использоваться для восстановления и фосфокреатина, и АТФ. Энергия окислительного метаболизма может восстанавливать все другие системы, АТФ, фосфокреатин и систему гликоген-молочная кислота.

Восстановление молочной кислоты означает просто удаление ее избытка, накопленного во всех жидкостях тела. Это особенно важно, поскольку молочная кислота вызывает чрезвычайное утомление. При наличии достаточного количества энергии, генерируемой окислительным метаболизмом, удаление молочной кислоты осуществляется двумя путями: (1) небольшая часть молочной кислоты снова превращается в пировиноградную кислоту и затем подвергается окислительному метаболизму в тканях организма; (2) остальная часть молочной кислоты вновь превращается в глюкозу, главным образом в печени. Глюкоза, в свою очередь, используется для восполнения запаса гликогена в мышцах.

д) Восстановление аэробной системы после физической активности. Даже на ранних стадиях тяжелой физической работы способность человека к синтезу энергии аэробным путем частично снижается. Это связано с двумя эффектами:

(1) так называемым кислородным долгом;

(2) истощением запасов гликогена в мышцах.

е) Кислородный долг. В норме тело содержит примерно 2 л находящегося в запасе кислорода, который может быть использован для аэробного метаболизма даже без вдыхания новых порций кислорода. В этот запас кислорода входят:

(1) 0,5 л, находящиеся в воздухе легких;

(2) 0,25 л, растворенные в жидкостях тела;

(3) 1 л, связанный с гемоглобином крови;

(4) 0,3 л, которые хранятся в самих мышечных волокнах, в основном в соединении с миоглобином — веществом, которое похоже на гемоглобин и подобно ему связывает кислород.

При тяжелой физической работе почти весь запас кислорода используется для аэробного метаболизма в течение примерно 1 мин. Затем после окончания физической нагрузки этот запас должен быть возмещен за счет вдыхания дополнительного количества кислорода по сравнению с потребностями в покое. Кроме того, около 9 л кислорода должны быть израсходованы на восстановление фосфагенной системы и молочной кислоты. Дополнительный кислород, который должен быть возмещен, называют кислородным долгом (около 11,5 л).

Рисунок ниже иллюстрирует принцип кислородного долга.

Аэробная система энергообеспечения мышц. Кислородный долг

Скорость поглощения кислорода легкими в течение 4 мин максимальной физической работы и примерно 40 мин - после ее окончания. Рисунок демонстрирует принцип кислородного долга

В течение первых 4 мин человек выполняет тяжелую физическую работу, и скорость потребления кислорода возрастает более чем в 15 раз. Затем после окончания физической работы потребление кислорода все еще остается выше нормы, причем сначала — значительно выше, пока восстанавливается фосфагенная система и возмещается запас кислорода как часть кислородного долга, а в течение следующих 40 мин более медленно удаляется молочная кислота. Раннюю часть кислородного долга, количество которого составляет 3,5 л, называют алактацидным кислородным долгом (не связанным с молочной кислотой). Позднюю часть долга, составляющую примерно 8 л кислорода, называют лактацидным кислородным долгом (связанным с удалением молочной кислоты).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Читайте также: