Разветвленные и неразветвленные магнитные цепи реферат

Обновлено: 02.07.2024

Часть электротехнического устройства, отдельные участки ко­торого выполнены из ферромагнитных материалов, по которым замыкается магнитный поток, называется магнитной цепью. При­мером простой магнитной цепи может служить сердечник коль­цевой катушки (см. рис. 3.3, а). Магнитные цепи трансформато­ров, электрических машин и других аппаратов и приборов имеют более сложную форму.

Магнитная цепь, которая выполнена из одного материала и по всей длине имеет одинаковое сечение, называется однородной (см.рис. 3.3, а).

Неоднородная магнитная цепь состоит из нескольких одно­родных участков, отличающихся длиной, сечением и материалом. Наиболее часто встречаются магнитные цепи, в которых кроме ферромагнитных участков имеются воздушные зазоры. Неоднородная цепь, изображенная на рис. 3.9, а имеет 3 участка, одним из которых является воздушный зазор.

Магнитные цепи, как и электрические, бывают неразветвленными (рис. 3.9, а) и разветвленными (рис 3.9, б).

Характерной особенностью неразветвленной магнитной цепи является неизменный магнитный поток Ф во всех участках цепи (рис. 3.9, а).

Для разветвленной цепи характерно то, что алгебраическая сумма магнитных потоков в точке разветвления равна нулю, т. е. — первый закон Кирхгофа для магнитной цепи. Для разветвленной цепи (рис. 3.9, б) можно записать Ф-Ф1- Ф2=0 или Ф=Ф1+Ф2

Разветвленные магнитные цепи бывают симметричными и не­симметричными. На рис. 3.9, б изображена симметричная цепь, так как левая и правая ее части имеют одинаковые размеры и выполнены из одного материала.

Магнитный поток в сердечнике кольцевой катушки (рис. 3.3, а) определяется выражением:

где IW- намагничивающая сила или магнитное напряжение Um; l и S - параметры сердечника; =RM — магнитное сопротивление сердечника. Тогда

Выражение (3.20) — математическая запись закона Ома для магнитной цепи.

Для неоднородной, неразветвленной магнитной цепи, изоб­раженной на рис. 3.9, а магнитный поток, созданный в магнитной цепи двумя обмотками по закону Ома, определяется:

где IW — намагничивающая сила (ампер-витки) или магнитное напряжение Um.

Закон Ома решает качественную задачу расчета магнитной цепи, т. е. задачу зависимости одних величин от других.

^ Расчет магнитных цепей

Для расчета магнитных цепей можно воспользоваться зако­ном полного тока. При этом решается одна из двух задач.

Прямая задача, в которой по заданному магнитному потоку Ф в магнитной цепи определяют намагничивающую силу IW.

Обратная задача, в которой по заданной намагничивающей силе IW определяют магнитный поток Ф.

^ Для однородной магнитной цепи прямая задача реша­ется в следующей последовательности:

а) по заданному магнитному потоку и габаритам цепи определяют магнитную индукцию;

б) по кривой намагничивания материала сердечника определя­ют напряженность ^ Н по вычисленной индукции В;

в) по закону полного тока определяют намагничивающую силу IW=Hl,
где S — сечение магнитопровода; l — длина средней линии магнитопровода.

Обратная задача для однородной цепи решается в об­ратной последовательности, т. е.:

а) по закону полного тока определяют напряженность поля магнитной цепи ;

б) по кривой намагничивания материала сердечника определя­ют магнитную индукцию ^ В по вычисленному значению напря­женности Н;

в) определяют магнитный поток цепи Ф = BS.

Для неоднородной неразветвленной магнитной цепи (см. рис. 3.9, а) прямая задача решается в следующей последо­вательности:

а) по заданному магнитному потоку ^ Ф, который для всех участков неразветвленной цепи имеет одинаковое значение, опре­деляют магнитную индукцию В каждого однородного участка

где S — площадь сечения участка. Для прямоугольного сечения (рис. 3.9, a) S=aв; для круглого сечения (рис. 3.3, а)

Если задана магнитная индукция какого-либо участка Byч, то находят магнитный поток этого участка Фуч=BучSуч, который для всех участков неразветвленной цепи имеет одинаковое значение. Затем определяют магнитную индукцию остальных участков, как показано выше;

б) по кривым намагничивания материалов (Приложения 5, 6) определяют напряженности ферромагнитных участков H1 и Н2. Напряженность в воздушном зазоре вычисляют по выра­жению ;

в) определив длину средней линии каждого участка, по закону полного тока (второй закон Кирхгофа для магнитной цепи), вычисляют намагничивающую силу рассчитываемой магнитной цепи, или ток I, или витки W.

Определить число витков обмотки, расположен­ной на сердечнике из электротехнической листовой стали, раз­меры которого указаны на рис. 3.10 в см, если по обмотке проходит ток I= 5 А, который создает в магнитной цепи магнит­ный поток Ф=43,2-10-4 Вб.

Магнитная цепь состоит из трех однородных участ­ков сечением:

1. По заданному магнитному потоку определяется магнитная индукция в каждом однородном участке:

По кривой намагничивания для листовой электротехничес­кой стали (Приложение 6) определяем напряженности первого H1=1000 А/м и второго Н2=500 А/м участков.
Напряженность в воздушном зазоре

Составляем уравнение по закону полного тока для магнитной цепи, из которого определяем искомое число витков обмотки


где длина средней линии каждого участка:

Обратная задача расчета неоднородной неразветвленной маг­нитной цепи — определение магнитного потока по заданной намагничивающей силе, может быть решена методом последова­тельных приближений. Для этого задаются несколькими значени­ями магнитного потока и для каждого из них решают прямую задачу расчета магнитной цепи. По результатам расчетов намаг­ничивающих сил для разных магнитных потоков строят кривую зависимости по которой и определяют искомый магнитный поток Фиск по заданной намагничивающей силе (ампер-виткам) IWзад (рис. 3.11).

Расчет симметричной разветвленной магнитной цепи (прямая задача) рассмотрим на примере 3.2.

Пример 3.2. На среднем стержне Ш-образного симметричного сердечника, выполненного из электротехнической стали Э-21 (1311), расположена обмотка с числом витков W=515 (рис. 3.12). Якорь А этой разветвленной магнитной цепи выполнен из стали Э-42 (1512). Между якорем А и сердечником находится воздушный зазор l3 = 0,2 мм. Размеры магнитной цепи на рис. 3.12 даны в миллиметрах.

Определить величину тока в обмотке, расположенной на сред­нем стержне, при котором в якоре А создается магнитная индук­ция ВА=1,2 Тл.

Решение. Разделим магнитную цепь по оси симметрии (ОО`) на две равные части. Каждая часть рассчитывается отдельно, как неразветвленная неоднородная магнитная цепь. Магнитный по­ток Ф в каждой части определяется по заданной магнитной индукции в якоре

В каждой части (половине) вычисленный магнитный поток замыкается через якорь, Ш-образный участок магнитопровода и два воздушных зазора.

По вычисленному потоку Ф определяем магнитную индук­цию в однородных участках:

в зазоре бокового стержня

в зазоре среднего стержня

Напряженность магнитного поля для ферромагнитных участков (Приложение 5):

НА=540А/м, Н1=1580А/м, H2=840А/м

Напряженность в воздушных зазорах:

Величину тока определяем из уравнения, составленного по закону плотного тока:

где длина средней линии каждого участка:, , (длинной зазора пренебрегаем), (длинной зазора пренебрегаем).

Таким образом, индукцию ВА=1,2 Тл в якоре разветвленной магнитной цепи (рис. 3.12) создает ток I=2 А.

ads

Магнитной цепью называется устройство, отдельные участки которого выполнены из ферромагнитных материалов, по которым замыкается магнитный поток. Примерами простейших цепей могут служить магнитопроводы кольцевой катушки и электромагнита, изображенного на рис. 6.11, а. Электрические машины и трансформаторы, электромагнитные аппараты и приборы имеют обычно магнитные цепи более сложной формы.

Магнитная цепь

Рис. 6.11 Магнитные цепи (а — неразветвленная, б — разветвленная)

Если магнитная цепь выполнена из одного и того же материала и имеет по всей длине одинаковое сечение, то цепь называется однородной.

Если же отдельные участки цепи изготовлены из различных ферромагнитных материалов и имеют различные длины и сечения, то цепьнеоднородная.

Магнитные цепи, так же как и электрические, бывают разветвленные (рис. 6.11,6) и неразветвленные (рис. 6.11,а).

В неразветвленных цепях магнитный поток Ф во всех сечениях имеет одно и то же значение.

Разветвленные цепи могут быть симметричными и несимметричными. Цепь, представленная на рис. 6.11,6, считается симметричной, если правая и левая части ее имеют одинаковые размеры, выполнены из одного и того же материала и если МДС I1W1 и I2W2 одинаковы. При невыполнении хотя бы одного из указанных условий цепь будет несимметричной.

Разобьем неразветвленную магнитную цепь, например, на рис 6.11, а на ряд однородных участков, каждый из которых выполнен из определенного материала и имеет одинаковое поперечное сечение S вдоль всей своей длины. Длину каждого участка L будем считать равной длине средней магнитной линии в пределах этого участка. Из сказанного выше следует, что магнитные потоки всех участков неразветвленной цепи равны, т. е.

и поле на каждом участке можно считать однородным, т. е. Ф= BS; поэтому

формула магнитного напряжения

Где n — число участков цепи. Магнитное напряжение на любом из участков магнитной цепи

Где H — Напряженность, (измеряется в ампер на метр А/М).

B — Магнитная индукция (измеряется в теслах Тл).

L — Длинна средне силовой линии проходящей через центр поперечного сечения магнитопровода.

S — площадь поперечного сечения магнитопровода.

— Магнитная постоянная.

При заданном направлении тока в обмотке направление потока и МДС IW определяется по правилу буравчика.

Магнитное сопротивление и закон Ома для магнитной цепи.

По аналогии с электрической цепью величину

называют магнитным сопротивлением участка магнитной цепи (измеряется в 1/Гн).

Таким образом, магнитное напряжение Выражение (3) по аналогии с электрической цепью часто называют законом Ома для магнитной цепи Однако вследствие нелинейности цепи, вызванной непостоянством магнитной проницаемости μr ферромагнетиков, оно практически не применяется для расчета магнитных цепей.

Законы Кирхгофа для магнитной цепи

При расчетах разветвленных магнитных цепей пользуются двумя законами Кирхгофа, аналогичными законам Кирхгофа для электрической цепи.

Первый закон Кирхгофа непосредственно вытекает из непрерывности магнитных линий, т.е. и магнитного потока; алгебраическая сумма магнитных потоков в точке разветвления равна нулю:

Например, для узла а на рис. 6.11,б

Второй закон Кирхгофа для магнитной цепи

Второй закон Кирхгофа для магнитной цепи основывается на законе полного тока: алгебраическая сумма магнитных напряжений на отдельных участках цепи равна алгебраической сумме МДС:


Например, для левого контура и а рис. 6.11, бКак следует из закона Ома, для получения наибольшего магнитного потока при наименьшей МДС у магнитной цепи должно быть возможно меньшее магнитное сопротивление. Большая магнитная проницаемость ферромагнитных материалов обеспечивает получение малых магнитных сопротивлений магнитопроводов из этих материалов. Поэтому магнитные цепи электрических машин выполняют преимущественно из ферромагнетиков, а участки цепей из неферромагнитных материалов, то есть неизбежные или необходимые воздушные зазоры, делают, как правило, возможно малыми.

Магнитная цепь электрической машины с явно выраженными полюсами

Схема устройства магнитной цепи двухполюсной машины с явно выраженными полюсами показана на рис. 6.12.

Рис. 6.12 Магнитная цепь электрической машины с явно выраженными полюсами

Плоскость 00′, проведенная через середины полюсов N и S и ось машины, делит магнитную цепь на две симметричные части. В каждой из них магнитный поток Ф/2 замыкается через полюсы П, полюсные наконечники ПН, воздушные зазоры, якорь Я и станину машины С. Магнитодвижущая сила создается током в обмотке возбуждения ОВ, расположенной на полюсах N и S. Из северного полюса N магнитные линии выходят и в южный полюс S входят.

Магнитная цепь электрической машины с неявно выраженными полюсами

Рис, 6.13. Магнитная цепь электрической машины с неявно выраженными полюсами

Схема устройства магнитной цепи двухполюсной машины с неявно выраженными полюсами показана на рис. 6.13. Здесь обмотка возбуждения заложена в пазы ротора Р — вращающейся части машины, укрепленной на валу. Как и в предыдущем случае, плоскость 00′, проведенная через середины полюсов N и S, делит магнитную цепь машины на две симметричные части, в каждой из которых магнитный поток Ф/2. Магнитный поток замыкается через ротор машины, воздушные зазоры и станину машины С, представляющую собой неподвижный наружный стальной цилиндр — статор машины.

Магнитная цепь — последовательность магнетиков, по которым проходит магнитный поток. Различают замкнутые магнитные цепи, в которых магнитный поток почти полностью проходит в ферромагнитных телах, и с зазором (например, воздушным). Понятием магнитная цепь широко пользуются при электротехнических расчетах трансформаторов, электрических машин, реле и др. Простейшая магнитная цепь — сердечник кольцевой катушки.

Магнитодвижущая сила (МДС) — физическая величина, характеризующая способность электрических токов создавать магнитные потоки. Используется при расчетах магнитных цепей; аналог ЭДС в электрических цепях.


Магнитодвижущая сила в индукторе или электромагните вычисляется по формуле:


где ω — количество витков в обмотке, I — ток в проводнике.

Выражение для магнитного потока в магнитной цепи, также известное как закон Хопкинса, имеет следующий вид:


где — величина магнитного потока, — магнитное сопротивление проводника. Данная запись является аналогом закона Ома в магнитных цепях.

Классификация магнитных цепей.

- магнитные цепи с постоянной МДС (магнитодвижущей силой)

- магнитные цепи с переменной МДС

- однородные мц, у которых на всей длине магнитные цепи сечение, материал и индукция одинаковой по всей длине мц

По количеству источников МДС



- разветвлённые мц - неразветвлённые



По наличию воздушных зазоров.



Основные законы магнитных цепей.

В основе расчета магнитных цепей лежат два закона

Таблица 1. Основные законы магнитной цепи

Наименование закона Аналитическое выражение закона Формулировка закона
Закон (принцип) непрерывности магнитного потока
Поток вектора магнитной индукции через замкнутую поверхность равен нулю
Закон полного тока
Циркуляция вектора напряженности вдоль произвольного контура равна алгебраической сумме токов, охватываемых этим контуром

При анализе магнитных цепей и, в первую очередь, при их синтезе обычно используют следующие допущения:


- магнитная напряженность, соответственно магнитная индукция, во всех точках поперечного сечения магнитопровода одинакова

- потоки рассеяния отсутствуют (магнитный поток через любое сечение неразветвленной части магнитопровода одинаков);

- сечение воздушного зазора равно сечению прилегающих участков магнитопровода.

Это позволяет использовать при расчетах законы Кирхгофа и Ома для магнитных цепей, вытекающие из законов, сформулированных в табл. 1.

Таблица 2. Законы Кирхгофа и Ома для магнитных цепей

Наим. закона Аналитическое выражение закона Формулировка закона
Первый закон Кирхгофа
Алгебраическая сумма магнитных потоков в узле магнитопровода равна нулю
Второй закон Кирхгофа
Алгебраическая сумма падений магнитного напряжения вдоль замкнутого контура равна алгебраической сумме МДС, действующих в контуре
Закон Ома
где
Падение магнитного напряжения на участке магнитопровода длиной
равно произведению магнитного потока и магнитного сопротивления
участка

Сформулированные законы и понятия магнитных цепей позволяют провести формальную аналогию между основными величинами и законами, соответствующими электрическим и магнитным цепям, которую иллюстрирует табл.

Часть электротехнического устройства, отдельные участки ко­торого выполнены из ферромагнитных материалов, по которым замыкается магнитный поток, называется магнитной цепью. При­мером простой магнитной цепи может служить сердечник коль­цевой катушки (см. рис. 3.3, а). Магнитные цепи трансформато­ров, электрических машин и других аппаратов и приборов имеют более сложную форму.


Магнитная цепь, которая выполнена из одного материала и по всей длине имеет одинаковое сечение, называется однородной (см.рис. 3.3, а).


Неоднородная магнитная цепь состоит из нескольких одно­родных участков, отличающихся длиной, сечением и материалом. Наиболее часто встречаются магнитные цепи, в которых кроме ферромагнитных участков имеются воздушные зазоры. Неоднородная цепь, изображенная на рис. 3.9, а имеет 3 участка, одним из которых является воздушный зазор.

Магнитные цепи, как и электрические, бывают неразветвленными (рис. 3.9, а) и разветвленными (рис 3.9, б).

Характерной особенностью неразветвленной магнитной цепи является неизменный магнитный поток Ф во всех участках цепи (рис. 3.9, а).


Для разветвленной цепи характерно то, что алгебраическая сумма магнитных потоков в точке разветвления равна нулю, т. е. — первый закон Кирхгофа для магнитной цепи. Для разветвленной цепи (рис. 3.9, б) можно записать Ф-Ф1- Ф2=0 или Ф=Ф12

Разветвленные магнитные цепи бывают симметричными и не­симметричными. На рис. 3.9, б изображена симметричная цепь, так как левая и правая ее части имеют одинаковые размеры и выполнены из одного материала.

Магнитный поток в сердечнике кольцевой катушки (рис. 3.3, а) определяется выражением:


или иначе:


(3.19)


где IW- намагничивающая сила или магнитное напряжение Um; l и S - параметры сердечника; =RM — магнитное сопротивление сердечника. Тогда


(3.20)

Выражение (3.20) — математическая запись закона Ома для магнитной цепи.

Для неоднородной, неразветвленной магнитной цепи, изоб­раженной на рис. 3.9, а магнитный поток, созданный в магнитной цепи двумя обмотками по закону Ома, определяется:


(3.21)

где IW — намагничивающая сила (ампер-витки) или магнитное напряжение Um.

Закон Ома решает качественную задачу расчета магнитной цепи, т. е. задачу зависимости одних величин от других.

Читайте также: