Реферат физические свойства грунтов

Обновлено: 02.07.2024

Общие сведение о физико-химических свойствах грунта
Они определяют в основном взаимодействие компонентов грунта
между собой и часто проявляются именно как результат этого
взаимодействия. [1, с.51]
Основные факторы, контролирующие физико-химические свойства
грунтов:
 Минеральный состав.
 Дисперсность.
 Состав и концентрация солей в поровом растворе.
 Вид обменных ионов.
 Температура.
Эти факторы определяют содержание осмотической влаги, которая
в значительной мере влияет на все физико-химические свойства,
обусловленные, прежде всего, взаимодействием компонент грунта (т.е.
толщину диффузного слоя).
В основном все управляется осмотической водой. Факторы
рассматриваются те, кот определяют содержание осмотической влаги.

2. Физико-химические свойства грунтов
2.1. Растворимость грунтов
Растворимость грунтов представляет собой возможность
растворяться под влиянием различных растворов или природных вод. В
ходе растворения молекулы воды (или любой растворитель), имеющие
тепловые движения и электрические поля, уничтожают кристаллическую
решетку минералов. В процессе растворения и будущего выноса веществ, в
прошлом имеющие компонент твердой части грунтов, осуществляется
изменение состояния, физико-механических и физико-химических свойств
последних, а также формирование в массиве пустот разного размера. [2,
с.33]
Растворение бывает двух видов: прямое и диффузионное.
Прямое растворение осуществляется при прямом контакте
движущихся в порах или других пустотах воды (или другого раствора) с
растворимыми в этих условиях минералами, находящимися в грунте.
Выщелачивание или диффузионное растворение осуществляется
через поры породы, но этот процесс не имеет никого отношения к прямому
контакту движущегося потока свободной воды на растворимые минералы.
Это растворение служит случайным процессом потока ионов в поровом
раствора под воздействием разности сосредоточения в различных зонах
массива грунтов, приводящим к изменению поровых вод и состава твердой
части грунта.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Факультет: Гидротехническое специальное строительство.

Р Е Ф Е Р А Т

По дисциплине: Механика грунтов.

2. Состав, строение и состояние грунтов.

2.1 Грунтовые основания. Происхождение грунтов.

2.2 Состав грунтов.

2.3 Форма, размеры и взаимное расположение частиц в грунте.

2.4 Структурные связи между частицами грунта.

3. Физические характеристики, классификация грунтов, строение оснований.

3.1 Основные физические характеристики грунтов.

3.2 Классификация грунтов.

3.3 О связи физических и механических характеристик грунтов.

3.4 Геологическое строение оснований.

Механика грунтов, основания и фундаменты вместе с инженерной геологией и охраной природной среды составляют особый цикл строительных дисциплин. Предметом его изучения являются материалы, как правило, природного происхождения – грунты и их взаимодействие с сооружениями. Если конструкционные материалы приготавливаются технологами так, чтобы они обладали заданными строительными свойствами, то грунты каждой строительной площадки имеют самостоятельную историю образования. Состав, строение и свойства грунтов разных строительных площадок определены природой и могут существенно различаться, требуя каждый раз специального изучения.

Поведение грунтов под нагрузками сопровождается сложными процессами, во многом отличающимися от поведения конструкционных материалов. Это потребовало разработки специальных экспериментальных методов и теоретического аппарата механики грунтов для описания процессов их деформирования и разрушения.

Нормальная эксплуатация здания или сооружения во многом зависит от того, насколько правильно запроектировано и осуществлено его взаимодействие с основанием. Это же в значительной мере влияет на стоимость и сроки строительства.

Поэтому цель настоящего курса – научить будущих инженеров-строителей обоснованию и принятию оптимальных решений по устройству оснований и фундаментов зданий и сооружений промышленного и гражданского назначения в различных инженерно-геологических условиях.

Курс состоит из двух частей.

Механика грунтов, основания и фундаменты неразрывно связаны с инженерной геологией, изучающей верхнюю часть земной коры как среду инженерной деятельности человека. Для понимания механики грунтов необходимо знать дисциплины механико-математического цикла: сопротивление материалов, теорию упругости, пластичности и ползучести, строительную механику, владеть методами математического анализа. Проектирование оснований и фундаментов требует также знания строительных конструкций, технологии строительного производства. Техники безопасности, экономики и организации строительства. Развитие автоматизированного проектирования фундаментов связано с умением специалистов работать с современными ЭВМ, прежде всего с персональными компьютерами.

2. Состав, строение и состояние грунтов.

2.1 Грунтовые основания. Происхождение грунтов.

Всякое сооружение покоится на грунтовом основании. В зависимости от геологического строения участка застройки строение основания даже расположенных вблизи сооружений может быть различным (рис. 1.1). Обычно основание состоит из нескольких типов грунтов, которые определенным образом сочетаются в пространстве (сооружения А, В, Г, Д на рис. 1.1). В частном случае основание может состоять из грунта одного типа (сооружение Б на рис. 1.1).

Сооружение и основание составляют единую систему. Свойства грунтов основания, их поведение под нагрузками от сооружения во многом определяют прочность, устойчивость и нормальную эксплуатацию сооружения. Поэтому инженер-строитель должен хорошо понимать, что представляют собой грунты, каковы их особенности по сравнению с другими конструкционными материалами (бетон, железобетон, металл, кирпич и т.п.), каким образом залегают грунты в основании сооружений, что определяет свойства грунтов и грунтовых оснований.

Грунтом называют всякую горную породу, используемую при строительстве в качестве основания сооружения, среды, в которой сооружение возводиться, или материала для сооружения.

Горной породой называют закономерно построенную совокупность минералов, которая характеризуется составом, структурой и текстурой.

Под с о с т а в о м подразумевают перечень минералов, составляющих породу. С т р у к т у р а - это размер, форма и количественное соотношение слагающих породу частиц. Т е к с т у р а - пространственное расположение элементов грунта, определяющее его строение.

Горная порода, а следовательно, и грунт представляют собой не случайное скопление минералов, а закономерную определенным образом построенную совокупность. Это имеет исключительно большое значение для строительства. Действительно, совокупностей минералов может быть много. Закономерно построенных совокупностей горных пород в природе выделяется большое, но ограниченное количество. Инженерная геология изучает закономерности образования и свойства горных пород как грунтов. Наличие в природе однотипных грунтов, широко распространенных в разных частях Земли, служит основанием для разработки стандартных приемов строительства и применения типовых конструкций фундаментов. Так. Существование слабых водонасыщенных грунтов – илов – уже в древности привело к идее устройства фундаментов; особые свойства не менее широко распространенного лессового грунта потребовали разработки специальных способов строительства и т.п. В связи с этим, прежде чем рассматривать методы расчета и проектирования оснований и фундаментов, необходимо изучить основные типы грунтов, их физические свойства, особенности строения оснований.

Закономерности состава и строения грунтов теснейшим образом связаны с условиями их происхождения. В инженерной геологии происхождение грунтов детально изучено в разных условий. Происхождение положено в основу классификации грунтов (ГОСТ 25100-82).

Все грунты разделяются на естественные – магматические, осадочные,

метаморфические – и искусственные – уплотненные, закрепленные в естественном состоянии, насыпные и намывные.

Магматические (изверженные) горные породы образуются при медленном остывании и отвердении огненно-жидких расплавов магмы в верхних слоях земной коры (интрузивные, или глубинные, породы-граниты, диориты, габбро и др.), а также при быстром остывании излившегося на поверхность земли расплава (эффузивные, или излившиеся, - бальзаты, порфиры и др.)

Осадочные горные породы образуются в результате выветривания, перемещения, осаждения и уплотнения продуктов разрушения исходных пород магматического, метаморфического или осадочного происхождения, образовавшихся ранее. В зависимости от степени упрочнения различают сцементированные (песчинки, доломиты, алевролиты и т.п.) и несцементированные осадочные породы (крупнообломочные, песчаные, пылевато-глинистые грунты, лессы, илы, торфы, почвы и т.п.).

Метаморфические горные породы образуются в недрах из осадочных, магматических или метаморфических пород путем их перекристаллизации под воздействием высоких давлений и температур в присутствии горячих растворов. Наиболее типичные метаморфические горные породы – сланцы, мраморы, кварциты, гнейсы.

Горные породы метаморфического, магматического происхождения и сцементированные осадочные породы обладают жесткими связями между частицами и агрегатами и относятся к классу с к а л ь н ы х г р у н т о в. Осадочные несцементированные породы не имеют жестких связей и относятся к классу н е с к а л ь н ы х грунтов.

В самых верхних слоях земной коры, называемых зоной современного выветривания. Под влиянием колебаний температуры, изменения состояния и химического состава воды, газов, деятельности растительных и животных организмов и т.п. развиваются процессы выветривания – физического, химического. Органического разрушения минералов и горных пород. Продукты разрушения верхних зон коры выветривания могут перемещаться водой или воздухом, переносится на большие расстояния и вновь откладываться на новых территориях. Различие условий происхождения и дальнейшего изменения являются причиной разнообразия строения, состава, состояния и условий залегания грунтов в верхних слоях земной коры.

К искусственным скальным грунтам относятся все природные грунты любого происхождения, специально закрепленные материалами, приводящими к возникновению жестких связей (цементные и глинисто-силикатные растворы, жидкое стекло и т.п.). К классу нескальных искусственных грунтов относятся несцементированные осадочные породы, подвергнутые специальному уплотнению в природном залегании, насыпные, намывные грунты, а также твердые промышленные отходы (шлаки, золы и т.п.).

2.2 Состав грунтов.

Состав грунтов в значительной мере определяет их физические и механические свойства. В связи с этим он достаточно хорошо изучен в разделе инженерной геологии – грунтоведения.

В общем случае, с физических позиций, грунт состоит из трех компонентов: твердой, жидкой, газообразной.

Иногда в грунте выделяют биоту – живое существо. Это оправдано с общенаучной точки зрения и полезно практически, так как жизнедеятельность организмов может оказывать существенное воздействие на свойства грунтов. Активизация жизнедеятельности бактерий, как правило, снижает прочность грунта, а их отмирание приводит к повышению его прочности. Однако пока свойства биоты не нашли отражения в моделях механики грунтов, и мы будем рассматривать грунт как трехкомпонентную систему.

Было бы сравнительно просто решать задачи фундаментостроения, если бы грунт можно было рассматривать как механическую систему, состоящую из твердого. Жидкого и газообразного веществ с фиксированными независимыми свойствами каждой компоненты. В действительности дело обстоит сложнее. На свойства грунта, как системы, значительное влияние оказывает минеральный и химический состав вещества, наличие биологически активной составляющей. Химические. Физические, физико-химические и биологические процессы в грунтах протекают в сложном взаимодействии, сливаясь в единый геологический процесс, который изменяет свойства грунта во времени до строительства, при строительстве и впоследствии при эксплуатации сооружений.

Твердые частицы грунтов состоят из породообразующих минералов с различными свойствами. Ч а с т ь м и н е р а л о в и н е р т н а по отношению к воде и практически не вступает во взаимодействие с растворенными в ней веществами (кварц, полевые шпаты, слюда, авгит, кремень, роговая обманка и др.). Эти минералы не меняют свойств не только при изменении содержания воды, но и в широком диапазоне температур. Очевидно, что грунты. Полностью сложенные такими минералами, обладают наиболее благоприятными строительными свойствами. Из инертных минералов состоят все магматические горные породы, подавляющее большинство метаморфических часть осадочных. Среди осадочных пород этими минералами сложены пески и крупнообломочные грунты, а также образующие из них при цементации песчинки и конгломераты.

Большое влияние на свойства грунтов оказывают р а с в о р и м ы е в в о д е м и н е р а л ы. К ним относятся галит NCl, гипс CaSO4 ̇ 2H2O, кальцит CaCO3 некоторые другие. Такие распространенные горные породы, как мрамор, известняк, гипс, сложены растворимыми минералами.

Г л и н и с т ы е м и н е р а л ы составляют третью группу. Они нерастворимы в воде в отличии от минералов предыдущей группы, но их никак нельзя приравнять к инертным минералам первой группы. В силу чрезвычайно малых размеров кристаллов глинистые минералы обладают высокой коллоидной активностью. К ним относятся каолинит. Монтмориллонит, иллит, и другие минералы, кристаллы которых имеют выраженное свойство гидрофильности. Из-за мельчайших размеров и высокоразвитой поверхности глинистые минералы активно взаимодействуют с жидкой составляющей грунтов. Поэтому уже малое содержание их в общей массе грунта резко изменяет его свойства.

О р г а н и ч е с к о е в е щ е с т в о в грунтах у поверхности земли находятся в виде микроорганизмов, корней растений и гумуса, а в глубоких горизонтах – в виде нефти. Бурого и каменного угля. Повсеместно на равнинных площадях с поверхности залегает почва, которая содержит 0,5…5% органических соединений. Коллоидная активность гумуса выше, чем даже глинистых минералов.

Жидкая составляющая грунтов. К р и с т а л и з а ц и о н н а я в о д а принимает участие в строении кристаллических решеток минералов и находится внутри частиц грунта. Удаление ее путем длительного нагревания грунта может привести к разложению минералов и значительному изменению свойств грунта.

Свободная вода в грунте подчиняется законам гидравлики. Она передает гидростатическое давление и может перемещаться под воздействием разности напоров. Часто свободную воду подразделяют на гравитационную и капиллярную. Практически вся вода, содержащаяся в трещиноватых скальных породах, крупнообломочных, гравелистых и крупных песках, относится к гравитационной. Капиллярная вода может содержаться в песках средней крупности, мелких и особенно пылеватых песках и глинистых грунтах.

Сложное и разнообразное взаимодействие твердых частиц грунта с водой очень сильно влияет на свойства грунта. Например. замерзание пылевато-глинистых грунтов происходит постепенно при понижении отрицательной температуры: сначала в лед переходит свободная вода, затем периферийные и, наконец, более глубокие слои рыхлосвязанной воды. Фильтрация свободной воды в грунте возникает сразу же после появления разности напоров. Однако для перемещения слоев даже рыхлозвязанной воды требуется приложение тем больших силовых воздействий, чем ближе эти слои находятся к поверхности частиц. В то же время, если по каким либо причинам. Например из-за перепада температур в зоне замерзания грунта, соседние частицы будут иметь разные по толщине слои связанной воды. Возможно возникновение м и г р а ц и и - перемещение связанной воды из более толстых пленок в более тонкие. Если зона замерзания грунта соединена капиллярной водой с уровнем подземных вод, то объем воды, подтягиваемой в зону замерзания, может быть весьма значительным. Здесь важно отметить. Что знание физико-химических особенностей взаимодействия твердых частиц с водой в грунте позволяет не только объяснить многие важные для практики строительства инженерные мероприятия.

Газообразная составляющая грунта. Содержание воды и газов в грунтезависит от объема его пор:чем больше порызаполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена атмосферным воздухом, ниже – азоном, метаном, сероводородом и другими газами. Необходимо подчеркнуть, что метан, сероводород, угарный газ ядовиты, и могут содержаться в грунте в концентрациях, опасных для жизни работающих в слабо проветриваемых выемках. Интенсивность газообмена между атмосферой и грунтом зависит от состава и состояния грунта и повышается с увеличением содержания и размеров трещин, пустот, пор. В газообразной составляющей всегда присутствуют пары воды.

Газы в грунте могут быть в с в о б о д н о м с о с т о я н и и или р а с т в о р е н ы в в о д е. Свободный газ подразделяется на незащемленный сообщающийся с атмосферой, и защемленный, находящийся в контактах между частицами и пленками воды в виде мельчайших пузырьков в воде. В поровой воде всегда содержится то или иное количество растворенного газа. Повышение давления или понижение температуры приводит к увеличению количества растворенного газа.

Содержание в грунте защемленного и растворенного в воде газа существенно сказывается на свойствах грунта и протекающих в них процессах. Уменьшение давления вследствие разработки котлована или извлечения образца грунта на поверхность может привести к выделению пузырьков газа и разрушению природной структуры грунта. Наоборот, увеличение давления при передаче нагрузки от сооружения может сопровождаться повышением содержания растворенного в воде газа. В то же время увеличение содержания в воде пузырьков воздуха может увеличить сжимаемость воды в сотни раз и сделать ее соизмеримой со сжимаемостью скелета грунта.

Наблюдения показывают, что при подтоплении территории (повышении уровня подземных вод) в обводненном грунте на многие годы, если не на десятилетия, задерживается защемленный газ. Э то имеет большое значение, в частности при сейсмическом микрорайонировании. На обводненных грунтах сейсмическая бальность выше. Защемленный воздух поднимает ее дополнительно, так как снижает скорость прохождения сейсмических волн.

Итак, грунт состоит из твердой, жидкой и газообразной компонент. В каждой из трех компонент чаще в малом и незначительном, а иногда и в существенном количестве содержатся микроорганизмы. Из всех составляющих грунта наиболее стабильной является твердая компонента. Жидкая (вода0 при отрицательных температурах переходит в твердое состояние (лед), может истекать, испаряться. Газ при перемене условий растворяется, вытесняется жидкостью или другими газами. Очевидно, что свойства грунтов зависят от состава, состояния и взаимодействия слагающих его компонент.

2.3 Форма, размеры и взаимное расположение частиц в грунте.

Совокупность твердых частиц, состоящих из минерального вещества, образует как бы каркас, с к е л е т грунта. Поровая вода и газ как сплошная среда располагаются в порах и трещинах между частицами. Форма частиц может быть угловатой и округлой. Угловатая форма характерна для мельчайших кристаллов, которые не округляются при соударениях из-за их исключительно малой массы и значительной прочности. Среди крупных обломков выделяются угловые (глыбы, щебень, дресва) и окатанные (валуны, галька, гравий).

Для удобства классификации частицы, близкие по крупности, объединяются в определенные группы (гранулометрические фракции), которым присваиваются следующие наименования (табл. 1.1).

Физические свойства грунтов
При изучении физических свойств грунтов следует различать характеристики, позволяющие охарактеризовать физическое состояние грунтов. К ним относятся коэффициент пористости, коэффициент влагонасыщенности, относительная плотность и пределы констстенции (густоты).

Основным отличием грунтов как рыхлых горных пород от тел сплошных является то, что твёрдые частицы в них не образуют сплошной массы, а занимают лишь часть объёма грунта, то есть грунты обладают той или иной пористостью, причём прочность связей между отдельными частицами значительно меньше пористости материала самих частиц. Поэтому важнейшей физической характеристикой грунтов как дисперсных тел является их пористость.

В природных грунтах всегда содержится то или иное количество воды, которое оказывает огромное влияние на взаимосвязь минеральных частиц. Поэтому второй важнейшей физической характеристикой будет их влажность.

Для вычисления этих характеристик и производных от них величин предварительно опытным путём для образцов грунта естественной ненарушенной структуры должны быть найдены три основных физических показателя

? – объёмный вес грунта естественной ненарушенной структуры;

?v – удельны вес твёрдых частиц грунта;

? – весовая влажность грунта естественной структуры.

Для определения объёмнного веса грунта ? берутся пробы при помощи специальных грунтоносов. Влажность грунта определяется взвешиванием образца в естественном состоянии и после высушивания при 105 єС до постоянного веса. Удельный вес определяется при помощи пикнометра и для наиболее распространенных грунтов колеблется в пределах от 2.5 – 2.8.


Представим некоторый объём грунта V, равный сумме V1 + V2, где V1 – объём твёрдых частиц грунта и V2 – объём пор (рис. 1). Пусть вес твёрдых частиц в объёме V будет равен g1 и вес воды g2.

Рисонок 1 - схема распределения отдельных фаз в еденице объёма грунта
Объёмный вес грунта


Удельный вес грунта


Весовая влажность грунта


m – объём твёрдых частиц (скелета грунта), отнесённый к еденице объёма грунта;

n – пористость, или объём пор, отнесённый к единице объёма грунта;

Iw – коэффициент водонасыщености;

Wп – полная влагоёмкость грунта;

?с – объёмный вес скелета грунта, численно равный весу твёрдых частиц в единице объёма грунта;

?в – удельный вес воды, равный 1 г/смі.


откуда объёмный вес скелета грунта


При весовой влажности грунта w выражение примет вид:



Коэффициент пористости.

Зная объём объёмный вес скелета грунта ?с можно определить пористость и коэффициент пористости грунта в ненарушенном состоянии.

Сумма объёма твёрдых частиц и пор будет равна полному объёму грунта

то объём грунта равен


Более удобной характеристикой служит коэффициент пористости



Величина коэффициента пористости ? ? 0.5 характеризует грунты как хорошие основания для сооружений. Величина ? ? 1 показывает, что грунты сложены рыхло и при возведении на них сооружений часто требуется искусственное их уплотнение.

Соотношения, вытекающие из рассмотренных зависимостей:


Для единице объёма грунта получим объём пор


И объём твёрдых частиц (скелета)



Коэффициент водонасыщености.

Наличие в грунте воды влияет на пористость, а следовательно и на плотность залегания грунтов

Wп – полная влагоёмкость грунта



При полном заполнении грунта водой (Wп = W) будем иметь







По нормам и техническим условиям проектирования естественных оснований песчаные грунты, а так же лессовые глинистые в зависимомти от степени насыщения их водой разделяют на:


При полном заполнении пор грунта водой объём воды равен


Объём газов Va (включая водяной пар)




w – весовая влажность грунта в долях единицы;
?у – удельный вес грунта


1.?с – объёмный вес скелета грунта


2. Пористость грунта


3. Коэффициент пористости грунта


4. Объём пор в 1 смі грунта


5. Объём твёрдых частиц в 1 смі грунта


6. Объёмный вес грунта, облегченного весом объёма вытесненной воды:


7. полная влагоёмкость грунта


8. Коэффициент водонасыщености


9. Коэффициент пористости при полном заполнении пор грунта водой


10. Объём газов в 1 смі грунта



Методы определения осадок фундаментов

Метод эквивалентного слоя.

При расчёте осадок по методу эквивалентного слоя учитывается ограниченное боковое расширение грунтов, все составляющие нормальных напряжений в сжатой зоне грунта под фундаментом, а также влияние размеров, формы фундаментов и их жёсткости на величину осадок как функции времени. Метод заключается в определении осадок фундамента заданных размеров на сжимаемом грунте путём расчёта равновеликой осадки эквивалентного слоя грунта

От действия местной нагрузки в массиве грунта возникают сжимающие напряжения, величина которых может быть охарактеризована изобарами (рис 2)


Рисунок 2 – изобары в грунте при различных размерах загруженной площади
S0 – осадка ленейно-деформируемого слоя при сплошной нагрузке: s – осадка фундамента заданных размерах и формы на линейно-деформируемом массиве.

Для определения эквивалентного слоя полагаем что


Относительная деформация слоя грунта при сплошной нагрузке


Умножая относительную деформацию на полную высоту сжимаемого слоя hs получим


Осадка фундамента заданных размеров и формы на линейно-деформируемом массиве


Подставляя значения, получим



Обозначив постоянный для данного грунта коэффициент, зависящий от бокового расширения грунта


получим окончательную формулу для вычисления мощности эквивалентного слоя грунта


Таким образом, для определения осадки фундаментов на однородных грунтах окончательно получим следующее выражение:


Эта формула справедлива для всех грунтов (независимо от того насыщены они водой или нет), учитывает ограниченность бокового расширения грунта, размеры, форму и жёсткость фундаментов, влияние на осадку всех компонентов напряжений и является полным выражением для стабилизированной осадки фундаментов на однородных грунтах.


Для упрощения расчётов составлена вспомогательная таблица.

Метод послойного суммирования.

В большинстве практических случаев основание сложено по глубине разнородными грунтами, представленными в материалах инженерно-геологических изысканий инженерно-геологическими элементами (ИГЭ). Метод послойного суммирования позволяет учитывать разнородность грунтового массива по глубине. В основе метода лежит суммирование осадок элементарных слоев от действия дополнительных напряжений с использованием формулы.

При этом распределение дополнительных напряжений в грунтовом массиве принимается в соответствии с моделью линейно деформируемого полупространства.

Дополнительными напряжениями называют напряжения в грунтовом массиве от действия внешней нагрузки. Расчетная схема определения осадок основания по методу послойного суммирования представлена на рис. 3

Основными допущениями метода послойного суммирования являются следующие предпосылки:

1) напряжения в грунтовом массиве не превышают расчетного сопротивления грунта, что позволяет использовать для расчета осадок закон уплотнения Терцаги;

2) поперечные деформации грунта равны нулю, что позволяет использовать для вычисления модуля деформации грунта решения, полученные для ассимметричного компрессионного сжатия;

3) распределение дополнительных вертикальных напряжений по глубине грунтового массива принимается как для центрального сечения равномерно загруженной поверхности линейно деформируемого полупространства;

4) сжимаемая зона грунтового массива ограничена глубиной, на которой дополнительные давления не превышают 10–20 % бытовых давлений. Перечисленные выше допущения проверены многочисленными экспериментами и натурными наблюдениями за осадками построенных зданий и сооружений.

Расчетная формула метода послойного суммирования имеет вид:

где р – давление на уровне подошвы фундамента;

?zg,0 – бытовое давление на уровне подошвы фундамента;

?zp,i, ?zg,i – соответственно дополнительное и бытовое давление в центре i-го слоя грунта;

?i – коэффициент распределения дополнительных давлений в центральном сечении фундамента (функция соотношений размеров фундамента в плане и относительной глубины i-го слоя грунта);

? – коэффициент вида напряженного состояния, принимаемый равным 0,8; Ei, hi – модуль деформации и толщина i-го слоя грунта; 0,2 (0,1) – коэффициенты ограничения сжимаемой толщи массива грунта;

n – количество расчетных слоев грунта в сжимаемой толще.

Величину полной осадки определяют как сумму осадок отдельных элементов


Рекомендуется учитывать напряжение только до глубины, при которой


Бытовое давление вычисляется от природного рельефа при планировке подсыпкой (рис. 2) или от планировочной отметки при планировке срезкой грунта. При вычислении бытовых давлений учитывается взвешивающее действие воды и гидравлический напор на уровне водоупора. Толщина элементарного слоя грунта принимается не более 0,4 ширины фундамента. Границами элементарных слоев обязательно должны быть границы геологических слоев, уровень грунтовых вод и уровень водоупорного слоя.

Метод угловых точек.

Является разновидностью метода послойного суммирования для вычисления осадок в произвольной точке поверхности грунтового массива, в том числе за границами загруженной поверхности. Вычисления выполняются по формуле

при подстановке в нее вместо напряжений по центральной оси фундамента ?zp,i напряжений по вертикали, проходящей через рассматриваемую точку поверхности грунтового массива ?zpc,i. Указанные напряжения от действующих на поверхности грунтового массива нагрузок вычисляются методом угловых точек.

Метод линейно деформируемого слоя. Используется в тех случаях, когда метод послойного суммирования дает завышенные значения осадок. К этим случаям относятся следующие: 1) в толще грунтового массива залегает практически несжимаемый грунт с модулем деформации, равным или более 100 МПа; 2) ширина фундаментов равна или превышает10 м и под подошвой фундаментов залегает грунт с модулем деформации, равным или более 10 МПа.

Более строго область применимости метода линейно деформируемого слоя регламентирована в нормах на проектирование оснований и фундаментов. По структуре расчетных формул этот метод практически не отличается от метода послойного суммирования. Основным отличием является то, что в методе линейно деформируемого слоя глубина сжимаемой толщи ограничена толщиной этого слоя Н, например, глубиной залегания практически несжимаемого слоя грунта. Осадка основания вычисляется по формуле

где р – среднее давление под подошвой фундамента;

b – ширина подошвыфундамента;

kc – коэффициент, зависящий от относительной мощности слоя;

km – коэффициент, зависящий от модуля деформации грунта;

ki, ki-1 – коэффициенты распределения давлений в линейно деформируемом слое (табулированы в нормах на проектирование оснований);

Реферат - Физические свойства грунтов. Методы определения осадок фундаментов

Физические свойства грунтов.
Методы определения осадок фундаментов.
Метод эквивалентного слоя.
Метод послойного суммирования.
Метод угловых точек.
Метод линейно деформируемого слоя.

Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов

  • формат djvu
  • размер 5.31 МБ
  • добавлен 14 февраля 2009 г.

М.: Стройиздат, 1994. -384с., ил. Приведены результаты комплексных экспериментально-теоретических исследований осадок и несущей способности свайных фундаментов, основные закономерности их взаимодействия с окружающим грунтом. Изложены методы определения напряжений в активной зоне, полных осадок во времени ленточных свайных фундаментов и кустов свай с учетом приложения нагрузки внутри массива и вида эпюр ее передачи по боковой поверхности и плоскос.

Вопросы ГОС экзамен - ПГС. Механика грунтов, основания и фундаменты

  • формат docx
  • размер 788.89 КБ
  • добавлен 07 марта 2011 г.

СГТУ ПГС ГОС -экзамен Физические и механические характеристики грунтов. Способы и методы их определения. Причины развития неравномерных осадок и просадок основания. Определение осадки основания методом послойного суммирования. Стуктурно-неустойчивые грунты. Особенности проектирования и строительства зданий и сооружений на них. Виды фундаментов мелкого заложения. Порядок определения площади подошвы фундамента мелкого заложения. Виды свай и свайных.

Горбунов-Посадов М.И. (ред.) Справочник проектировщика. Основания и фундаменты

  • формат djvu
  • размер 15.13 МБ
  • добавлен 04 ноября 2010 г.

М.: Стройиздат, 1964. - 270 с. В книге содержатся справочные сведения по расчету и проектированию оснований и фундаментов зданий и сооружений различного назначения. Рассматриваются физические свойства и основные закономерности механики грунтов, новейшие конструкции фундаментов, особенности их проектирования и производства работ в зависимости от характера грунтов. Даны современные методы расчета осадок и устойчивости оснований и прочности фундамен.

Крутов В.И. Основания и фундаменты на просадочных грунтах

  • формат djvu
  • размер 13.81 МБ
  • добавлен 01 января 2010 г.

Будивельник, Киев, 1982. – 224 с. В книге описываются основные особенности и характеристики просадочных грунтов, закономерности развития деформаций от нагрузок фундаментов, собственного веса грунта, освещено взаимодействие свай, фундаментов, закрепленных массивов, приведены методы уплотнения грунтов. Даны методы расчета осадок оснований и фундаментов под зданиями, расположенными на просадочных грунтах.

Лекции по механике грунтов

  • формат pptx
  • размер 1.1 МБ
  • добавлен 15 июня 2010 г.

Механика грунтов как наука. Фазовый состав грунтов. Физические свойства грунтов основания. Основные физические характеристики Расчетные физические характеристики Основные закономерности механики грунтов Сжимаемость грунтов Водопроницаемость грунтов Сопротивление грунтов сдвигу Сдвиговые испытания грунтов Структурно - фазовая деформируемость грунтов Распределение напряжений в массиве грунта 270102 — Промышленное и гражданское строительство; 2701.

Презентация - Краткий конспект лекций по дисциплине Механика грунтов

  • формат pdf
  • размер 2.95 МБ
  • добавлен 31 марта 2010 г.

Характеристики физических свойств грунтов Механические свойства грунтов Определение механических характеристик грунтов в приборах трехосного сжатия Особенности структурно-неустойчивых оснований Определение напряжений в массиве грунта Распределение напряжений на подошве фундамента Устойчивость откосов Давление грунта на подпорные стенки Деформация оснований и расчет осадок фундаментов Определение осадки фундамента по методу эквивалентного.

Расчетно-графическая работа по механике грунтов

  • формат doc, dwg
  • размер 1011.02 КБ
  • добавлен 06 января 2011 г.

Вариант 14 Задача № 1. Природа грунтов и показатели физико-механических свойств Задачи №№2,3, 4. Напряжения в грунтах от действия внешних сил Задачи №№5, 6. Теории предельного напряженного состояния грунтов Задачи №№7, 8. Деформации грунтов и прогноз осадок фундаментов Расчетные схемы и графики зависимостей к каждой задаче выполнены в системе AutoCAD.

Ухов С.Б. и др. Механика грунтов, основания и фундаменты

  • формат djvu
  • размер 23.74 МБ
  • добавлен 24 ноября 2009 г.

Учебник, Авт.: Ухов С. Б., Семенов В. В., Знаменский В. В., Тер-Мартиросян З. Г., Чернышев С. Н. - М.: АСВ, 1994. -527 c. ил. В учебнике даны основные сведения о природе грунтов и показателях их физических свойств. Рассмотрены механические свойства и напряженное состояние грунтов. Дан расчет и приведены типы и конструкции фундаментов зданий и сооружений, применяемых в промышленном и гражданском строительстве. Изложены основные положения САПР в фу.

Шаповал В.Г. Механика грунтов

  • формат doc, rtf
  • размер 2.03 МБ
  • добавлен 04 июня 2011 г.

2010г. -170с. Основные понятия, определения и обозначения Предисловие Состав, строение и состояние грунтов Грунтовые основания. Происхождение грунтов Состав грунтов Форма, размеры и взаимное расположение частиц в грунте Понятие о структуре и текстуре грунтовых оснований. Связи между грунтовыми частицами Физические характеристики, классификация грунтов, строение оснований Основные физические характеристики грунтов Классификация грунтов Особые виды.

Шутов В.Е. (ред.) Механика грунтов

  • формат pdf
  • размер 3.44 МБ
  • добавлен 15 декабря 2010 г.

М.: Лори, 2003г. -128 с. Учебное пособие для подготовки специалистов по специальности 0900700 "Проектирование, сооружение и эксплуатация газонефтепроводов и газонефтехранилищ". Содержание. Происхождение, состав и структура грунтов. Физические свойства грунтов. Механические свойства грунтов. Напряжения, передоваемые от фундамента грунту по его подошве. Основные теории расчета фундаментов конечной жесткости с учетом осадки сплошного упругого основ.

Физические свойства грунтов – это характеристики, которые проявляются в природной среде. Проще говоря, они показывают состояние грунта в конкретном месте и в определенный отрезок времени. Как правило, физические характеристики относятся к тем грунтам , которые не были подвержены внешнему механическому воздействию. Информация о них помогает правильно использовать материал , изменять его свойства.

  • Физические свойства грунтов
  • Влажность
  • Влагоемкость
  • Водопроницаемость
  • Гранулометрический состав
  • Плотность грунта
  • Пористость грунта
  • Выветрелость
  • Пластичность

Группа физических характеристик включает:

О каждом из этих свойств мы расскажем далее.

Влажность

Это процентное содержание воды в грунте в условиях природного залегания. Показатель изменчивый, особенно в верхних горизонтах. Он зависит от климата, количества осадков, времени года. Например, весной, после таяния снега, грунт напитывается влагой от талых вод. Летом, в засушливую погоду, он высыхает.

В нижних слоях массива влажность более стабильная, на нее влияет уровень грунтовых вод. От данного показателя зависят многие характеристики грунта – прочность и несущая способность, просадочность, химический состав, плодородие.

Для определения влажности отбирают пробу грунта и помещают ее в сушильный шкаф. Далее производится несколько этапов высушивания. Это необходимо , чтобы довести образец до постоянной массы и понять , сколько весит материал, не содержащий влаги. Далее сопоставляют первоначальную и конечную массы – и выводят показатель влажности.

Подробнее об этом вы можете прочитать в статье Влажность грунта.

Влагоемкость

Под влагоемкостью понимают свойство грунта впитывать и удерживать воду. Она зависит в первую очередь от количества открытых пор и капилляров. Значительная пористость характерна для мелкозернистых грунтов – песка, дресвы, супеси. Они могут впитывать большое количество воды, но в тоже время хорошо ее пропускают. Глинистые частицы могут фиксировать на своей поверхности молекулы воды и задерживать ее, при полном насыщении увеличиваются в объеме. Поэтому покупать такой грунт весной, когда он впитал много талой воды, не стоит. Масса и объем материала будут больше, но вы доплатите за жидкость.

Влагоемкость определяется лабораторным путем. Для этого сухой образец грунта насыщают водой и сопоставляют разницу масс до и после испытаний.

Подробнее об этом вы можете прочитать в статье Влагоемкость грунта.

Водопроницаемость

Это способность грунта пропускать через себя воду, свободно стекающую в нижние горизонты под воздействием силы тяжести и атмосферного давления. Водопроницаемость влияет на степень уплотнения грунтов , склонность к оползням в горной местности, концентрацию питательных веществ в верхних слоях почвы. У грунтов с низкой водопроницаемостью плохие дренажные свойства, на их поверхности застаивается вода , что ведет к заболачиванию участков.

Измеряется показатель коэффициентом фильтрации, характеризующим скорость, с которой жидкость проходит через материал (в метрах в сутки).

По водопроницаемости все грунты разделяются на несколько групп:

Группа Коэффициент фильтрации Комментарий
Водонепроницаемые До 0,005 м/сут. За 24 часа в такой грунт вода уйдет менее чем на полсантиметра. Такой показатель характерен для глины и скального грунта с низкой степенью выветрелости.
Слабоводопроницаемые От 0,005 м/сут. до 0,3 м/сут. В эту категорию входят тяжелые супеси, песчаники и суглинки. Они плохо пропускают воду из-за плотного сложения.
Водопроницаемые От 0,3 м/сут. до 3 м/сут. Сюда входят материалы с достаточно крупным размером зерен или с высокой трещиноватостью. Это супеси, глинистые сланцы, песчаники и известняки
Сильноводопроницаемые От 3 м/сут. до 30 м/сут. К этой группе относят практически все пески , а также скальный грунт средней степени выветрелости. Плотность у таких материалов низкая за счет большого количества пустот между зернами. Сквозь эти пустоты хорошо проходит вода.
Очень сильноводопроницаемые Более 30 м/сут. Структура таких грунтов практически не препятствует прохождению воды. Это галька, гравий и сильновыветрелый скальный грунт.

Подробнее об этом вы можете прочитать в статье Водопроницаемость грунта.

Гранулометрический состав

Процентное содержание в грунте частиц с разным диаметром. Определяется путем разделения образцов грунта на фракции. Размеры частиц колеблются от десятков сантиметров (валуны и глыбы) до нескольких микрометров (глины, пылеватые грунты). От гранулометрического состава зависят влажность, пористость, плотность, водопроницаемость и ряд других характеристик материала.

Одной из составляющих гранулометрического состава является микроагрегатный состав. Первичные частицы грунта могут скрепляться между собой с помощью коллоидных или цементирующих связей. В результате образуются микроагрегаты и конгломераты. Очень часто такие структуры возникают в плодородных почвах , где песчаные и глинистые частицы сцепляются органическими веществами. Внутри микроагрегатов удерживается влага, интенсивно разлагается органика, размножаются полезные почвенные бактерии.

В целом, все грунты можно разделить на три большие категории:

  • Крупнообломочные
  • Песчаные
  • Глинистые

На самом деле, эта классификация достаточно сложна, и здесь мы не будем сильно погружаться в детали.

Подробно об этой характеристике вы можете прочитать в статье Гранулометрический состав грунта.

Плотность грунта

Плотность грунта – это соотношение его массы к объему (г/см3 или т/м3). Измеряется показатель в неуплотненных образцах при естественной влажности. Дополнительно может определяться плотность твердых частиц, скелета (плотность твердой фазы и пор, без учета влаги), водонасыщенного образца, насыпная плотность (соотношение массы и объема при свободной засыпке материала).

Плотность влияет на несущую способность грунта, водопроницаемость. Зависит она во многом от зернового состава материала. Чем мельче частицы, составляющие основную массу , тем выше будет плотность. Это связано с тем, что мелкие зерна лучше примыкают друг к другу, между ними образуется меньше пустот. А, следовательно, и вес такого материала будет выше.

Показатель плотности позволяет высчитать, какой объем займет партия определенной массы или сколько будет весить куб материала.

Подробнее об этом вы можете прочитать в статье Плотность грунта.

Пористость грунта

Пористость определяется отношением объема всех пустот грунта к его общему объему. Поры бывают крупными и мелкими, открытыми и закрытыми. Они образуются в процессе выветривания и перемещения грунтовой массы. Количество и диаметр зависят от гранулометрического и частично химического состава. От пористости зависят плотность , водопроницаемость и водонасыщенность, способность к усадке.

Подробнее об этом вы можете прочитать в статье Пористость грунта.

Выветрелость

Показатель разрушения горной породы под влиянием природных факторов. Определяется для скальных крупнообломочных грунтов. Коэффициент выветрелости вычисляется после дробления пробы в барабане, по соотношению частиц с диаметром меньше и больше 2 мм. Показатель влияет на прочность и устойчивость к износу. Чем более выветрелый материал, тем быстрее он разрушается под влиянием статических и динамических нагрузок.

Высокий коэффициент выветрелости у разборного скального грунта, гравия , дресвы. Такие материалы нельзя добавлять в бетон, использовать для дорожной одежды на участках с большим трафиком или для других ответственных работ.

Подробнее об этом вы можете прочитать в статье Выветрелость грунта.

Пластичность

Способность глинистой породы под внешним воздействием менять форму и сохранять ее после его прекращения. При этом связи между отдельными частицами не разрываются. Свойство проявляется при увлажнении и определяется числом пластичности (разницей между влажностью , при которой глина переходит в текучее и твердое состояние). Пластичные грунты склонны к набуханию, морозному пучению. При высыхании они становятся твердыми и плохо пропускают воду.

Подробнее об этом вы можете прочитать в статье Пластичность грунта.

Физические характеристики грунта определяются перед закладкой фундамента, прокладкой дороги. Их важно знать, если вы собираетесь покупать материал для строительных целей или улучшения плодородия на огороде.

Важно понимать, что физические свойства грунта после его изъятия из места залегания и перевозки изменяются. Он может терять влажность , уплотняться. Некоторые грунты перед реализацией обогащают. Например, природную ПГС разделяют на песок и гравий. Карьерный песок промывают , удаляют из него мелкие глинистые частицы и крупные включения. Обработанный материал качественнее, но цена его сразу возрастает.

Читайте также: