Рамные конструкции из металла реферат

Обновлено: 04.07.2024

Рамные конструкции являются одним из наиболее распространенных типов несущих конструкции. Они хорошо вписываются в поперечное сечение большинства производственных и общественных зданий.

Рамные конструкции относятся к классу распорных.

Деревянные рамы обычно применяют однопролетными при пролетах
12…30 м.

В мировой практике строительства встречаются рамы пролетом до 60 м.

Рамы классифицируются по нескольким признакам

- По статической схеме рамы могут быть

1) трехшарнирными (статически определимыми)

Рисунок 1 – Трехшарнирная рама

2) двухшарнирными жестко опертыми (такие рамы являются статически неопределимыми)

Рисунок 2 – Двухшарнирная жестко опертая рама

3) двухшарнирными шарнирно опертыми (тоже статически неопределимые)

Рисунок 3 – Двухшарнирная шарнирно опертая рама

Наиболее распространенными являются трехшарнирные рамы, т.к. в статически определимых системах не происходит перераспределения усилий при деформировании под длительно действующей нагрузкой, что обеспечивает соответствие их расчетным усилиям.

- По конструктивному решению различают:

1) рамы построечного изготовления;

2) рамы заводского изготовления.

Рамы построечного изготовления из досок и брусьев собирают непосредственно на строительной площадке. В этих рамах используются преимущественно податливые виды соединений: болты, гвозди, упоры.

Ригель и стойки таких рам могут иметь сплошное сечение или выполняются в виде решетчатых систем.

а) б) в)

Рисунок 4 – Рамы построечного изготовления а) с подкосами в карнизном узле б) с опорными подкосами в) с решетчатыми стойками

К рамам построечного изготовления относятся также рамы с перекрестной стенкой на гвоздях. Конструкция таких рам аналогична конструкции балки с перекрестной стенкой на гвоздях.

Рамы построечного изготовления отличаются большим количеством узлов и требуют больших затрат труда и высококачественных материалов, поэтому наибольшее распространение получили рамы заводского изготовления или клееные рамы.

В зависимости от технологии изготовления или используемых материалов клееные рамы можно разделить на три группы:

1) гнутоклееные (из склеенных по пласти досок);

2) дощатоклееные из прямолинейных элементов;

3) клеефанерные, имеющие дощатые пояса и стенки из водостойкой фанеры.

Эти рамы, как правило, имеют прямолинейные элементы ригеля и стойки.

Распространенными конструкциями являются гнутоклееные рамы прямоугольного сечения, состоящие из гнутых, склеенных по пласти, досок.


Рисунок 5 – Гнутоклееная рама

В таких рамах для образования карнизного узла доски выгибаются, образуя плавный переход от ригеля к стойке. Таким образом, жесткий узел здесь выполняется цельноклееным, что выгодно отличает данную конструкцию от рам с карнизными узлами на податливых связях.

При наибольшей высоте стойки вся рама выполняется из двух элементов
Г-образного очертания, соединенных между собой в коньке.

Вместе с этим гнутоклееные рамы имеют существенные недостатки экономического порядка. В связи с необходимостью выгиба досок в узле сопряжения ригеля и стойки для этих рам необходим тонкий пиломатериал (δ=12…17 мм после острожки), что связано со значительным удорожанием конструкции: при использовании таких досок резко увеличиваются потери древесины и расход клея, а также трудозатраты на изготовление.

В результате оказывается, что гнутоклееные рамы являются по себестоимости, наиболее дорогие из всех рам.

Более эффективны рамы из прямолинейных элементов с жесткими клееными узлами: эти конструкции отвечают требованиям поточно-конвейерного производства, для их изготовления используется пиломатериал обычной толщины. При этом склеивают пакет досок, который затем распиливают по диагонали, получая при этом две сойки или два ригеля.


Рисунок 6 –Клееный пакет досок (заготовка для полурам)

Существует несколько конструктивных решений соединения прямолинейных элементов рам в жестком узле.

1. Ригель и стойка соединяются при помощи приклеенных к ним в узле двусторонних накладок из бакелизированной фанеры.


Рисунок 7 – Соединение ригеля и стойки накладками из фанеры

Рамы этого вида имеют несомненные технологические и экономические достоинства. Вместе с тем надежность узла на накладках из бакелизированной фанеры вызывает сомнения: в клеевых швах по плоскостям приклейке накладок к широким дощатым элементам могут возникнуть (при колебаниях влажности) опасные внутренние напряжения, обусловленные различием влажностных деформаций древесины и бакелизированной фанеры. Величину этих напряжений теоретически установить затруднительно, т.к. неизвестна действительная деформация клееного пакета.

Для окончательных выводов о надежности рам с фанерными накладками необходимы опытные данные, на основе которых и может быть решен вопрос о возможности массового применения таких конструкций.

2. Соединение ригеля со стойкой на зубчатый шип.

Это более надежный и перспективный тип соединения.


Рисунок 8 – Соединение ригеля со стойкой на зубчатый шип

Однако при таком соединении стойки и ригеля в карнизном узле возникают нежелательные концентрации напряжений, поэтому чаще сопряжения элементов рамы в жестком узле производят при помощи специальных вставок, соединенных с ригелем и стойкой.

3. Соединение ригеля со стойкой с помощью вставок. По форме вставки могут быть двух видов:


Рисунок 9 – Соединение ригеля и стойки при помощи пятиугольной вставки

а) б)

Рисунок 10 – Гнутоклееное соединение ригеля и стойки а) переменной длины б) постоянной длины

Первые (пятиугольные) вставки соединяются с элементами рамы под углом к волокнам. Поэтому в рамах с пятиугольными вставками определяющим условием при назначении размеров поперечного сечения элемента в узлах является несущая способность работающего под углом к волокнам на растяжение соединение его со вставкой.

Кроме этого, в самой вставке не исключается выклинивание кососрезных досок, выходящих на растянутую кромку рамы в месте наибольшего изгибающего момента.

Конструкции жестких узлов с такими вставками можно использовать только в легких рамах, где решающим фактором при назначении поперечных размеров элементов является расчет не по первому, а по второму предельному состоянию.

Более удачно решается жесткий рамный узел при помощи гнутоклееной вставки. Длина вставки вдоль рамы может быть либо постоянной (б), либо переменной (а). Вставки постоянной длины предпочтительнее, т. к. здесь увеличивается площадь клеевых швов в стыке, таким образом повышается надежность соединения.

Применение гнутоклееных вставок позволяет создавать рамные конструкции с широким диапазоном углов наклона ригеля к стойке.


Рисунок 11 –Виды гнутоклееных рам

Существенную экономию пиломатериалов, облегчение веса и уменьшение стоимости конструкции можно получить в рамах, поперечное сечение которых состоит из дощатых поясов и фанерных стенок.

Клеефанерные рамы легче гнутоклееных на 35…40 %.

Поперечное сечение рам может быть двутавровым или двутаврово-коробчатым.

При выборе формы сечения элементов рам предпочтение следует отдавать поперечному сечению, состоящему из двух или нескольких склеенных по ширине двутавров. В этом случае обеспечивается симметричное загружение стенок сдвигающими усилиями относительно их продольных осей, а также увеличение количества площадок скалывания при проверке на скалывание между слоями шпона фанеры.


Рисунок 12 – Клеефанерная рама

Для стенок рекомендуется использовать фанеру марки ФСФ, как наиболее доступную по стоимости. Количество фанерных стенок, а так же их толщина определяются расчетом.

Сопряжение поясов (сжатого и растянутого) в жестком переломленном узле рамы рекомендуется проектировать с использованием гнутоклееных вставок, соединенных с дощатыми поясами рам зубчато-шиповым стыком.

В клеефанерных рамах указанные стыки могут размещаться как в одном сечении пояса, так и вразбежку. В последнем случае достигается увеличение надежности стыкуемого соединения.

Гнутоклееные вставки (внутренняя и наружная) могут изготавливаться из разных материалов: внутренняя, имеющая меньший радиус – из шпона, наружная – из досок.

Конструктивные возможности при создании разнообразных форм в клеефанерных рамах с гнутоклееными вставками больше, чем в клеедощатых: легко конструируются рамы с консолями, причем увеличение сечения в защемленных стойках достигается без перерасхода материалов, что позволяет создавать оригинальные по архитектурному решению здания.


Рисунок 13 .Виды клеефанерных рам

Геометрические размеры клееных рам

Высота стоек: 2.6…4.5 м,

Уклон ригеля: 1/4…1/3,

Высота сечения в коньке – не менее 0.3 высоты сечения в карнизном узле

Высота сечения в карнизном узле: 1/12… 1/30 пролета

Высота сечения стоек у опор: не менее 0.4 высоты в карнизном узле.

Расчету рамы предшествует установление ее расчетной схемы (двухшарнирная или трехшарнирная) и расчетной оси.

Расчет рамы выполняют в следующей последовательности:

1) статический расчет, т. е. вычисление усилий в элементах рамы от действия внешних нагрузок (снег, ветер) собственного веса рамы и веса покрытия;

2) проверка сечений рамы;

3) расчет узлов рамы.

При статическом расчете определяют усилия и строят эпюры М, N, Q от действия равномерно распределенной нагрузки отдельно от собственного веса конструкций, от снеговой нагрузки слева, справа от конькового узла и на всем пролете, а так же от действия равномерно распределенной нагрузки от ветра слева и справа.

При высоте стойки до 4 м расчет на ветровую нагрузку можно не производить.

Например, так выглядит загружение от собственного веса.


Рисунок 14 – Загружение рамы от собственного веса

Усилия в раме можно определять либо относительно ее геометрической оси, либо относительно наружного контура. В последнем случае необходима корректировка изгибающего момента вследствие переноса нормальной силы с нагруженного контура на ось сечения.


Рисунок 15 – Варианты загружения рам

Усилия определяются методами строительной механики в характерных точках по периметру рамы, например А, 1, 2, 3, 4, 5, 6, 7, 8. Количество точек определяется характером эпюр.

Для примера покажем эпюры M, N, Q от равномерно распределенной нагрузки слева от конькового узла.


Рисунок 16 – Эпюры M, N и Q

Целесообразно сначала определить усилия и эпюры от равномерно распределенной единичной нагрузки (q1=1), а затем с учетом коэффициента k=q/q1, (где q – реальная нагрузка, q1 – единичная нагрузка) определять усилия от реальных нагрузок.

В результате статического расчета определяются расчетные усилия в сечениях рамы при основных и дополнительных сочетаниях нагрузок:

а) расчетная постоянная и временная на всем пролете;

б) постоянная на всем пролете, временная – на половине пролета;

в) по схемам а и б в сочетании с ветром.

Поскольку в настоящее время в практике строительства применяют только клееные рамы, то в дальнейшем речь будет идти об этих рамах.

Проверка сечений рамы

Наиболее напряженными сечениями по нормальным напряжениям, если обратить внимание на эпюры M и N, для рам являются карнизные узлы, а для рам с подкосами – сечения у концов подкоса в местах примыкания его к стойке и ригелю.

1. Расчет на прочность элементов трехшарнирных рам в их плоскости допускается выполнять по правилам расчета сжато-изгибаемых элементов с расчетной длиной, равной длине полурамы по осевой линии:

2. Устойчивость плоской формы деформирования трехшарнирных рам допускается выполнять по формуле:

Криволинейные участки гнутоклееных рам


Рисунок 17 – Криволинейный участок гнутоклееной рамы

Криволинейные участки гнутоклееных рам при отношении h/r≥1/7 (h – высота сечения, r – радиус кривизны центральной оси криволинейного участка) следует рассчитывать

Здесь при проверке напряжений по внутренней кромке расчетный момент сопротивления следует умножать на коэффициент krb:

Расчет узлов рамы

Для рам заводского изготовления выполняется расчет опорного и конькового узлов. Опорные шарнирные узлы клееных рам могут быть весьма разнообразными.

Покажем несколько вариантов опорных узлов:



Рисунок 18 – Варианты опорных узлов

Для всех вариантов опорных узлов продольная сжимающая сила N воспринимается смятием вдоль волокон древесины стойки. В этом случае проверку выполняют по формуле:

Поперечная сила Q может быть передана на фундамент через болты или глухари, крепящие стойку к стальным элементам, заделанным в фундамент. В этом случае рассчитывается количество болтов, воспринимающих силу Q.

В другом варианте опорного узла поперечная сила передается через деревянный брусок или через вертикальный лист стального башмака. В этом случае

Коньковый узел чаще всего решается с деревянными накладками на болтах, хотя возможны и другие варианты конькового узла (при больших величинах поперечной силы), например, с металлическими соединительными деталями.


Рисунок 19 – Коньковый узел

Количество болтов рассчитывается из условия восприятия ими поперечной силы.

Лобовые упоры соединения ригелей рассчитывают на смятие под углом и вдоль волокон на действие продольной силы N.

Классификация рам по статической схеме и по конструктивному сечению. Рамы построечного изготовления с подкосами в карнизном узле, с опорными подкосами и с решетчатыми стойками. Соединение ригеля и стойки различными способами. Виды клеефанерных рам.

Рубрика Строительство и архитектура
Вид лекция
Язык русский
Дата добавления 10.03.2014
Размер файла 612,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рамные конструкции

Рамные конструкции являются одним из наиболее распространенных типов несущих конструкции. Они хорошо вписываются в поперечное сечение большинства производственных и общественных зданий.

Рамные конструкции относятся к классу распорных.

Деревянные рамы обычно применяют однопролетными при пролетах 12…30 м.

В мировой практике строительства встречаются рамы пролетом до 60 м.

Рамы классифицируются по нескольким признакам.

- По статической схеме рамы могут быть

1) трехшарнирными (статически определимыми)

Рисунок 1 Трехшарнирная рама

2) двухшарнирными жестко опертыми (такие рамы являются статически неопределимыми)

Рисунок 2 Двухшарнирная жестко опертая рама

3) двухшарнирными шарнирно опертыми (тоже статически неопределимые)

Рисунок 3 Двухшарнирная шарнирно опертая рама

Наиболее распространенными являются трехшарнирные рамы, т.к. в статически определимых системах не происходит перераспределения усилий при деформировании под длительно действующей нагрузкой, что обеспечивает соответствие их расчетным усилиям.

- По конструктивному решению различают:

1) рамы построечного изготовления;

2) рамы заводского изготовления.

Рамы построечного изготовления из досок и брусьев собирают непосредственно на строительной площадке. В этих рамах используются преимущественно податливые виды соединений: болты, гвозди, упоры.

Ригель и стойки таких рам могут иметь сплошное сечение или выполняются в виде решетчатых систем.

Рисунок 4 Рамы построечного изготовления а) с подкосами в карнизном узле б) с опорными подкосами в) с решетчатыми стойками

К рамам построечного изготовления относятся также рамы с перекрестной стенкой на гвоздях. Конструкция таких рам аналогична конструкции балки с перекрестной стенкой на гвоздях.

Рамы построечного изготовления отличаются большим количеством узлов и требуют больших затрат труда и высококачественных материалов, поэтому наибольшее распространение получили рамы заводского изготовления или клееные рамы.

В зависимости от технологии изготовления или используемых материалов клееные рамы можно разделить на три группы:

1) гнутоклееные (из склеенных по пласти досок);

2) дощатоклееные из прямолинейных элементов;

3) клеефанерные, имеющие дощатые пояса и стенки из водостойкой фанеры.

Эти рамы, как правило, имеют прямолинейные элементы ригеля и стойки.

Распространенными конструкциями являются гнутоклееные рамы прямоугольного сечения, состоящие из гнутых, склеенных по пласти, досок.

Рисунок 5 Гнутоклееная рама

В таких рамах для образования карнизного узла доски выгибаются, образуя плавный переход от ригеля к стойке. Таким образом, жесткий узел здесь выполняется цельноклееным, что выгодно отличает данную конструкцию от рам с карнизными узлами на податливых связях.

При наибольшей высоте стойки вся рама выполняется из двух элементов Г-образного очертания, соединенных между собой в коньке.

Вместе с этим гнутоклееные рамы имеют существенные недостатки экономического порядка. В связи с необходимостью выгиба досок в узле сопряжения ригеля и стойки для этих рам необходим тонкий пиломатериал (д=12…17 мм после острожки), что связано со значительным удорожанием конструкции: при использовании таких досок резко увеличиваются потери древесины и расход клея, а также трудозатраты на изготовление.

В результате оказывается, что гнутоклееные рамы являются по себестоимости, наиболее дорогие из всех рам.

Более эффективны рамы из прямолинейных элементов с жесткими клееными узлами: эти конструкции отвечают требованиям поточно-конвейерного производства, для их изготовления используется пиломатериал обычной толщины. При этом склеивают пакет досок, который затем распиливают по диагонали, получая при этом две сойки или два ригеля.

Рисунок 6 Клееный пакет досок (заготовка для полурам)

Существует несколько конструктивных решений соединения прямолинейных элементов рам в жестком узле.

1. Ригель и стойка соединяются при помощи приклеенных к ним в узле двусторонних накладок из бакелизированной фанеры.

Рисунок 7 Соединение ригеля и стойки накладками из фанеры

Рамы этого вида имеют несомненные технологические и экономические достоинства. Вместе с тем надежность узла на накладках из бакелизированной фанеры вызывает сомнения: в клеевых швах по плоскостям приклейке накладок к широким дощатым элементам могут возникнуть (при колебаниях влажности) опасные внутренние напряжения, обусловленные различием влажностных деформаций древесины и бакелизированной фанеры. Величину этих напряжений теоретически установить затруднительно, т.к. неизвестна действительная деформация клееного пакета.

Для окончательных выводов о надежности рам с фанерными накладками необходимы опытные данные, на основе которых и может быть решен вопрос о возможности массового применения таких конструкций.

2. Соединение ригеля со стойкой на зубчатый шип

Это более надежный и перспективный тип соединения.

Рисунок 8 Соединение ригеля со стойкой на зубчатый шип

Однако при таком соединении стойки и ригеля в карнизном узле возникают нежелательные концентрации напряжений, поэтому чаще сопряжения элементов рамы в жестком узле производят при помощи специальных вставок, соединенных с ригелем и стойкой.

3. Соединение ригеля со стойкой с помощью вставок. По форме вставки могут быть двух видов:

Рисунок 9 Соединение ригеля и стойки при помощи пятиугольной вставки

Рисунок 10 Гнутоклееное соединение ригеля и стойки а) переменной длины б) постоянной длины

Первые (пятиугольные) вставки соединяются с элементами рамы под углом к волокнам. Поэтому в рамах с пятиугольными вставками определяющим условием при назначении размеров поперечного сечения элемента в узлах является несущая способность работающего под углом к волокнам на растяжение соединение его со вставкой.

Кроме этого, в самой вставке не исключается выклинивание кососрезных досок, выходящих на растянутую кромку рамы в месте наибольшего изгибающего момента.

Конструкции жестких узлов с такими вставками можно использовать только в легких рамах, где решающим фактором при назначении поперечных размеров элементов является расчет не по первому, а по второму предельному состоянию.

Более удачно решается жесткий рамный узел при помощи гнутоклееной вставки. Длина вставки вдоль рамы может быть либо постоянной (б), либо переменной (а). Вставки постоянной длины предпочтительнее, т. к. здесь увеличивается площадь клеевых швов в стыке, таким образом повышается надежность соединения.

Применение гнутоклееных вставок позволяет создавать рамные конструкции с широким диапазоном углов наклона ригеля к стойке.

Рисунок 11 Виды гнутоклееных рам

Существенную экономию пиломатериалов, облегчение веса и уменьшение стоимости конструкции можно получить в рамах, поперечное сечение которых состоит из дощатых поясов и фанерных стенок.

Клеефанерные рамы легче гнутоклееных на 35…40 %.

Поперечное сечение рам может быть двутавровым или двутаврово-коробчатым.

При выборе формы сечения элементов рам предпочтение следует отдавать поперечному сечению, состоящему из двух или нескольких склеенных по ширине двутавров. В этом случае обеспечивается симметричное загружение стенок сдвигающими усилиями относительно их продольных осей, а также увеличение количества площадок скалывания при проверке на скалывание между слоями шпона фанеры.

Рисунок 12 Клеефанерная рама

Для стенок рекомендуется использовать фанеру марки ФСФ, как наиболее доступную по стоимости. Количество фанерных стенок, а так же их толщина определяются расчетом.

Сопряжение поясов (сжатого и растянутого) в жестком переломленном узле рамы рекомендуется проектировать с использованием гнутоклееных вставок, соединенных с дощатыми поясами рам зубчато-шиповым стыком.

В клеефанерных рамах указанные стыки могут размещаться как в одном сечении пояса, так и вразбежку. В последнем случае достигается увеличение надежности стыкуемого соединения.

Гнутоклееные вставки (внутренняя и наружная) могут изготавливаться из разных материалов: внутренняя, имеющая меньший радиус - из шпона, наружная - из досок.

Конструктивные возможности при создании разнообразных форм в клеефанерных рамах с гнутоклееными вставками больше, чем в клеедощатых: легко конструируются рамы с консолями, причем увеличение сечения в защемленных стойках достигается без перерасхода материалов, что позволяет создавать оригинальные по архитектурному решению здания.

Рисунок 13 Виды клеефанерных рам

клеефанерный рама сечение ригель

Геометрические размеры клееных рам

Высота стоек: 2.6…4.5 м,

Уклон ригеля: 1/4…1/3,

Высота сечения в коньке - не менее 0.3 высоты сечения в карнизном узле.

Высота сечения в карнизном узле: 1/12… 1/30 пролета.

Высота сечения стоек у опор: не менее 0.4 высоты в карнизном узле.

Расчету рамы предшествует установление ее расчетной схемы (двухшарнирная или трехшарнирная) и расчетной оси.

Расчет рамы выполняют в следующей последовательности:

1) статический расчет, т. е. вычисление усилий в элементах рамы от действия внешних нагрузок (снег, ветер) собственного веса рамы и веса покрытия;

2) проверка сечений рамы;

3) расчет узлов рамы.

При статическом расчете определяют усилия и строят эпюры М, N, Q от действия равномерно распределенной нагрузки отдельно от собственного веса конструкций, от снеговой нагрузки слева, справа от конькового узла и на всем пролете, а так же от действия равномерно распределенной нагрузки от ветра слева и справа.

При высоте стойки до 4 м расчет на ветровую нагрузку можно не производить.

Например, так выглядит загружение от собственного веса.

Рисунок 14 Загружение рамы от собственного веса

Усилия в раме можно определять либо относительно ее геометрической оси, либо относительно наружного контура. В последнем случае необходима корректировка изгибающего момента вследствие переноса нормальной силы с нагруженного контура на ось сечения.

Рисунок 15 Варианты загружения рам

Усилия определяются методами строительной механики в характерных точках по периметру рамы, например А, 1, 2, 3, 4, 5, 6, 7, 8. Количество точек определяется характером эпюр.

Для примера покажем эпюры M, N, Q от равномерно распределенной нагрузки слева от конькового узла.

Рисунок 16 Эпюры M, N и Q

Целесообразно сначала определить усилия и эпюры от равномерно распределенной единичной нагрузки (q1=1), а затем с учетом коэффициента k=q/q1, (где q - реальная нагрузка, q1 - единичная нагрузка) определять усилия от реальных нагрузок.

В результате статического расчета определяются расчетные усилия в сечениях рамы при основных и дополнительных сочетаниях нагрузок:

а) расчетная постоянная и временная на всем пролете;

б) постоянная на всем пролете, временная - на половине пролета;

в) по схемам а и б в сочетании с ветром.

Поскольку в настоящее время в практике строительства применяют только клееные рамы, то в дальнейшем речь будет идти об этих рамах.

Проверка сечений рамы

Наиболее напряженными сечениями по нормальным напряжениям, если обратить внимание на эпюры M и N, для рам являются карнизные узлы, а для рам с подкосами - сечения у концов подкоса в местах примыкания его к стойке и ригелю.

1. Расчет на прочность элементов трехшарнирных рам в их плоскости допускается выполнять по правилам расчета сжато-изгибаемых элементов с расчетной длиной, равной длине полурамы по осевой линии:

2. Устойчивость плоской формы деформирования трехшарнирных рам допускается выполнять по формуле:

Криволинейные участки гнутоклееных рам

Рисунок 17 Криволинейный участок гнутоклееной рамы

Криволинейные участки гнутоклееных рам при отношении h/r?1/7 (h - высота сечения, r - радиус кривизны центральной оси криволинейного участка) следует рассчитывать

Здесь при проверке напряжений по внутренней кромке расчетный момент сопротивления следует умножать на коэффициент krb:

Расчет узлов рамы

Для рам заводского изготовления выполняется расчет опорного и конькового узлов. Опорные шарнирные узлы клееных рам могут быть весьма разнообразными.

Покажем несколько вариантов опорных узлов:

Рисунок 18 Варианты опорных узлов

Для всех вариантов опорных узлов продольная сжимающая сила N воспринимается смятием вдоль волокон древесины стойки. В этом случае проверку выполняют по формуле:

Поперечная сила Q может быть передана на фундамент через болты или глухари, крепящие стойку к стальным элементам, заделанным в фундамент. В этом случае рассчитывается количество болтов, воспринимающих силу Q.

В другом варианте опорного узла поперечная сила передается через деревянный брусок или через вертикальный лист стального башмака. В этом случае

Коньковый узел чаще всего решается с деревянными накладками на болтах, хотя возможны и другие варианты конькового узла (при больших величинах поперечной силы), например, с металлическими соединительными деталями.

Рисунок 19 Коньковый узел

Количество болтов рассчитывается из условия восприятия ими поперечной силы.

Лобовые упоры соединения ригелей рассчитывают на смятие под углом и вдоль волокон на действие продольной силы N.

Подобные документы

Технология видов сельскохозяйственного производства. Гнутоклееные рамы прямоугольного сечения. Рамы заводского изготовления. Рамы построечного изготовления. Конструктивное решение трехшарнирной рамы со сжатыми подкосами. Рамная конструкция Москалева Н.С.

реферат [1,2 M], добавлен 09.11.2014

Расчетная и конструктивная схемы трёхшарнирной рамы. Расчёт настила построечного и заводского изготовления. Сравнение вариантов конструкций ограждения построечного и заводского изготовления. Расчёт трёхшарнирной рамы каркаса из Г-образных блоков.

курсовая работа [1,9 M], добавлен 21.04.2012

Конструирование крытого перрона для автовокзала. Характеристика покрытия, подбор материала обшивки, расчет прогонов. Статистический расчет поперечной рамы, особенности конструктивного расчета. Определение прочностных свойств ригеля, подкоса, стойки.

курсовая работа [156,1 K], добавлен 04.10.2010

Расчет основных размеров сооружений в плане и профиле. Выбор оптимального варианта конструкции ограждения. Определение расчетной схемы поперечной рамы, размеров ее сечений и геометрических параметров оси. Вычисление нормативных и расчетных нагрузок.

курсовая работа [3,2 M], добавлен 26.12.2012

Проектирование усиления пролета неразрезного многопролетного ригеля рамы. Расчет требуемого сечения уголков распорки, несущей способности ригеля в пролете и на опорах, сечения затяжки, соединительных планок. Проверка прочности ригеля наклонным сечениям.

курсовая работа [830,1 K], добавлен 14.03.2009

Расчет трехшарнирной дощатоклееной рамы с зубчатым соединением стоек и ригеля. Геометрические размеры рамы. Проверка рамы на устойчивость плоской формы деформирования. Расчет опорного узла. Основные мероприятия по защите древесины от гниения и возгорания.

курсовая работа [954,6 K], добавлен 15.10.2010

Выбор типа ограждающих конструкций. Расчет элементов теплой рулонной кровли. Проектирование утепленной кровельной панели. Расчет дощатоклееной двускатной балки. Статический расчет поперечной рамы. Расчет опорного узла левой и правой стойки рамы.

Реферат - Металлические конструкции

СВФУ, г. Якутск, 2011, 17 стр.
Содержание.
Введение.
История.
Номенклатура и область применения металлических конструкций.
Свойства строительных сталей и алюминиевых сплавов.
Классификация сталей.
Выбор сталей для строительных конструкций.
Влияние различных факторов на свойства стали.
Виды разрушений.
Основы расчета металлических конструкций.
Основные положения расчета металлических конструкций.
Классификация нагрузок и их свойства.
Литература.

Беленя Е.И, Стрелецкий Н.Н. и др. Металлические конструкции. Специальный курс

  • формат djvu
  • размер 34.37 МБ
  • добавлен 29 декабря 2010 г.

Беленя Е.И., Стрелецкий Н.Н., Ведеников Г.С. и др. Металлические конструкции. Специальный курс

  • формат djvu
  • размер 20.39 МБ
  • добавлен 21 октября 2009 г.

Учебное пособие для вузов. Специальный курс. Изд. 3-е перераб. и доп. М.: Стройиздат, 1991г. -687 с. Е. И. Беленя, Н. Н. Стрелецкий, Г. С. Веденников и др. /Под редакцией Е. И. Беленя. Пособие является дополнением к основному учебнику "Металлические конструкции". Специальный курс содержит углубленное изложение основных направлений развития металлических конструкций и необходимый студентам материал для дипломного проектирования. Изд. 2-е вышло в.

Вопросы ГОС экзамен - ПГС. Металлические конструкции

  • формат docx
  • размер 1.49 МБ
  • добавлен 07 марта 2011 г.

СГТУ ПГС ГОС экзамен Область применения металлических конструкций, характер работы металлов на статическую нагрузку, концентрация напряжений, сортамент металлопроката. Виды сварных и болтовых соединений металлических конструкций. Работа и расчет соединений. Металлические конструкции балочных площадок. Конструирование и расчет балок и центрально сжатых колонн составного сечения. Металлические фермы и их классификация. Конструкция ферм. Расчет ферм.

Гейзен Л. Металлические конструкции

  • формат djvu
  • размер 4.1 МБ
  • добавлен 16 января 2011 г.

Металлические конструкции / Л. Гейзен; пер. с нем. Г. И. Крит, С. М. Тубин; ред. Н. А. Кашкаров. - М. : Моск. науч. изд. , 1928 г. , 228 с. Оглавление. Первая часть - Основные сведения о конструкциях: Сорта железа, употребляемые для построек. Защита железа от ржавления и высокой температуры. Соединительные части. Фермы. Колонны. Вторая часть - Гражданские сооружения: Перекрытия. Стропильные конструкции. Фахверковые стены. Лестницы

Ивкин В.С., Макаров А.А. (состав.) Металлические конструкции. Сборник лабораторных работ по сварке

  • формат pdf
  • размер 986.64 КБ
  • добавлен 14 декабря 2010 г.

Методические указания разработаны в соответствии с рабочей программой дисциплины "Металлические конструкции, включая сварку" для студентов специальности 27010265 "Промышленное и гражданское строительство". Рассмотрены процессы подготовки, проведения и контроля сварочных работ и свариваемых изделий. Работа подготовлена на кафедре "Строительные конструкции" УлГТУ. 2010. - 35 с.

Курсовая работа - Стальной каркас одноэтажного производственного здания

  • формат doc
  • размер 966.99 КБ
  • добавлен 17 июня 2010 г.

Курсовой проект - Проектирование промышленного здания

  • формат dwg
  • размер 2.38 МБ
  • добавлен 21 марта 2010 г.

Чертёж промздания с пролётом - 24м, шаг колонн - 12м, беспрогонная кровля. Только чертёж А 2. Металлические конструкции.rn

Курсовой проект - Расчет и конструирование балочной площадки

  • формат jpg
  • размер 8.71 МБ
  • добавлен 17 января 2012 г.

Наумова Ж.Л. (состав.) Металлические конструкции. Чертежи строительных конструкций

  • формат pdf
  • размер 730.35 КБ
  • добавлен 22 декабря 2009 г.

Столбов А.В. Металлические конструкции

  • формат doc
  • размер 9.14 МБ
  • добавлен 17 октября 2009 г.


Рамные системы


Рамные системы

Плоская рама (однопролетная или многопролетная), состоящая из колонн и ригелей, является основной конструкцией несущего каркаса зданий рамной системы.

Рамы подразделяют на сплошные, решетчатые и смешанные.

Каркас со сплошными рамами удобен в монтаже и дает хороший интерьер помещения. Так как габариты элементов сплошной рамы невелики, жесткость ее оказывается несколько пониженной.

Сплошные рамы применяются в каркасах перекрытий перронов, выставочных павильонов, гаражей при относительно небольших пролетах от 40 до 60 м.

Решетчатые рамы отличаются большими габаритами ригеля и стоек, более сложной конструкцией, но вместе с тем и большей жесткостью наряду с меньшим, чем у сплошных рам, расходом металла. Решетчатые рамы перекрывают пролеты до 150 м.

Рамы смешанной конструкции имеют сплошные стойки и решетчатый ригель. Основная область применения таких рам — промышленные здания.

В конструкциях рам с шарнирным опиранием стойки принимаются переменного сечения.

При расположении шарниров в опорных узлах ригеля рамы упрощается конструкция сопряжения ригеля и стоек; оказывается целесообразным фундамент раздельного типа с мощным наружным массивом, воспринимающим усилие от наклонного пояса стойки. При очень больших пролетах (/ = 120 г 150 м) прогиб ригеля становится значительным по абсолютной величине и может оказаться препятствием для нормальной эксплуатации покрытия. В этом случае целесообразна решетчатая рама с жесткой заделкой стоек в фундаменты.

В смешанных конструкциях рам для промышленных зданий колонны постоянного сечения применяются в цехах с кранами, грузоподъемностью до 30 т; колонны переменного сечения устраиваются в цехах с кранами грузоподъемностью свыше 30 т. Конструкция колонн, изображенная на рис. 38.1, м, принимается с целью раздельного восприятия нагрузок от ригеля рамы и крана, в соответствии с чем они имеют шатровую и подкрановую ветви. Такие колонны целесообразны при низко сидящих мостовых кранах большой грузоподъемности.


Рис. 1. Конструктивные схемы рам
а — сплошных; б — г — сквозных; д — смешанных

Смешанные рамы имеют в большинстве случаев жесткое сопряжение стоек с фундаментом и ригелем. Встречаются смешанные рамы с шарнирным сопряжением ригеля и стоек.

Пространственная схема каркаса в основных своих частях зависит от типа основной несущей конструкции (рамы), от характера действующих нагрузок и от конструкций стен и кровли. Рамы объединяются в пространственный каркас, воспринимающий нагрузки любого направления с помощью прогонов кровли, ригелей фахверка стен, подкрановых балок и связей жесткости. Каркас должен быть построен так, чтобы была обеспечена местная устойчивость всех его деталей и неизменяемость сочленения в целом.

Могут быть различные варианты построения каркаса в зависимости от конструкции рамы.

Наиболее простой является схема каркаса с использованием сплошных рам в качестве основной несущей конструкции. Пролеты между рамами перекрываются прокатными либо составными прогонами. Расстояния между прогонами подбираются в соответствии с конструкцией кровли. Общая неизменяемость каркаса обеспечивается с помощью связей жесткости, объединяющих две соседние рамы в один неизменяемый блок. Такие блоки устраиваются у торцов здания и через 50—60 м по его длине. Для обеспечения более высокой поперечной жесткости каркаса устраиваются продольные связи, располагаемые в крайних панелях ригелей рам между прогонами. Устойчивость верхних и нижних поясов ригелей в направлении из плоскости рам обеспечивается прогонами, которые включены в систему связей жесткости. Устойчивость стоек в направлении из плоскости рам может быть повышена введением в каркас продольных горизонтальных связей.


Рис. 2. Пространственная схема каркаса со сплошными рамами


Рис. 3. Пространственная схема каркаса со сквозными рамами

Пространственная схема каркаса с решетчатыми рамами характерна более сложной системой связей жесткости. Для перекрытия больших пролетов требуются ригели высотой 8—10 м, вследствие чего верхние и нижние пояса ригелей нуждаются в самостоятельных связях жесткости. На рис. 38.3 представлен вариант компоновки каркаса большепролетного здания ангара.

Пространственная схема каркаса со смешанными рамами, изображенная на рис. 38.4, в известной мере напоминает схему каркаса решетчатых рам. Неизменяемость каркаса в делом обеспечивается здесь, как и в предыдущих случаях, постановкой связей между двумя смежными рамами и присоединением последующих рам к образующимся жестким блокам с помощью продольных элементов каркаса (прогонов кровли, подкрановых балок, распорок связей и ригелей фахверка стен). Каркасы промышленных зданий имеют большую протяженность и требуют разрезки температурными швами на отдельные отсеки, в пределах которых температурные деформации невелики.


Рис. 4. Пространственная схема каркаса со смешанными рамами


Рис. 5. Конструкция узлов рам
а — сквозной; б — смешанной; в — сплошной

Сечения элементов рам отличаются большим разнообразием. Сплошные рамы выполняются из сварных или клепаных двутавров постоянного или переменного сечения с использованием по возможности универсальной листовой стали, не требующей обработки продольных кромок. Рамы изготавливаются из отдельных частей, размеры которых согласуются с грузоподъемностью и габаритами транспортных средств.

Сопряжения прогонов покрытия и ригелей сплошных рам выполняются так же, как сопряжения балочной клетки перекрытий; сопряжение ригеля со стойкой, показанное на рис. 5, в, характерно двумя монтажными стыками и утолщенным вкладным листом.

Другие примеры узловых сопряжений представлены на рис. 5, а и б. Конструкции шарнирных опор рам аналогичны шарнирным опорам арок. Опорные части смешанных рам получают сильное развитие в их плоскости и крепятся к фундаменту анкерными болтами. Для выбора лучшего варианта решения каркаса производятся приблизительные расчеты прочности и устойчивости рамы. Такие расчеты призваны хотя бы очень грубо наметить размеры поперечных сечений ригеля и стоек рамы.

Определив распор рамы, можно найти изгибающие моменты и нормальные силы в любом сечении ригеля и стоек.

При заделке стоек в фундаменты рама имеет три лишних неизвестных. Принимая сплошную нагрузку на ригеле, получаем симметричную систему, в которой достаточно найти только два неизвестных — изгибающий момент в месте сопряжения стойки с ригелем и распор рамы. Первый приближенно можно определить, рассматривая ригель как балку, заделанную на опорах. Учитывая податливость заделки ригеля в стойки, получим

Распор определяется по схеме трехшарнирной рамы. После вычисления М, Н, V рама становится статически определимой.


Рамные конструкции для покрытий зданий применяют при пролёте
L=40 — 150м, при пролёте L > 150м они становятся неэкономичными.
Преимущества рамных конструкций по сравнению с балочными — это меньший вес, большая жёсткость и меньшая высота ригелей.
Недостатки — большая ширина колонн, чувствительность к неравномерным осадкам опор и изменениям T о .
Рамные конструкции эффективны при погонных жесткостях колонн, близких к погонным жесткостям ригелей, что позволяет перераспределить усилия от вертикальных нагрузок и значительно облегчить ригели.
При перекрытии больших пролётов применяют, как правило, двухшарнирные и бесшарнирные рамы самых разнообразных очертаний (см. рис.2).

Рисунок 2 - Схемы сквозных рам

Бесшарнирные рамы более жёсткие и экономичные по расходу материала, однако, они требуют устройства мощных фундаментов, чувствительны к изменению Т о .

При больших пролётах и нагрузках ригели рам конструируют как тяжёлые фермы, при сравнительно малых пролётах (40-50м) они имеют такие же сечения и узлы, как лёгкие фермы.

Поперечные сечения рам аналогичны балочным фермам.

Компоновка каркаса и покрытия из рамных конструкций аналогична решению каркасов промышленных зданий и балочных покрытий.
Каркасы большепролетных покрытий с балочными и рамными несущими системами имеют компоновочную схему, близкую к каркасам производственных зданий. При больших пролетах и отсутствии подкрановых балок целесообразно увеличивать расстояния между основными несущими конструкциями до 12-18 м. Системы вертикальных и горизонтальных связей имеют те же назначения, что и в производственных зданиях и компонуются аналогично.

Компоновка рамных покрытий бывает поперечная, когда несущие рамы ставят поперек здания, ипродольная, характерная для ангаров. При продольной компоновке основная несущая рама ставится в направлении большего размера плана здания и на нее опираются поперечные фермы.

Верхние и нижние пояса несущих рам и поперечных ферм развязываются крестовыми связями, обеспечивающими их устойчивость.

В арочных системах шаг арок принимается 12 м. и более; по аркам укладываются главные прогоны, на которые опираются поперечные ребра, поддерживающие кровельный настил.

При больших пролетах и высотах основных несущих систем (рам, арок) применяются пространственно устойчивые блочные конструкции путем спаривания соседних плоских рам или арок, а также применением трехгранных сечений арок. Арки соединяются в ключе продольными связями, значение которых для жесткости сооружения особенно велико при большой стреле подъема арок, когда повышается их общая деформативность.

Рамы, перекрывающие большие пролеты, могут быть двухшарнирные и бесшарнирные.

Бесшарнирные рамы более жестки, экономичнее по расходу металла и удобнее в монтаже; однако они требуют более массивные фундаменты с плотными основаниями для них и более чувствительны к температурным воздействиям и неравномерным осадкам опор.

Рамные конструкции по сравнению с балочными более экономичны по затрате металла и более жестки, благодаря чему высота ригеля рамы имеет меньшую высоту, чем высота балочных ферм.


Рисунок 4 - Рамные конструкции

Рамные конструкции применяются для пролетов до 150м. При дальнейшем увеличении пролетов они становятся неэкономичными.

В большепролетных покрытиях применяются как сплошные, так и сквозные рамы.

Сплошные рамы применяются редко при небольших пролетах (50-60 м), их преимущества: меньшая трудоемкость, транспортабельность и возможность уменьшения высоты помещения.

Наиболее часто применяются рамы с шарнирным опиранием. Высоту ригеля рам рекомендуется принимать равной: при сквозных фермах 1/12-1/18 пролета, при сплошных ригелях 1/20 – 1/30 пролета.

Рамы рассчитывают методами строительной механики. В целях упрощения расчета легкие сквозные рамы можно приводить к эквивалентным им сплошным рамам.

Тяжелые сквозные рамы (типа тяжелых ферм) должны рассчитываться как решетчатые системы с учетом деформации всех стержней решетки.

При больших пролетах (более 50 м) и невысоких жестких стойках необходимо производить расчет рам на температурные воздействия.

Ригели и стойки сплошных рам имеют сплошные двутавровые сечения; их несущая способность проверяется по формулам для внецентренно сжатых стержней.

В целях упрощения расчета решетчатых рам их распор допускается определять как для сплошной рамы.

Рекомендуется следующий порядок расчета большепролетных рам:

1. приближенным расчетом устанавливают предварительные сечения поясов рамы;

2. определяют моменты инерции сечений ригеля и стоек по приближенным формулам;

3. рассчитывают раму методами строительной механики; расчетную схему рамы следует принимать по геометрическим осям;

4. определив опорные реакции, находят расчетные усилия во всех стержнях, по которым окончательно подбирают их сечения.

Читайте также: