Развитие физических представлений о строении вещества реферат

Обновлено: 04.07.2024

В основе структурной химии лежит химическая атомистика Дж. Дальтона, согласно которой любой химический индивид стоит из совокупности молекул, обладающих строго определенным качественным и количественным составом. Более конкретные представления о структуре молекул содержатся в теории Берцелиуса, который пытался ответить на вопрос: существует ли какая-либо упорядоченность в объединении атомов в молекуле или они объединяются произвольно. И. Берцелиус выдвинул гипотезу, согласно которой все атомы химических элементов обладают различной электроотрицательностью в зависимости места, которое они занимают в ряду элементов с убывающей электроотрицательностью.

Вложенные файлы: 1 файл

Развитие учения о строении вещества.docx

Развитие учения о строении вещества

В основе структурной химии лежит химическая атомистика Дж. Дальтона, согласно которой любой химический индивид стоит из совокупности молекул, обладающих строго определенным качественным и количественным составом. Более конкретные представления о структуре молекул содержатся в теории Берцелиуса, который пытался ответить на вопрос: существует ли какая-либо упорядоченность в объединении атомов в молекуле или они объединяются произвольно. И. Берцелиус выдвинул гипотезу, согласно которой все атомы химических элементов обладают различной электроотрицательностью в зависимости места, которое они занимают в ряду элементов с убывающей электроотрицательностью. Атом каждого элемента несет два заряда: положительный и отрицательный, но в зависимости от места в ряду один из зарядов больше. Объединение атомов в молекулу приводит к частичной нейтрализации зарядов.

Полная нейтрализация невозможна из-за неравенства зарядов. Поэтому молекулы каждого соединения обладают также избыточным зарядом и склонны к образованию более сложных молекул в виде комплексов.

Таким образом, по Берцелиусу, молекула представляет собой объединение двух разноименно заряженных атомов или атомных групп-радикалов. В этом заключается содержание понятия ”структура" по Берцелиусу.

Французский химик Ш. Жерар (1816-1856) показал, что структурные представления Берцелиуса соответствуют действительности только в ряде случаев. Молекула является единой неделимой и унитарной системой, в которой все атомы всех элементов взаимодействуют — взаимно преобразуются, в этом сущность "структуры" по Жерару.

Комбинируя атомы разных химических элементов, можно создать структурные формулы любого химического соединения.

Таким образом можно создавать схему синтеза любого химического соединения, в том числе и неизвестного. Однако в некоторых случаях, хотя формульная схема составлена правильно, химическая реакция может не осуществиться. Поэтому нужно учитывать не только методику составления формул, но и химическую активность реагентов, которая лежит в основе теории химического строения Бутлерова.

Крупным шагом в развитии представлений о строении молекул явилась теория химического строения, выдвинутая в 1861 г. выдающимся русским химиком А. М. Бутлеровым.

Основу теории, разработанной А. М. Бутлеровым, составляют следующие положения:

1. Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.

2. Соединение атомов происходит в соответствии с их валентностью.

В 30-е годы нашего века теория Бутлерова нашла физическое квантово-механическое обоснование. Согласно современным представлениям структура молекул — это пространственная и энергетическая упорядоченность квантово-механической системы, состоящей из атомных ядер и электронов.

Структурная химия охватывает и неорганические материалы. В структурной неорганической химии можно выделить два перспективных направления:

• синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.;

• создание кристаллов с заранее запрограммированными дефектами для производства материалов с заданными электрическими, магнитными, оптическими и другими свойствами.

Исследования последнего времени направлены на разработку эффективных технологий синтеза не только органических, но и неорганических материалов.

Многообразие химических систем.

Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда—вещества, окружающие систему. Обычно система физически отграничена от среды.

Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы, гетерогенной—система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком.

Примером гомогенной системы может служить любая газовая смесь (все газы при не очень высоких давлениях неограниченно растворяются друг в друге), хотя бы смесь азота с кислородом. Другим примером гомогенной системы может служить раствор нескольких веществ в одном растворителе, например раствор хлорида натрия, сульфата магния, азота и кислорода в воде. В каждом из этих двух случаев система состоит только из одной фазы, из газовой фазы в первом примере и из водного раствора во втором. В качестве примеров гетерогенных систем можно привести следующие системы: вода со льдом, насыщенный раствор с осадком, уголь и сера в атмосфере воздуха. В последнем случае система состоит из трех фаз: двух твердых и одной газовой.

Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы.

Если реакция протекает между веществами, образующими гетерогенную систему, то она может идти только на поверхности раздела фаз, образующих систему. Скорость гомогенной реакции и скорость гетерогенной реакции определяются различно.

Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.

Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности фазы .

Неорганические и органические соединения.

Соединения углерода (за исключением некоторых наиболее простых) издавна получили название органических соединении, так как в природе они встречаются почти исключительно в организмах хвойных и растений, принимают участие в жизненных процессах или же являются продуктами жизнедеятельности или распада организмов. В отличие от органических соединений, такие вещества, как песок, глина, различные минералы, вода, оксиды углерода: угольная кислота, ее соли и другие, встречающиеся в неживой природе, получили название неорганических или минеральных веществ.

Деление веществ на органические и неорганические возникло вследствие своеобразия органических соединений, обладающих специфическими свойствами. Долгое время считалось, что углеродосодержащие вещества, образующиеся в организмах, в принципе невозможно получать путем синтеза из неорганических соединений.

Органическая химия — химия углеводородов и их производных. Особенность органической химии связана с исключительными свойствами атома углерода и его способностью образовывать химические связи и геометрические структуры, обладающие гораздо большим разнообразием, чем структуры и связи других элементов.

Связь между атомами в молекулах органических веществ — ковалентная. Этим объясняется отсутствие электролитических свойств многих органических веществ.

Органические соединения содержат простые (одинарные) связи между атомами углерода С—С и атомами углерода и водорода С—Н, которые близки друг другу прочности. Поэтому органические вещества взаимодействуют друг с другом с большим трудом или вообще взаимодействуют.

Органические вещества, как правило, молекулярного строения, поэтому они имеют низкие температуры плавления. Все органические вещества горючи и легко разлагаются при нагревании.Важной особенностью органических соединений является изомерия. Этим объясняется различие свойств веществ, имеющих одинаковый состав и молекулярную массу.

Первый этап развития химии - учение о составе вещества.

В XVII столетии возник интерес химии к процессу горения. Итогом этих исследований стала теория флогистона, основанная на утверждении, что все горючие вещества богаты особым горючим веществом - флогистоном.

Важный этап в развитии химии связан с именем Якоба Берцелиуса, который предположил существование частиц (молекул), образованных из двух или более атомов и способных перестраиваться при химических реакциях. Заслугой Берцелиуса является введение химической символики, позволяющей обозначать не только элементы, но и химические реакции

1869 г. Д. И. Менделеев разработал основные положения учения о периодичности, сформулировал периодический закон и предложил короткую форму периодической системы элементов, это открытие стало выдающимся событием в химии, приведя ее в состояние стройной систематизированной науки.

До середины XIX в. развитие химии происходило беспорядочно и хаотически: открывались и описывались новые химические элементы, химические реакции, благодаря чему накопился огромный эмпирический материал, который был систематизирован в 1860 г. на первом международном химическом конгресс, где были сформулированы и приняты основополагающие принципы, теории и законы химии, к заявившие о химии, как самостоятельной науке.

Химическим соединением называется атомно-молекулярная система, обладающая следующими признаками:

2) каждому сорту атомов соответствует определенная координация постоянных, определяющих индивидуальность химического соединения, распределение атомов по сортам (состав);

3) способностью существовать в виде одного или нескольких химических веществ.

На этом уровне решались вопросы определения химического элемента, химического соединения и получения новых материалов на базе более широкого использования химических элементов.

Первое научное определение химического элемента, когда еще не было открыто ни одного из них, сформулировал английский химик и физик Р. Бойль. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие.

В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном. В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Вопросы, связанные с химическими соединениями, длительное время не вызывали споров в среде химиков. Казалось очевидным, что именно относится к химическим соединениям, а что - к простым телам или смесям.

В результате химических и физических открытий претерпело изменение классическое определение молекулы.

Молекула понимается как наименьшая частица вещества, которая в состоянии определять его свойства и в то же время может существовать самостоятельно. Представления о классе молекул расширились, в него включают ионные системы, атомные и металлические монокристаллы и полимеры, образующиеся на основе водородных связей и представляющие собой уже макромолекулы. Они обладают молекулярным строением, хотя и не находятся в строго постоянном составе.

С открытием физиками природы химизма как обменного взаимодействия электронов химики совершенно по-другому стали рассматривать химическое соединение.

«Это качественно определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет обменного взаимодействия (химической связи) объединены в частицы-молекулы, комплексы, монокристаллы или иные агрегаты.

Предположение о том, что любое вещество состоит из мельчайших неделимых частиц — атомов, было высказано около 2500 лет назад древнегреческими философами Левкиппом и Демокритом. По их представлениям все тела образуются в результате соединения атомов. Различия в свойствах тел объясняются тем, что тела состоят из различных атомов или одинаковые атомы по-разному соединены между собой в пространстве.

Файлы: 1 файл

физика МКТ.docx

Развитие представлений о строении вещества.

Предположение о том, что любое вещество состоит из мельчайших неделимых частиц — атомов, было высказано около 2500 лет назад древнегреческими философами Левкиппом и Демокритом. По их представлениям все тела образуются в результате соединения атомов. Различия в свойствах тел объясняются тем, что тела состоят из различных атомов или одинаковые атомы по-разному соединены между собой в пространстве.

Работы М. В. Ломоносова.

Существенный вклад в развитие молекулярно-кинетических представлений сделал в середине XVIII в. великий русский ученый Михаил Васильевич Ломоносов (1711—1765). Он объяснил основные свойства газа, предположив, что все молекулы газа движутся беспорядочно, хаотично и при столкновениях отталкиваются друг от друга. Беспорядочным движением молекул М. В. Ломоносов впервые объяснил природу теплоты. Так как скорости теплового движения молекул могут быть сколько угодно велики, температура вещества по его представлениям не имеет ограничения сверху. При уменьшении скорости молекул до нуля должно быть достигнуто минимальное возможное значение температуры вещества. Объяснение природы теплоты движением молекул и вывод о существовании абсолютного нуля температуры, сделанный М. В. Ломоносовым, получили теоретическое и экспериментальное подтверждение в конце XIX в.

Основные положения молекулярно-кинетической теории.

Молекулярно-кинетической теорией называется учение о строении и свойствах вещества, использующее представления о существовании атомов и молекул как наименьших частиц химического вещества.

Способность газов неограниченно расширяться, упругость газов, жидкостей и твердых тел, способность к взаимному проникновению тел путем диффузии можно объяснить, если принять следующие положения молекулярно-кинетической теории строения вещества: вещество состоит из частиц — атомов и молекул; эти частицы хаотически движутся; частицы взаимодействуют друг с другом.

Движение атомов и молекул, их взаимодействия подчиняются законам механики. Это позволяет использовать законы механики для выяснения свойств тел, состоящих из большого числа хаотически движущихся малых частиц.

Взаимодействие атомов и молекул.

При сближении двух атомов или молекул сначала преобладают силы притяжения. Но на некотором расстоянииr0 между их центрами силы отталкивания возрастают настолько, что становятся равными по модулю силам притяжения. При дальнейшем сближении силы отталкивания превосходят силы притяжения (рис. 77). Силы притяжения между атомами и молекулами препятствуют растяжению твердоготела, силы отталкивания препятствуют его сжатию.

Действие сил молекулярного притяжения обнаруживается в опыте со свинцовыми цилиндрами, слипающимися после очистки их поверхностей (рис. 78).

Тепловое движение молекул.

Молекулы и атомы в твердом теле совершают беспорядочные колебания относительно положений, в которых силы притяжения и отталкивания со стороны соседних атомов уравновешены (рис. 79).

В жидкости молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее, эти перескоки молекул являются причиной текучести жидкости, ее способности принимать форму сосуда.

В газах обычно расстояния между атомами и молекулами в среднем значительно больше размеров молекул. Силы отталкивания на больших расстояниях не действуют, поэтому газы легко сжимаются.

Практически отсутствуют между молекулами газа и силы притяжения, поэтому газы обладают свойством неограниченно расширяться.

Закономерности броуновского движения.

Большое значение в обосновании молекулярно-кинетической теории имело открытие английского ботаника Роберта Броуна (1773—1858). В 1827 г. он обнаружил беспорядочное движение видимых в микроскоп твердых частиц, находящихся в жидкости. Это явление, названное броуновским движением, смогла объяснить лишь молекулярно-кинетическая теория на основе использования представлений о существовании молекул. Беспорядочно движущиеся молекулы жидкости или газа сталкиваются с твердой частицей и изменяют направление и модуль скорости ее движения. Число молекул, ударяющих частицу с различных сторон, и направление передаваемого ими импульса непостоянны. Чем меньше размеры и масса частицы, тем более заметными становятся изменения ее импульса во времени.

Французский ученый Жан Перрен (1870 — 1942) в 1908—1911 гг. выполнил серию экспериментов по изучению броуновского движения. Пример результатов одного из наблюдений за движением броуновской частицы представлен на рисунке 80. Закономерности броуновского движения, предсказанные на основе молекулярно-кинетической теории, полностью подтвердились этими экспериментами.

Измерение скорости молекул.

Одним из первых экспериментов, в котором были непосредственно измерены скорости движения отдельных молекул газа, был опыт, выполненный немецким физиком Отто Штерном (1888—1969) в 1920 г.

В опыте использовался прибор, состоящий из двух цилиндров с общей осью вращения. По оси цилиндра была расположена платиновая проволока, покрытая серебром. Воздух из пространства между цилиндрами откачивался.

При пропускании электрического тока через проволоку в результате ее нагревания происходило испарение атомов серебра с поверхности проволоки. Во внутреннем цилиндре имелась щель, атомы серебра пролетали через нее и оседали на внутренней стенке второго цилиндра, образуя на ней заметную полоску.

Когда цилиндры приводились во вращение с одинаковой частотой, полоска оказывалась в другом месте. По углу между этими двумя положениями полоски (рис. 81), расстоянию и частоте вращения цилиндров можно было определить скорость атомов серебра:

Полоска серебра, получившаяся при вращении цилиндров, оказалась размытой. Это свидетельствовало о том, что атомы серебра, испаряющиеся с проволоки, имеют различные скорости. Найденные из таких измерений значения скорости движения атомов серебра оказались совпадающими со значениями, полученными на основе молекулярно-кинетической теории. Это совпадение является одним из важнейших прямых доказательств справедливости молекулярно-кинетической теории газов.

Наблюдения отдельных атомов.

В настоящее время основные положения молекулярно-кинетической теории подтверждаются многочисленными опытами с использованием достижений современной экспериментальной техники. С помощью ионного проектора получают изображения кристаллов, по которым можно представить их строение. Электронные микроскопы позволили получить изображения, по которым оказалось возможным определение расстояния между отдельными атомами в молекуле.

В 1647 г. выходит книга французского философа П. Гассенди, в которой он пишет о том, что все тела состоят из атомов, аналогично тому как из строительных материалов построены дома. В телах атомы объединяются в группы, которые Гассенди назвал молекулами. Он считал, что если атомы соединяются друг с другом в нескольких точках, то образуется жидкое тело, если же точек соединения много, то образуется твердое тело. Конечно, взгляды Гассенди были наивными, но тем не менее они способствовали развитию атомистических представлений о строении вещества.

Роберт Бойль, английский химик и физик, который положил начало становлению химии как самостоятельной науки и дал первое научное определение химического элемента, также придерживался атомистических взглядов.

Атомно-молекулярные представления о строении вещества развивал М. В. Ломоносов. Он объяснял свойства тел конфигурацией молекул, образующих эти тела, а изменение свойств тел в химических реакциях - изменением конфигураций молекул. Конечно, это еще не была современная теория строения вещества. Как и другие ученые, сторонники механистического мировоззрения, Ломоносов основными характеристиками атомов и молекул считал их массу, скорость, координаты.

Химики получили веское доказательство существования атомов и молекул после того, как Джоном Дальтоном в 1807 г. был открыт закон кратных весовых отношений. Но природа химической связи осталась необъяснимой. Вы знаете, что это удалось сделать только на основе квантовых представлений.

Дальнейшее развитие химии связано с работами Лавуазье. С ними вошел в науку закон сохранения массы вещества, в химии стали систематически применяться количественные методы, была выяснена роль кислорода в процессах горения и дыхания, что способствовало опровержению теории флогистона, утверждению атомистических представлений, зарождению органической химии.

Накопление экспериментальных данных о химических и физических свойствах химических элементов позволило Д. И. Менделееву открыть периодический закон (1869 г.). В основу классификации элементов Д. И. Менделеев положил массу их атомов: как и другие сторонники механистического мировоззрения, основным свойством атомов он считал массу. Но картина изменения свойств веществ, созданная Менделеевым, не вписывалась в механическую картину мира.

Как видим, развитие биологии, химии, физики привело к тому, что начался распад механической картины мира.

Утвердить в науке теорию вероятности помогли работы Л. Больцмана, связанные со статистическим обоснованием второго начала термодинамики, установлением связи между энтропией и вероятностью. Все это привело к тому, что механическое движение уже перестало быть господствующим видом движения материи, хотя еще продолжало существовать представление о едином виде материи - веществе.

Этому способствовало также открытие Р. Майером закона сохранения энергии, величайшего закона природы, который стал основой для объяснения явлений природы во всем естествознании, мощным орудием материалистического объяснения мира.

Химическая атомистика Дальтона. Учение о строении вещества, история его становления и развития. Основные положения теории Бутлерова и ее значение. Химические системы и их особенности. Основные сведения о строении вещества от древности до современности.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 26.12.2008
Размер файла 23,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

  • Введение 3
  • 1. Развитие учения о строении вещества 5
  • 2. Основные сведения о строении вещества 14
  • Заключение 16
  • Список литературы 18

Введение

Атомно-молекулярные представления о строении вещества развивал М.В. Ломоносов. Он объяснял свойства тел конфигурацией молекул, образующих эти тела, а изменение свойств тел в химических реакциях - изменением конфигураций молекул. Конечно, это еще не была современная теория строения вещества. Как и другие ученые, сторонники механистического мировоззрения, Ломоносов основными характеристиками атомов и молекул считал их массу, скорость, координаты.

Химики получили веское доказательство существования атомов и молекул после того, как Джоном Дальтоном в 1807 г. был открыт закон кратных весовых отношений. Но природа химической связи осталась необъяснимой. Вы знаете, что это удалось сделать только на основе квантовых представлений.

Дальнейшее развитие химии связано с работами Лавуазье. С ними вошел в науку закон сохранения массы вещества, в химии стали систематически применяться количественные методы, была выяснена роль кислорода в процессах горения и дыхания, что способствовало опровержению теории флогистона, утверждению атомистических представлений, зарождению органической химии.

Накопление экспериментальных данных о химических и физических свойствах химических элементов позволило Д.И. Менделееву открыть периодический закон (1869 г.). В основу классификации элементов Д.И. Менделеев положил массу их атомов: как и другие сторонники механистического мировоззрения, основным свойством атомов он считал массу. Но картина изменения свойств веществ, созданная Менделеевым, не вписывалась в механическую картину мира.

1. Развитие учения о строении вещества

В основе структурной химии лежит химическая атомистика Дж. Дальтона, согласно которой любой химический индивид стоит из совокупности молекул, обладающих строго определенным качественным и количественным составом. Более конкретные представления о структуре молекул содержатся в теории Берцелиуса, который пытался ответить на вопрос: существует ли какая-либо упорядоченность в объединении атомов в молекуле или они объединяются произвольно. И. Берцелиус выдвинул гипотезу, согласно которой все атомы химических элементов обладают различной электроотрицательностью в зависимости места, которое они занимают в ряду элементов с убывающей электроотрицательностью. Атом каждого элемента несет два заряда: положительный и отрицательный, но в зависимости от места в ряду один из зарядов больше. Объединение атомов в молекулу приводит к частичной нейтрализации зарядов.

Полная нейтрализация невозможна из-за неравенства зарядов. Поэтому молекулы каждого соединения обладают также избыточным зарядом и склонны к образованию более сложных молекул в виде комплексов.

Таким образом, по Берцелиусу, молекула представляет собой объединение двух разноименно заряженных атомов или атомных групп-радикалов. В этом заключается содержание понятия ”структура" по Берцелиусу.

Французский химик Ш. Жерар (1816-1856) показал, что структурные представления Берцелиуса соответствуют действительности только в ряде случаев. Молекула является единой неделимой и унитарной системой, в которой все атомы всех элементов взаимодействуют -- взаимно преобразуются, в этом сущность "структуры" по Жерару.

Комбинируя атомы разных химических элементов, можно создать структурные формулы любого химического соединения.

Таким образом можно создавать схему синтеза любого химического соединения, в том числе и неизвестного. Однако в некоторых случаях, хотя формульная схема составлена правильно, химическая реакция может не осуществиться. Поэтому нужно учитывать не только методику составления формул, но и химическую активность реагентов, которая лежит в основе теории химического строения Бутлерова.

Крупным шагом в развитии представлений о строении молекул явилась теория химического строения, выдвинутая в 1861 г. выдающимся русским химиком А.М. Бутлеровым.

Основу теории, разработанной А.М. Бутлеровым, составляют следующие положения:

1. Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.

2. Соединение атомов происходит в соответствии с их валентностью.

В 30-е годы нашего века теория Бутлерова нашла физическое квантово-механическое обоснование. Согласно современным представлениям структура молекул -- это пространственная и энергетическая упорядоченность квантово-механической системы, состоящей из атомных ядер и электронов.

Структурная химия охватывает и неорганические материалы. В структурной неорганической химии можно выделить два перспективных направления:

* синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.;

* создание кристаллов с заранее запрограммированными дефектами для производства материалов с заданными электрическими, магнитными, оптическими и другими свойствами.

Исследования последнего времени направлены на разработку эффективных технологий синтеза не только органических, но и неорганических материалов.

Многообразие химических систем

Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда -- вещества, окружающие систему. Обычно система физически отграничена от среды.

Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы, гетерогенной--система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком.

Примером гомогенной системы может служить любая газовая смесь (все газы при не очень высоких давлениях неограниченно растворяются друг в друге), хотя бы смесь азота с кислородом. Другим примером гомогенной системы может служить раствор нескольких веществ в одном растворителе, например раствор хлорида натрия, сульфата магния, азота и кислорода в воде. В каждом из этих двух случаев система состоит только из одной фазы, из газовой фазы в первом примере и из водного раствора во втором. В качестве примеров гетерогенных систем можно привести следующие системы: вода со льдом, насыщенный раствор с осадком, уголь и сера в атмосфере воздуха. В последнем случае система состоит из трех фаз: двух твердых и одной газовой.

Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы.

Если реакция протекает между веществами, образующими гетерогенную систему, то она может идти только на поверхности раздела фаз, образующих систему. Скорость гомогенной реакции и скорость гетерогенной реакции определяются различно.

Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.

Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности фазы .

Неорганические и органические соединения.

Соединения углерода (за исключением некоторых наиболее простых) издавна получили название органических соединении, так как в природе они встречаются почти исключительно в организмах хвойных и растений, принимают участие в жизненных процессах или же являются продуктами жизнедеятельности или распада организмов. В отличие от органических соединений, такие вещества, как песок, глина, различные минералы, вода, оксиды углерода: угольная кислота, ее соли и другие, встречающиеся в неживой природе, получили название неорганических или минеральных веществ.

Деление веществ на органические и неорганические возникло вследствие своеобразия органических соединений, обладающих специфическими свойствами. Долгое время считалось, что углеродосодержащие вещества, образующиеся в организмах, в принципе невозможно получать путем синтеза из неорганических соединений.

Органическая химия -- химия углеводородов и их производных. Особенность органической химии связана с исключительными свойствами атома углерода и его способностью образовывать химические связи и геометрические структуры, обладающие гораздо большим разнообразием, чем структуры и связи других элементов.

Связь между атомами в молекулах органических веществ -- ковалентная. Этим объясняется отсутствие электролитических свойств многих органических веществ.

Органические соединения содержат простые (одинарные) связи между атомами углерода С--С и атомами углерода и водорода С--Н, которые близки друг другу прочности. Поэтому органические вещества взаимодействуют друг с другом с большим трудом или вообще взаимодействуют.

Органические вещества, как правило, молекулярного строения, поэтому они имеют низкие температуры плавления. Все органические вещества горючи и легко разлагаются при нагревании.Важной особенностью органических соединений является изомерия. Этим объясняется различие свойств веществ, имеющих одинаковый состав и молекулярную массу.

В 1647 г. выходит книга французского философа П. Гассенди, в которой он пишет о том, что все тела состоят из атомов, аналогично тому как из строительных материалов построены дома. В телах атомы объединяются в группы, которые Гассенди назвал молекулами. Он считал, что если атомы соединяются друг с другом в нескольких точках, то образуется жидкое тело, если же точек соединения много, то образуется твердое тело. Конечно, взгляды Гассенди были наивными, но, тем не менее, они способствовали развитию атомистических представлений о строении вещества.

Роберт Бойль, английский химик и физик, который положил начало становлению химии как самостоятельной науки и дал первое научное определение химического элемента, также придерживался атомистических взглядов.

Атомно-молекулярные представления о строении вещества развивал М. В. Ломоносов. Он объяснял свойства тел конфигурацией молекул, образующих эти тела, а изменение свойств тел в химических реакциях - изменением конфигураций молекул. Конечно, это еще не была современная теория строения вещества. Как и другие ученые, сторонники механистического мировоззрения, Ломоносов основными характеристиками атомов и молекул считал их массу, скорость, координаты.

Химики получили веское доказательство существования атомов и молекул после того, как Джоном Дальтоном в 1807 г. был открыт закон кратных весовых отношений. Но природа химической связи осталась необъяснимой. Вы знаете, что это удалось сделать только на основе квантовых представлений.

Дальнейшее развитие химии связано с работами Лавуазье. С ними вошел в науку закон сохранения массы вещества, в химии стали систематически применяться количественные методы, была выяснена роль кислорода в процессах горения и дыхания, что способствовало опровержению теории флогистона, утверждению атомистических представлений, зарождению органической химии.

Накопление экспериментальных данных о химических и физических свойствах химических элементов позволило Д. И. Менделееву открыть периодический закон (1869 г.). В основу классификации элементов Д. И. Менделеев положил массу их атомов: как и другие сторонники механистического мировоззрения, основным свойством атомов он считал массу. Но картина изменения свойств веществ, созданная Менделеевым, не вписывалась в механическую картину мира.

Как видим, развитие биологии, химии, физики привело к тому, что начался распад механической картины мира.

Утвердить в науке теорию вероятности помогли работы Л. Больцмана, связанные со статистическим обоснованием второго начала термодинамики, установлением связи между энтропией и вероятностью. Все это привело к тому, что механическое движение уже перестало быть господствующим видом движения материи, хотя еще продолжало существовать представление о едином виде материи - веществе.

Этому способствовало также открытие Р. Майером закона сохранения энергии, величайшего закона природы, который стал основой для объяснения явлений природы во всем естествознании, мощным орудием материалистического объяснения мира.

2. Основные сведения о строении вещества

Логика рассуждений Демокрита, если перевести ее на современный язык, была крайне проста. Представим, говорил он, что у нас есть самый острый в мире нож. Берем первый попавшийся под руку материальный объект и разрезаем его пополам, затем одну из получившихся половинок также разрезаем пополам, затем разрезаем пополам одну из получившихся четвертинок и так далее. Рано или поздно, утверждал он (основываясь, как и все древнегреческие мыслители, прежде всего на философских соображениях), мы получим частицу столь мелкую, что дальнейшему делению на две она не поддается. Это и будет неделимый атом материи.

По представлениям Демокрита атомы были вечными, неизменными и неделимыми. Изменения во Вселенной происходили исключительно из-за изменений в связях между атомами, но не в них самих. Тем самым он тонко обошел давнишний спор древнегреческих философов о том, подвержена ли переменам сама суть видимого мира или все перемены в нем носят чисто внешний характер.

Заключение

Идея об атомном строении материи так и оставалась чисто философским умопостроением вплоть до начала XIX века, когда сформировались основы химии как науки. Химики первыми и обнаружили, что многие вещества в процессе реакций распадаются на более простые компоненты. Например, вода распадается на водород и кислород. Однако некоторые вещества -- те же водород и кислород -- разложению на составляющие при помощи химических реакций не поддаются. Такие вещества назвали химическими элементами. К началу XIX века было известно около 30 химических элементов (на момент написания этой статьи их открыто более 110, включая искусственно полученные в лабораторных условиях). Кроме того, было установлено, что в процессе химических реакций количественное соотношение веществ, участвующих в данной реакции, не изменяется. Так, для получения воды неизменно берутся восемь массовых долей кислорода и одна доля водорода.

Для Дальтона, как и для Демокрита, атомы оставались неделимыми. В черновиках и книгах Дальтона мы находим рисунки, где атомы представлены в виде шариков. Однако основное положение его работы -- что каждому химическому элементу соответствует особый тип атома -- легло в основу всей современной химии. Этот факт остается непреложным и теперь, когда мы знаем, что каждый атом сам по себе является сложной структурой и состоит из тяжелого, положительно заряженного ядра и легких, отрицательно заряженных электронов, вращающихся по орбитам вокруг ядра. Достаточно обратиться к сложностям квантовой механики, чтобы понять, что концепция атома не исчерпала себя и в XXI веке.

Список литературы

1. Агапов Б.Т., Максютин Г.В., Островерхов П.И. Лабораторный практикум по физике. - М.: Высшая школа, 2004.

2. Ахматов А.С. Молекулярная физика. - М., Знание, 2001.

3. Бакушинский В.Н. Организация лабораторных работ по физике в средней школе. - М., 2003.

4. Беклемишев А.В. Методика и организация лабораторных занятий по физике в высшей школе. - М.: Советская наука, 2006.

5. Деденко Л.Г., Керженцев В.В. Математическая обработка и оформление результатов эксперимента. - М., 2001.

6. Евграфова Н.Н., Каган В.Л. Руководство к лабораторным работам по физике. - М.: Высшая школа, 2004.

7. Зайдель А.Н. Ошибки измерений физических величин. - Л.: Наука, 2004.

9. Ковалёв П.Г. Молекулярная физика, электродинамика. - Ростов: Университетское, 2003.

10. Лабораторные занятия по физике / Под ред. Гольдина Л.Л. - М.: Наука, 2005.

11. Лабораторный практикум по физике / Под ред. Ахматова А.С. - М.: Высшая школа, 2002.

13. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. - Л., 2003.

14. Павленко Ю.Г. Молекулярная физика. - М., 2002.

15. Павлов В.И. Механика, молекулярная физика. М., 2002.

17. Яковлев В.Ф. Курс физики. Теплота и молекулярная физика. - М.: Просвещение, 2004.

Подобные документы

Атомно-молекулярное учение Ломоносова о строении вещества. Молекула как наименьшая частица вещества, сохраняющая его состав и химические свойства. Современное изложение основных положений атомно-молекулярного учения. Открытие катодных лучей Круксом.

презентация [658,4 K], добавлен 14.04.2012

Химический элемент - совокупность атомов одного вида. Открытие химических элементов. Размеры атомов и молекул. Формы существования химических элементов. Некоторые сведения о молекулярном и немолекулярном строении веществ. Атомно-молекулярное учение.

презентация [33,3 K], добавлен 15.04.2012

Грань между органическими и неорганическими веществами. Синтезы веществ, ранее вырабатывавшихся только живыми организмами. Изучение химии органических веществ. Идеи атомистики. Сущность теории химического строения. Учение об электронном строении атомов.

реферат [836,2 K], добавлен 27.09.2008

Химическая связь в молекулах. Теории химического строения (структурная, электронная). Квантово-механические химические связи. Комплексы переходных и непереходных элементов. Строение конденсированных фаз (жидкостей, растворов, мезофаз, кристаллов).

презентация [97,1 K], добавлен 22.10.2013

Основные химические вещества: белки, липиды, углеводы, витамины, минеральные вещества и пищевые добавки. Основные химические процессы, происходящие при тепловой кулинарной обработке. Потери при тушении, запекании, припускании и пассеровании продуктов.

курсовая работа [119,9 K], добавлен 07.12.2010

От алхимии - к научной химии: путь действительной науки о превращениях вещества. Революция в химии и атомно-молекулярное учение как концептуальное основание современной химии.Экологические проблемы химической компоненты современной цивилизации.

реферат [56,6 K], добавлен 05.06.2008

Полимеры как органические и неорганические, аморфные и кристаллические вещества. Особенности структуры их молекулы. История термина "полимерия" и его значения. Классификация полимерных соединений, примеры их видов. Применение в быту и промышленности.

Читайте также: