Реферат гидравлические машины 7 класс

Обновлено: 30.06.2024

Гидравлический двигатель (гидродвигатель) — гидравлическая машина, предназначенная для преобразования гидравлической энергии в механическую. К гидродвигателям относят гидромоторы, гидроцилиндры, гидротурбины и поворотные гидродвигатели.

Гидравлические двигатели бывают объёмными и гидродинамическими. На практике чаще используют объёмные гидродвигатели, так как при той же преобразуемой мощности они компактнее и меньше по массе. Конструкции объёмных гидромоторов подобны конструкциям соответствующих объёмных насосов. Кроме того, объёмные гидромоторы имеют свои аналоги среди пневмомоторов. Однако не каждый насос может использоваться в режиме гидромотора. Например, поршневые насосы (которые не следует путать с роторно-поршневыми) могут работать только в качестве насоса из-за наличия клапанной системы распределения.


  • гидроцилиндры — с возвратно-поступательным движением штока или плунжера;

  • поворотные гидродвигатели с ограниченным возвратно-поворотным движением вала;

  • гидромоторы с неограниченным вращательным движением вала.

Гидроцили́ндр (гидравли́ческий цили́ндр) — объёмный гидродвигатель возвратно-поступательного движения. Принцип действия гидроцилиндров во многом схож с принципом действия пневмоцилиндров.

Гидроцилиндры широко применяют во всех отраслях техники, где используют объёмный гидропривод. Например, в строительно-дорожных, землеройных, подъёмно-транспортных машинах, в авиации и космонавтике, а также в технологическом оборудовании — металлорежущих станках, кузнечно-прессовых машинах

Гидроцилиндры одностороннего действия - Выдвижение штока осуществляется за счёт создания давления рабочей жидкости в поршневой полости, а возврат в исходное положение от усилия пружины.

Усилие, создаваемое гидроцилиндрами данного типа, при прочих равных условиях меньше усилия, создаваемого гидроцилиндрами двустороннего действия, за счёт того, что при прямом ходе штока необходимо преодолевать силу упругости пружины.

Пружина выполняет здесь роль возвратного элемента. В тех случаях, когда возврат производится за счет действия приводимого механизма, другого гидроцилиндра или силы тяжести поднятого груза, гидроцилиндр может не иметь возвратной пружины ввиду отсутствия необходимости. Такой принцип действия применяется в бутылочных домкратах.

Гидроцилиндры двустороннего действия - Как при прямом, так и при обратном ходе поршня усилие на штоке гидроцилиндра создаётся за счёт создания давления рабочей жидкости соответственно в поршневой и штоковой полости.

Следует иметь в виду, что при прямом ходе поршня усилие на штоке несколько больше, а скорость движения штока меньше, чем при обратном ходе, за счёт разницы в площадях, к которым приложена сила давления рабочей жидкости (эффективной площади поперечного сечения). Такие гидроцилиндры осуществляют, например, подъём-опускание отвала многих бульдозеров.

Телескопические гидроцилиндры - Называются так благодаря конструктивному сходству с телескопом или подзорной трубой. Такие гидроцилиндры применяются в том случае, если при небольших размерах самого гидроцилиндра в исходном, то есть сложенном, состоянии, необходимо обеспечить большой ход штока. Конструктивно представляют собой несколько цилиндров, вставленных друг в друга таким образом, что корпус одного цилиндра является штоком другого. Такие гидроцилиндры имеют исполнение как для одностороннего, так и для двустороннего действия.

Они осуществляют, например, подъём-опускание кузовов во многих самосвалах.

При рабочем ходе (выдвижении штока) жидкость от насоса подается в поршневую полость, вытесняемая же жидкость из штоковой полости, за счет кольцевого подключения (распределитель 3/2), направляется не в гидробак, а подается также в поршневую полость. В результате выдвижение штока происходит намного быстрее, чем в обычной схеме подключения (распределитель 4/2 или 4/3).Обратный ход (втягивание штока) происходит при подаче жидкости только в штоковую полость, поршневая соединена с гидробаком. При использовании гидроцилиндра с соотношением площадей поршня 2:1 (в некоторых источниках именно такие гидроцилиндры называются дифференциальными) такая схема позволяет получить равные скорости и равные усилия прямого и обратного ходов, что для гидроцилиндров с односторонним штоком без регулирования или дополнительных элементов получить невозможно.

Чем больше количество пластин, тем больший момент на валу, но тем меньший угол поворота гидродвигателя, и тем меньшая угловая скорость вращения.Максимальный угол поворота гидродвигателя зависит от числа пластин следующим образом: для однопластинчатого он составляет порядка 270°, для двухпластинчатого — около 150°, для трёхпластинчатого — до 70°. Гидродвигатели с числом пластин, большим четырёх, изготавливают редко.

Управление движением вала поворотного гидродвигателя осуществляется с помощью гидрораспределителя, либо с помощью средств регулирования гидропривода.

Поворотные гидродвигатели применяются, например, в механизмах поворота заслонок, во вращающихся упорах и др.

Вследствие того, что трудно обеспечить надёжное уплотнение пластин, пластинчатые поворотные гидродвигатели применяются только при низких давлениях рабочей жидкости

Конструкции гидромоторов аналогичны конструкциям соответствующих насосов. Некоторые конструктивные отличия связаны с обратным потоком мощности через гидромашину, работающую в режиме гидромотора. В отличие от насосов, в гидромоторе на вход подаётся рабочая жидкость под давлением, а на выходе снимается с вала крутящий момент.

Наибольшее распространение получили шестерённые, пластинчатые, аксиально-плунжерные и радиально-плунжерные гидромоторы.

Управление движением вала гидромотора осуществляется с помощью гидрораспределителя либо с помощью средств регулирования гидропривода.

Аксиально-плунжерные гидромоторы используются в тех случаях, когда необходимо получить высокие скорости вращения вала, а радиально-плунжерные — когда необходимы небольшие скорости вращения при большом создаваемом моменте вращения. Например, поворот башни некоторых автомобильных кранов осуществляют радиально-плунжерные гидромоторы. В станочных гидроприводах широко распространены пластинчатые гидромоторы. Шестерённые гидромоторы используются в несложных гидросистемах с невысокими требованиями к неравномерности вращения вала гидромотора.

Гидромоторы широко применялись в авиации разработки СССР в виде двухканальных гидроприводов закрылков и перекладки крыла, а также ряде вспомогательных систем, ввиду их небольших габаритов и большой мощности. Также гидромоторы часто используются в маневровых и узкоколейных тепловозах для передачи энергии от двигателя к колёсным парам.

В бытовых счётчиках расхода воды также используются небольшие гидромоторы.

Лопастные гидродвигатели

В динамических гидродвигателях механическое движение выходного звена создается за счёт использования в основном кинетической энергии потока рабочей жидкости. Примером такого двигателя может служить турбина, на лопасти которой направляется струя жидкости под давлением. У этого типа двигателей ведомое звено совершает лишь вращательное движение. Динамические гидродвигатели применяют в приводах большой мощности, таких как трансмиссии автомобилей, тепловозов и др.

Гидравлические машины

Гидравлические машины в принципе своей работы основываются на применении закона Паскаля, который говорит, что давление, производимое на жидкость, передается внутри неё во все стороны с одинаковой силой.

Что же такое гидравлический агрегат? Гидравлический - значит работающий за счет давления или движения жидкости, например воды.

В этой статье мы собрали для Вас принцип действия и основные схемы наиболее часто применяемых гидростатических машин.

Содержание статьи

Гидравлический пресс применяется для получения больших сжимающих усилий, которые необходимы, например, для деформации металлов при обработке давлением (прессование, ковка, штамповка), при испытании различных материалов, уплотнении рыхлых материалов и т.д.

Схема и принцип действия

принцип гидравлической машины

Самая простая схема гидравлической машины, такой как гидравлический пресс состоит из двух цилиндров А и В (малого и большого диаметра), соединенных между собой трубкой С. Такая схема похожа на работу сообщающихся сосудов.

В малом цилиндре расположен малый поршень гидравлической машины D, соединенный с рычагом ОКМ, имеющим неподвижную шарнирную опору в точке О, а в большом цилиндре – большой поршень гидравлической машины (плунжер) Е, составляющий одно целое с платформой F, на котором расположено прессуемое тело G.

Рычаг приводится в действие вручную или при помощи специального двигателя. При этом поршень D начинает двигаться вниз и оказывать на находящуюся под ним жидкость давление, которое передается на поршень Е и заставляет его вместе со столом двигаться до тех пор, пока тело G не войдет в соприкосновение с неподвижной плитой Н.

При дальнейшем подъеме стола начинается процесс прессования (сжатия) тела G.

Если данное устройство служит не для прессования, а только для поднятия груза, т.е. представляет собой так называемый гидравлический подъемник, то неподвижная плита Н в этом случае оказывается лишней и из конструкции исключается.

Вместе с указанными на схеме частями гидравлический пресс снабжается всасывающим и нагнетательным клапанами, регулирующими работу пресса, и клапаном, предохраняющим его от разрыва при чрезмерном возрастании давления (на схеме клапаны не показаны).

Работу гидравлического пресса объясняет закон Паскаля. В котором говорится о гидростатическом парадоксе, когда кружка воды, добавленная в бочку, приводит к ее разрыву.

Сила давления, КПД и формула машины

Установим основные соотношения, определяющие работу пресса. Пусть усилие, действующее на конец М рычага ОКМ, будет называться Q, а плечи рычага ОК = a, КМ = b. Тогда, рассматривая равновесие рычага и составляя уравнение моментов относительно его центра вращения О выводим уравнение

Находим силу передаваемую на поршень D малого цилиндра

и создаваемое в жидкости добавочное гидростатическое давление

где d1 – диаметр малого цилиндра.

Давление ρ передается на поршень Е большого цилиндра, в результате чего полная сила давления на этот поршень, обусловленная силой Q, будет

где d2 – диаметр большого цилиндра.

Из этого выражения видно, что сила P2 может быть получена сколько угодно большой путем выбора соответствующих размеров цилиндров и плеч движущего рычага.

На самом деле действительная сила P2, передаваемая на стол и осуществляющая процесс прессования, оказывается несколько меньше из-за неизбежных потерь энергии на преодоление трения в движущихся частях пресса и утечек жидкости через различные неплотности и зазоры.

Эти потери учитываются введением в формулу коэффициента полезного действия – КПД. Таким образом формула гидравлической машины

Практически этот коэффициент имеет значение от 0,75 до 0,85.

Пример расчета

задача на большой поршень гидравлического машины

Для наглядного примера того как работают малый и большой поршень гидравлического машины рассмотрим простой пример.

Условие: Большой поршень гидравлической машины имеет площадь 50см 2 . Он поднимает груз весом 2000Н. Необходимо определить площадь малого поршня если на известно, что на динамометре определилась сила 300Н. Рычаг в этой задачи не участвует.

S1=(F1*S2)/F2=(300*50*10 (-2) )/2000=0.075 м 2 =7,5cм 2

В современных гидравлических прессах можно получить очень большие давления (до 25 000 т.). В таких конструкциях малый цилиндр выполняют обычно в виде поршневого насоса высокого давления, подающего рабочую жидкость (воду или масло) в большой цилиндр (собственно пресс), часто с добавлением в схему специального устройства – гидравлического аккумулятора, выравнивающего работу насоса.

Гидравлический аккумулятор

Как показывает название – гидравлический аккумулятор служит для аккумулирования, т.е. накапливания, собирания энергии. Он применяется на практике в тех случаях, когда необходимо выполнить кратковременную работу, требующую значительных механических усилий, например, поднять большую тяжесть, открыть и закрыть ворота шлюзов и т.п.

Наиболее широкое применение гидравлические аккумуляторы получили при работе гидравлических прессов, используемые здесь как установки, накапливающие жидкость в период холостого хода пресса и отдающие ее при рабочем ходе, когда подача насосов оказывается недостаточной.

Гидравлический аккумулятор

Гидравлический аккумулятор состоит из цилиндра А, в котором помещен плунжер В, присоединенный своей верхней частью к платформе С, несущей груз большого веса. В аккумулятор по трубе D насосом нагнетается жидкость (вода или масло), которая поднимает вверх плунжер с грузом. При достижении крайнего верхнего положения насос автоматически выключается.

Обозначим вес плунжера с грузом через G, а его полную высоту подъема через Н. Тогда энергия, запасенная аккумулятором при полном подъеме плунжера, будет равна G*H, а создаваемое им в жидкости гидростатическое давление

где F – площадь сечения плунжера

Под таким постоянным давлением находящаяся в аккумуляторе жидкость подводится по трубе Е к гидравлическим машинам – например, прессовым машинам, обеспечивая тем самым их работу с постоянной нагрузкой.

Гидростатическое давление, создаваемой аккумулятором, будет тем больше, чем меньше площадь сечения плунжера.

Гидравлические машины

Однако при чрезмерном уменьшении сечения плунжера последний может оказаться недостаточно прочным. Поэтому при необходимости получения очень больших давлений применяются так называемые дифференциальные аккумуляторы со ступенчатым поршнем.

В этом случае давление на жидкость, находящуюся в цилиндре А, передается через небольшую площадь кольцевого уступа ступенчатого поршня, пропущенного сквозь обе крышки цилиндра (верхнюю и нижнюю), и следовательно, сечение поршня может быть выбрано такого размера, при котором обеспечивается необходимая прочность.

Гидравлическая турбина

Гидравлическая турбина

Гидравлические двигатели служат для преобразования гидравлической энергии потока жидкости в механическую энергию, получаемую на валу двигателя и используемую в дальнейшем для различных целей, в основном для привода рабочих машин.

Наиболее распространенным представителем этой группы является гидравлическая турбина. Гидравлические турбины обычно для устанавливаются на гидроэлектрических станциях, где они служат приводом электрических генераторов.

Энергия воды преобразуется в турбине в механическую энергию на валу. Вал приводит в движение ротор электрогенератора и механическая энергия превращается в электрическую.

Насос

В насосах, применяемых для подъема и перемещения жидкости по трубопроводам, происходит обратный процесс. Механическая энергия, подводимая к насосам от двигателей, приводящих насосы в действие, преобразуется в гидравлическую энергию жидкости.

насосная установка

На рисунке схематично изображены
А – турбинная установка
Б – насосная установка

Насосы это самые распространенная разновидность гидравлических машин. Они применяются во всех отраслях промышленности и сельского хозяйства.

Насосы используются в водоснабжении, отоплении, вентиляции, для работы котельной установки и во многих других областях техники.

Подробная схема работы насоса размещена в этой статье

Гидравлические машины весьма широко используются в настоящее время в нефтяной промышленности. Насосы применяются при транспортировке нефти и нефтепродуктов по трубопроводам, при бурении нефтяных скважин для подачи в них промывочных растворов и т.д.

Гидравлическая машина – это специальное оборудование, в котором подаваемая из насоса жидкость передаёт свою механическую энергию турбинам (так называемые гидродвигатели). Есть другой вариант – это машина, которая придаёт протекающей через неё жидкости механическую энергию (проще говоря – насос).

Гидравлическая машина, берущая энергию из протекающей воды, состоит из:

  • электро-генератор;
  • турбина;
  • подающий аппарат или специальные каналы.

Насос является одним из самых распространённых агрегатов. Они применяются в сельском хозяйстве, строительстве, химической, металлообрабатывающей, текстильной и пищевой промышленностях.

Гидравлическими машинами называют агрегаты, которые могут перемещать различные виды жидкостей и газов, а также, вырабатывать энергию от текущей жидкости (гидродвигатели). Именно создание и перемещение потока жидкостей и есть главное назначение гидравлических машин.

Классификация гидравлических машин

Гидравлические машины классифицируют по принципу действия и внутреннему строению.

Главное разделение – насосы и гидравлические двигатели.

К насосам относятся такие группы:

  1. Объёмные – это агрегаты, рабочий процесс которых, происходит переменно. В рабочую ёмкость через входную трубу попадает жидкость. После заполнения камеры, входная труба перекрывается задвижкой и в камере нагнетается давление (поршень). Открывается выводящая труба и жидкость покидает ёмкость. Задвижка закрывается, а на входе наоборот открывается. Процесс повторяется
  2. Динамические – в этих агрегатах, рабочая часть насоса, взаимодействует с жидкостью в проточной части. Потоку придаётся дополнительная кинетическая энергия, за счёт лопастей, винтов или вихревого потока.

Гидравлические двигатели разделяются на:

  1. Активные – в этом случае, поток распределяется по нескольким каналам, через которые он с большой скоростью ударяет в определённые лопасти турбины.
  2. Реактивные – это агрегат, в котором колесо вырабатывающее энергию, находится в ёмкости с большим давление под водой.

Однако у гидравлических двигателей, большинство моделей можно использовать как насос. Следовательно, они могут разделяться на объёмные и динамические.

Принцип работы и устройство гидромашин

С развитием технологий, появляется все больше новых машин, используемых в различных отраслях промышленности.

Лопастные насосы

Этот тип гидромашин, получил огромное распространение в обеспечение населения водой. Эти насосы можно разделить на осевые и центробежные.

Если говорить о принципе действия центробежного насоса, то в этом случае жидкость будет двигаться от центра колеса к периферии под воздействием центробежных сил.

Из каких элементов состоит: основное колесо (рабочее) на котором располагаются лопасти, подвод воды и отвод, а также двигатель. Колесо состоит из двух круглых пластин, между которыми располагаются изогнутые лопасти и подвижная ось двигателя. Колесо вращается в противоположную сторону изгиба лопаток. Тем самым, двигатель с помощью него передаёт потоку механическую энергию.

Осевой насос подразумевает движение жидкости только вдоль подвижной оси, на которой могут располагаться несколько рабочих колёс с лопастями. Они расположены так, чтобы вода поднималась вокруг оси до нужно отметки. В некоторых моделях таких насосов, можно регулировать положение лопастей.

Поршневой насос

Принцип работы заключается в вытеснение жидкости находящийся в рабочей камере, с помощью подвижных элементов насоса. Рабочая камера представляет собой емкость, в которой есть вход и выход для жидкости. Подвижные элементы бывают трёх видов: диафрагма, плунжер и поршень.

Устройство поршневого насоса: шатун, кривошип, поршень, цилиндр (корпус в котором двигается вытесняющая поверхность), пружинные клапаны (впускной и выпускной), ёмкость для жидкости.

Именно поршневые модели являются самыми распространёнными из вытеснителей. В них может присутствовать один, два или несколько поршней.

Плунжерные варианты используются реже вследствие своей дороговизны (это связанно с высокой точностью изготовления движущихся элементов). Однако их преимуществом перед поршневыми, является возможность получения высокого давления.

Состоит плунжерный насос из: ведущий вал, кулачок, плунжер, корпус (цилиндр), пружина (плунжер двигается вперёд с помощью кулачка, а обратно под воздействием пружины).

Самый постой в изготовление, вследствие этого дешёвый вариант – Диафрагменный насос. Из-за простой конструкции, этот вариант не подходит для создания большого давления. Прочность диафрагмы не предназначена для высоких нагрузок. Он состоит из: шток, гибкая диафрагма, корпус, два клапана (впускной и выпускной).

Шестерные насосы

Это машины роторного типа. Они получили большую популярность среди нерегулируемых насосов. Такой агрегат состоит из: две одинаковые шестерни (зацепленные друг за друга), камера п-образной формы (в ней и находятся шестерни), разделитель.

Принцип работы: после запуска двигателя, из всасывающего отверстия, вода попадает в зону между зубьями. Дальнейшее вращение шестерней, приводит к передвижению жидкости в нагнетательную плоскость. В месте зацепления шестерен, жидкость вытесняется и под воздействием давления попадает к дальнейшим рабочим частям насоса.

Преимущества таких гидромашин:

  • простая конструкция;
  • низкая стоимость;
  • высокий показатель надёжности;
  • высокая частота вращения.
  • фиксированный рабочий объём, без возможности регулирования;
  • конструкция не предназначена для работы с высоким давлением;
  • неравномерная подача жидкости, если брать в пример пластинчатые гидромашины.

Пластинчатые гидромашины

Это не то же самое, что и лопастные машины (динамический вид). Рабочими поверхностями здесь являются шиберы (пластины). Они относятся к объёмному виду. Подвижным элементом является ротор. Он совершает вращательные движения. А шиберы двигаются по возвратно-поступательной траектории внутри ротора.

Пластинчатые гидромашины подразделяются на две группы: однократные и двукратные. Первый вариант может быть регулируемым, второй нерегулируемый.

Состоят такие агрегаты из: шиберы с пружинами (от двух и более), рабочие камеры (условно разделяются пластинами), ротор.

Рабочий процесс: после запуска двигателя, ротор начинает движение. Шиберы под воздействием пружин, плотно соприкасаются со стенками статора и разделяют общую рабочую емкость на две герметичные камеры (если пластине две). Под воздействием всасывания, емкости заполняются жидкостью и в ходе вращения, передают её в выходное отверстие.

Преимущества пластинчатых гидромашин:

  • тихий рабочей процесс;
  • возможность регулировки агрегатов однократного действия.
  • сложная конструкция;
  • создание низкого давления при работе;
  • нарушение качества работы при низких температурах.

Поворотный гидродвигатель

Особенностью таких агрегатов, является ограничение угла рабочего вала. Они широко применяются в создание рулевого управления сельскохозяйственных машин. Угол оборота, напрямую зависит от количества пластин. Если она одна, он будет составлять примерно 270 градусов, если две – 150, три – 70.

Чтобы регулировать работу вала, потребуется специальный гидрораспределитель. Этот вид агрегатов не подходит для работы с большим давлением жидкости.

Гидротурбины

В этих гидромашинах, механическая энергия протекающей жидкости, передаётся лопастям рабочего колеса. Самый масштабный и яркий пример использования гидротурбин, это гидроэлектростанции. Они разделяются на реактивные и активные.

Состоит такой агрегат из: рабочее колесо, подводящий аппарат или сопла (зависит от типа турбины).

По внутреннему строению их можно разделить на ковшовые, диагональные, осевые и радиально-осевые.

Предшественником гидротурбин, можно назвать водяное колесо, которое приводилось в движение с помощью мощного потока воды (их устанавливали на реках или больших ручьях).

Осевые турбины

Самые быстроходные из всех видов турбин. Рабочее колесо по форме напоминает вентилятор с большими лопастями, которые могут быть как фиксированными, так и подвижными. В таких турбинах обязательно устанавливается подающий аппарат. Он отвечает за КПД агрегата, а также в нужным момент полностью перекрывает подступ воды к лопастям. Также обязательным элементом, являются трубы для откачивания воды.

Поворотно-лопастные турбины

Осевой вид турбины, с изменяющими своё положение лопастями. Всего их в такой конструкции может быть 8 штук. Сама конструкция напоминает гребной винт. Изменение положения лопастей, даёт возможность сохранять высокий показатель КПД при уменьшении и незначительном увеличение силы напора. Если лопасти зафиксированы, этот вид будет называться пропеллерным. Он самый дешёвый и самый ограниченный в возможностях (может работать только в одной силе потока).

Самым редким вариантом поворотно-лопастных турбин, являются двухперовые. Их главное отличие от других видов, это разделение лопасти на два пера. Такие модели активно используют за границей.

Радиально-осевые турбины

Это самый старый и самый популярный вид. Его главной особенностью является простота конструкции и невысокая цена. На самых больших гидроэлектростанциях, установлены именно такие гидротурбины. Им принадлежит рекорд по выдаваемой мощности.

В этом виде турбин, жидкость поступает на рабочее колесо с наружной стороны. Проходя по радиусу, минуя множество каналов определённой формы, она достигает центра и заставляет ротор раскручиваться. Для того, чтобы жидкость поступала равномерно и правильно, колесо окружается спиральной камерой, за которой находится направляющий аппарат. Его лопасти располагаются под определёнными углами, для увеличения КПД турбины. Когда вода отдала свою механическую энергию рабочему колесу, она откачивается с помощью специальных труб.

Главным минусом этого вида турбин, являются фиксированные лопасти. Тем самым, радиально-осевая турбина может показать высокой значение КПД, только при определённых напорах. Если использовать Радиально-осевую турбину при напоре в 700 м, её размер должен быть огромен, вследствие чего, она сильно проигрывает ковшовым турбинам. Максимально допустимой силой напора, для достижения высокого показателя КПД, будет отметка в 300м.

Диагональные турбины

Этот вид вобрал в себя лучшие качества двух предыдущих. Диагональные турбины, являются новой разработкой, по сравнению с другими. Главной особенностью этого вида, является гол наклона лопастей (30-60 градусов). И в это же время, лопасти можно регулировать. Вследствие этого, диагональные турбины подходят для обширного диапазона мощностей потока, сохраняя высокий показатель КПД.

Однако такая универсальность и производительность дорого обходится. Это связанно со сложностью конструкции.

Есть диагональные турбины с фиксированными лопастями. Они распространены на небольших ГЭС.

Ковшовые гидротурбины

Этот вид предназначен для работы с большими напорами. Ковшовые турбины относятся к активному типу в отличие от остальных. Рабочее колесо приводится в действие отдельными струями воды, попадающими на ковши колеса. Сами струи формируются с помощью направленных отверстий или сопл. Их может быть до шести штук. Рабочее колесо состоит из диска, с закреплёнными на нём ковшами.

Ковшовые гидротурбины разделяются на вертикальные и горизонтальные. Второй вариант используется на средних гидроэлектростанциях.

Где используется

Если говорить про простые варианты гидромашин (в которых давление передаётся при помощи жидкости), они используются в таких приспособлениях как домкраты, прессы, подъёмники. Следовательно, гидромашины используются в строительстве и машиностроение. Это так называемые гидроприводы, которые используются в различных подвижных частях строительных машин (ковши, буры, манипуляторы).

Если сравнить гидропривод с его механическим аналогом, у первого можно выделить такие преимущества:

  1. Высокая мощность передаваемая на одну единицу веса элемента.
  2. Скорость работы. Запуск, реверс и полная остановка выигрывают в скорости выполнения у механических и электрических приводов.
  3. Надёжное предохранение от перегрузов всей системы.
  4. Возможность установить на гидропривод любое оборудование (ковш, дисковая пила, отбойный молоток и многое другое).

Однако когда речь идёт об использование гидропривода на больших расстояниях, он сильно уступает аналогам в КПД.

Насосы применяются в соответствие с их конструкциями. Центробежные насосы получили своё распространение в работе теплоэлектростанций, системах очистки сточных вод, химической и пищевой промышленности. Также они используются для перемещения сжиженных газов, реагентов и нефтепродуктов.

Возвратно-поступательные насосы, являются самым старейшим видом. Ещё в древности они получили своё распространение в водоснабжение. Сейчас они используются в тех же целях, плюс для перекачки взрывоопасных жидкостей, пищевой промышленности (перемещение молочной продукции внутри заводов), а также в системах подачи топлива для ДВС.

Шестерные насосы могут работать только с невысоким уровнем давления. Их используют в сельскохозяйственной промышленности, коммунальных отраслях, перекачке различных видов топлива (бензин, нефть, дизель, различные добавки и присадки, мазут). В химической промышленности их применяют для перемещения кислот, спиртов, растворителей и щелочей.

В последние годы, гидравлические машины получили широкое распространение в создание тренажёров для занятий спортом.

Гидротурбины используются на ГЭС. Однако только в соответствие с силой напора:

Виды гидроприводов по характеру движения выходного звена, возможности регулирования, схеме циркуляции рабочей жидкости и источнику ее подачи, типу приводящего двигателя. Назначение, классификация и область применения насосов и гидравлических машин.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 28.01.2014
Размер файла 80,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

на тему: Гидравлический привод. Гидравлические машины

Выполнил: студент гр. МХЖ-11МУ

Принял: преподаватель О.В. Рябцев

1. Виды гидроприводов

1.1 По характеру движения выходного звена гидродвигателя

1.2 По возможности регулирования

1.3 По схеме циркуляции рабочей жидкости

1.4 По источнику подачи рабочей жидкости

1.5 По типу приводящего двигателя гидроприводы

4. Гидравлические машины

5. Назначение, классификация и область применения насосов и гидродвигателей

Список использованной литературы

гидравлический двигатель гидропривод насос

Гидравлический привод (гидропривод) -- совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством гидравлической энергии. Обязательными элементами гидропривода являются насос и гидродвигатель.

Основное назначение гидропривода, как и механической передачи -- преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.).

В общих чертах, передача энергии в гидроприводе происходит следующим образом: приводной двигатель передаёт вращающий момент на вал насоса, который сообщает энергию рабочей жидкости.

Рабочая жидкость по гидролиниям через регулирующую аппаратуру поступает в гидродвигатель, где гидравлическая энергия преобразуется в механическую.

После этого рабочая жидкость по гидролиниям возвращается либо в бак, либо непосредственно к насосу.

1. Виды гидроприводов

Гидроприводы могут быть двух типов: гидродинамические и объёмные:

В гидродинамических приводах используется в основном кинетическая энергия потока жидкости.

В объёмных гидроприводах используется потенциальная энергия давления рабочей жидкости.

Объёмной называется гидромашина, рабочий процесс которой основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. К объёмным машинам относят, например, поршневые насосы, аксиально-поршневые, радиально-поршневые, шестерённые гидромашины и др.

Одна из особенностей, отличающая объёмный гидропривод от гидродинамического -- большие давления в гидросистемах. Так, номинальные давления в гидросистемах экскаваторов могут достигать 32 МПа, а в некоторых случаях рабочее давление может быть более 300 МПа.

Объёмный гидропривод применяется в горных и строительно-дорожных машинах, в станкостроении и др.

В зависимости от конструкции и типа входящих в состав гидропередачи элементов объёмные гидроприводы можно классифицировать по нескольким признакам.

1.1 По характеру движения выходного звена гидродвигателя

- Гидропривод вращательного движения. Когда в качестве гидродвигателя применяется гидромотор, у которого ведомое звено (вал или корпус) совершает неограниченное вращательное движение;

- Гидропривод поступательного движения. У которого в качестве гидродвигателя применяется гидроцилиндр -- двигатель с возвратно-поступательным движением ведомого звена (штока поршня, плунжера или корпуса);

- Гидропривод поворотного движения. Когда в качестве гидродвигателя применён поворотный гидродвигатель, у которого ведомое звено (вал или корпус) совершает возвратно-поворотное движение на угол, меньший 360°.

1.2 По возможности регулирования

Если скорость выходного звена (гидроцилиндра, гидромотора) регулируется изменением частоты вращения двигателя, приводящего в работу насос, то гидропривод считается нерегулируемым.

- Регулируемый гидропривод. В котором в процессе его эксплуатации скорость выходного звена гидродвигателя можно изменять по требуемому закону. В свою очередь регулирование может быть: *дроссельным, объёмным, объёмно-дроссельным.

Регулирование может быть: ручным или автоматическим.

В зависимости от задач регулирования гидропривод может быть:

- Саморегулируемый гидропривод автоматически изменяет подачу жидкости по фактической потребности гидросистемы в режиме реального времени (без фазового сдвига).

1.3 По схеме циркуляции рабочей жидкости

- Гидропривод с замкнутой схемой циркуляции, в котором рабочая жидкость от гидродвигателя возвращается во всасывающую гидролинию насоса.

Гидропривод с замкнутой циркуляцией рабочей жидкости компактен, имеет небольшую массу и допускает большую частоту вращения ротора насоса без опасности возникновения кавитации, поскольку в такой системе во всасывающей линии давление всегда превышает атмосферное. К недостаткам следует отнести плохие условия для охлаждения рабочей жидкости, а также необходимость спускать из гидросистемы рабочую жидкость при замене или ремонте гидроаппаратуры;

Гидросистемы с замкнутой схемой циркуляции рабочей жидкости (справа) и с разомкнутой схемой (слева). На схеме слева всасывающая и сливная гидролинии сообщаются с баком (разомкнутая схема); на схеме справа бак используется только для вспомогательной гидросистемы (системы подпитки). Н и Н1 -- насосы; М -- гидромотор; Р -- гидрораспределитель; Б -- гидробак; Н1 -- насос системы подпитки; КП1, КП2, -- Предохранительные клапана; КО1 и КО2 -- обратные клапана. Предохранительные клапана КП (на схеме слева), КП1 и КП2 (на схеме справа) срабатывают в тот момент, когда нагрузка на валу гидромотора слишком велика, и давление в гидросистеме превышает допустимую величину. Обратные клапана КО1 и КО2 срабатывают тогда, когда давление слишком мало, и возникает опасность кавитации.

- Гидропривод с разомкнутой системой циркуляции. В котором рабочая жидкость постоянно сообщается с гидробаком или атмосферой.

Достоинства такой схемы -- хорошие условия для охлаждения и очистки рабочей жидкости. Однако такие гидроприводы громоздки и имеют большую массу, а частота вращения ротора насоса ограничивается допускаемыми (из условий бескавитационной работы насоса) скоростями движения рабочей жидкости во всасывающем трубопроводе.

1.4 По источнику подачи рабочей жидкости

1.4.1 Насосный гидропривод

В насосном гидроприводе, получившем наибольшее распространение в технике, механическая энергия преобразуется насосом в гидравлическую, носитель энергии -- рабочая жидкость, нагнетается через напорную магистраль к гидродвигателю, где энергия потока жидкости преобразуется в механическую. Рабочая жидкость, отдав свою энергию гидродвигателю, возвращается либо обратно к насосу (замкнутая схема гидропривода), либо в бак (разомкнутая или открытая схема гидропривода). В общем случае в состав насосного гидропривода входят гидропередача, гидроаппараты, кондиционеры рабочей жидкости, гидроёмкости и гидролинии.

1.4.2 Магистральный гидропривод

В магистральном гидроприводе рабочая жидкость нагнетается насосными станциями в напорную магистраль, к которой подключаются потребители гидравлической энергии. В отличие от насосного гидропривода, в котором, как правило, имеется один (реже 2-3) генератора гидравлической энергии (насоса), в магистральном гидроприводе таких генераторов может быть большое количество, и потребителей гидравлической энергии также может быть достаточно много.

1.4.3 Аккумуляторный гидропривод

В аккумуляторном гидроприводе жидкость подаётся в гидролинию от заранее заряженного гидроаккумулятора. Этот тип гидропривода используется в основном в машинах и механизмах с кратковременными режимами работы.

1.5 По типу приводящего двигателя гидроприводы

С электроприводом приводом от ДВС турбин.

К основным преимуществам гидропривода относятся:

1. возможность универсального преобразования механической характеристики приводного двигателя в соответствии с требованиями нагрузки, простота управления и автоматизации;

2. простота предохранения приводного двигателя и исполнительных органов машин от перегрузок;

3. надёжность эксплуатации;

4. широкий диапазон бесступенчатого регулирования скорости выходного звена;

5. большая передаваемая мощность на единицу массы привода;

6. надёжная смазка трущихся поверхностей при применении минеральных масел в качестве рабочих жидкостей;

7. получение больших сил и мощностей при малых размерах и весе передаточного механизма;

8. возможность осуществления различных видов движения;

9. возможность частых и быстрых переключений при возвратно-поступательных и вращательных прямых и реверсивных движениях;

10. возможность равномерного распределения усилий при одновременной передаче на несколько приводов;

11. упрощённость компоновки основных узлов гидропривода внутри машин и агрегатов, в сравнении с другими видами приводов.

К недостаткам гидропривода относятся:

1. утечки рабочей жидкости через уплотнения и зазоры, особенно при высоких значениях давления;

2. нагрев рабочей жидкости, что в ряде случаев требует применения специальных охладительных устройств и средств тепловой защиты;

3. более низкий КПД (по приведённым выше причинам), чем у сопоставимых механических передач;

4. необходимость обеспечения в процессе эксплуатации чистоты рабочей жидкости и защиты от проникновения в неё воздуха;

5. пожароопасность в случае применения горючей рабочей жидкости;

6. зависимость вязкости рабочей жидкости, а значит и рабочих параметров гидропривода, от температуры окружающей среды;

7. в сравнении с пневмоприводом -- невозможность эффективной передачи гидравлической энергии на большие расстояния вследствие больших потерь напора в гидролиниях на единицу длины.

4. Гидравлические машины

Гидравлические машины являются необходимой частью гидропривода.

5. Назначение, классификация и область применения насосов и гидродвигателей

Насос - это гидромашина, преобразующая механическую энергию привода в энергию потока рабочей жидкости.

Гидродвигатель - это гидромашина, преобразующая энергию потока жидкости в механическую работу.

По принципу действия все гидромашины делятся на:

- динамические - это гидромашины, в которых взаимодействие ее рабочего органа с жидкостью происходит в проточной полости, постоянно сообщенной с входом и выходом гидромашины.

- объемные - это гидромашины, в которых взаимодействие ее рабочего органа с жидкостью происходит в герметичной рабочей камере, попеременно сообщающейся с входом и выходом гидромашины. Таким образом, объемные насосы работают по принципу вытеснения жидкой среды, поступающей под действием атмосферного (вспомогательного) давления в рабочую камеру (камеры), объем которой в этот момент увеличивается. Рабочие камеры могут быть: 1) неподвижными и 2) подвижными. В первом случае после заполнения объем рабочей камеры принудительно уменьшается и жидкость из нее вытесняется во внешний трубопровод, во втором вытеснению предшествует перенос заполненных рабочих камер из полости всасывания в полость нагнетания. В качестве вытеснителей, позволяющих изменять объем рабочей камеры, применяют поршни, плунжеры, пластины, диафрагмы, зубья шестерен и т. д. Рабочая камера объемного насоса герметична, т. е. постоянно разобщает всасывающее и нагнетательное отверстия насоса с помощью специальных запорных органов клапанного, золотникового или иного типа.

В гидравлических машинах, работающих в условиях холодного климата, при пуске и в начальный период работы значительно возрастают потери давления в трубопроводах. При -50…-60 С потери давления рабочей жидкости в гидролиниях привода могут возрастать в 15…20 раз по сравнению с потерями давления при +50 С. Для уменьшения потерь давления в трубопроводах необходимо обеспечить минимальную протяженность трубопроводов, сократить число изгибов, соединений, переходов и т.п.

1. Гейер В.Г., Дулин В.С., Заря А.Н. Гидравлика и гидропривод: Учеб для вузов. 3-е изд., перераб. и доп. М.: Недра, 1991.

2. Юфин А.П. Гидравлика, гидравлические машины и гидропривод. М.: Высшая школа, 1965.

4. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов / Т.М. Башта, С.С. Руднев, Б.Б. Некрасов и др. 2-е изд., перераб. М.: Машиностроение, 1982.

7. Лепешкин А.В., Михайлин А.А., Шейпак А.А. Гидравлика и гидропневмопривод: Учебник, ч.2. Гидравлические машины и гидропневмопривод / под ред. А. А. Шейпака. М.: МГИУ, 2003. 352 с.

Подобные документы

Структурная схема гидравлических приводов. Классификация и принцип работы гидравлических приводов по характеру движения выходного звена гидродвигателя, по возможности регулирования, по схеме циркуляции рабочей жидкости, по типу приводящего двигателя.

реферат [528,2 K], добавлен 12.04.2015

Особенности и принципы работы гидравлических реле давления и времени. Характеристика основных способов разгрузки насосов от давления. Суть дроссельного регулирования. Гидравлические линии. Эксплуатация объемных гидроприводов в условиях низких температур.

контрольная работа [190,2 K], добавлен 10.02.2015

Принципы действия объемных гидроприводов. Параметры насосов, предохранительные, перепускные и подпорные клапаны. Гидравлические реле давления и температуры. Регулирование скорости движения выходного звена гидропривода. Уплотнение неподвижных соединений.

учебное пособие [5,0 M], добавлен 04.05.2014

Единицы измерения давления, основное уравнение гидростатики, параметры сжимаемости жидкости, уравнение Бернулли. Расход жидкости при истечении через отверстие или насадку, режимы движения жидкости. Гидравлические цилиндры, насосы, распределители, баки.

тест [525,3 K], добавлен 20.11.2009

Обзор автоматизированных гидроприводов буровой техники. Выбор рабочей жидкости гидропривода. Определение расхода жидкости и расчет гидравлической сети. Расчет объема масляного бака. Требования безопасности при работе с гидравлическим оборудованием.

Читайте также: