Колебательный контур получение электромагнитных колебаний 9 класс реферат

Обновлено: 07.07.2024

Цель работы: исследовать АЧХ и ФЧХ последовательного и параллельного колебательного контура, определить резонансную частоту, найти добротность последовательного контура.

Приборы и материалы: колебательный контур, осциллограф, источник питания, генератор, провода, магазин сопротивлений, индуктивностей и конденсаторов.

Теоретическая часть

Колебательным контуром называют электрическую цепь, состоящую из элементов, способных запасать электрическую и магнитную энергию, и в которой могут возбуждаться электрические колебания. Эквивалентная схема простейшего колебательного контура состоит из ёмкости, индуктивности и сопротивления.

Колебательные контуры нашли широчайшее применение в радиоэлектронике в качестве различных частотно- избирательных систем, то есть, систем, у которых амплитуда отклика цепи может резко изменится, когда частота внешнего воздействия достигает некоторых значений, определяемых параметрами цепи. Явление резкого возрастания амплитуды отклика называется амплитудным резонансом.

В теории цепей обычно используется другое определение резонанса. Под резонансом понимают такой режим работы электрической цепи, содержащей ёмкости и индуктивности, при котором реактивные составляющие входных сопротивления и проводимости равны нулю, то есть, отсутствует сдвиг фаз между напряжением и током на входе колебательного контура. Такой резонанс называют фазовым. Частоты, соответствующие фазовому и амплитудному резонансам, как правило, близки и в некоторых случаях могут совпадать.



Простейшей электрической цепью, в которой наблюдается явление резонанса, является одиночный колебательный контур, состоящий из катушки индуктивности и конденсатора, соединённых в замкнутую цепь. В зависимости от способа подключения к колебательному контуру источника энергии различают последовательный (рис.1) и параллельный (рис.2) колебательные контура.


График АЧХ для последовательного контура приведён на рис.3. Из графика видно, что графики АЧХ для C и L пересекаются при резонансной частоте w = . Найдём частоты, при которых АЧХ достигает максимума. Они равны

w= (1)

w= (2)



- для R,


- для C,


- для L.

Графики ФЧХ выглядят следующим образом


рис.4

- для R

При подаче импульсного напряжения мы получим график затухающих колебаний (рис.5), в аналитическом представлении этот график имеет вид

U(t) = Uecoswt (3)

где d - коэффициент затухания.


Кроме d у системы есть ещё одна важная характеристика Q – добротность, которую можно найти как отношение U или U к U при резонансной частоте. Через параметры системы выражениe для Q можно записать в виде

Q = = = (4)

Так же добротность можно выразить через d,т.е.


Q = (5)

где T – период колебания.

Практическая часть

Задание 1: Исследовать амплитудно-частотные характеристики последовательного колебательного контура. Определить добротность. Построить графики.

1). Для индуктивности (С = 10000 пФ; R = 62 Ом; L=2,6 мГн)

Таблица 1 : Зависимость коэффициента усиления от частоты.

f,кГц 2 5 8 10 13 15 18 20 21 23 25 28 32 35 36 39
K 0,2 1,2 2,7 3,9 4,5 5,1 6,3 8,7 9,9 13 16 20 16 10 6,1 2,1

2). Для конденсатора (С = 10000 пФ; R = 62 Ом; L=2,6мГн)

Таблица 2 : Зависимость коэффициента усиления от частоты.

f,кГц 10 14 16 20 24 26 27 28 30 35 40 50 60 80 100
K 1,2 1,4 1,6 2,5 4,7 8,4 21,7 16,6 7,8 3,4 1,9 0,7 0,6 0,2 0,1

3).Для сопротивления (С = 10000 пФ; R = 62 Ом; L=2,6 мГн )

Таблица 3 : Зависимость коэффициента усиления и разности фаз от частоты

f,кГц 6 8 9 10 12 14 16 19
K 0,03 0,05 0,06 0,09 0,12 0,14 0,15 0,18
Dj, o 66,6 59,4 55,8 54 52,2 45 43,2 36
f,кГц 25 26 27 28 30 33 35
K 0,57 0,91 0,79 0,66 0,52 0,41 0,28
Dj, o 23,4 10,8 16,2 25,2 109,8 118,8 126

График 1. АЧХ для L,С


График 2. АЧХ для сопротивления


График 3. ФЧХ для сопротивления


Из графика 1 видно, что резонансная частота fр, = 26 кГц.


Определение добротности последовательного контура:

(С = 10 000 пФ; R = 62 Ом; L=2,6 мГн).

Добротность рассчитаем двумя способами:

1-ый способ: используя параметры контура:


Получаем, что Q = 8,14

2-ой способ: по полученной АЧХ контура:

Получаем, что Q = 13,73

Задание 2: Исследовать амплитудно-частотную (АЧХ) и фазово-частотную (ФЧХ) характеристики параллельного колебательного контура. Определить период затухания при подаче сигнала с импульсного генератора. Построить графики.

Параллельный контур. (С = 10000 пФ; R = 1 кОм; L=2,6 мГн )

Таблица 4:Зависимость коэффициента усиления и разности фаз от частоты.

f,кГц 1,2 2 3 5 7 10 14 18
K 0,02 0,04 0,07 0,12 0,15 0,20 0,31 0,62
Dj, o 77,4 55,8 54 45 46,8 36 32,4 32,4
f,кГц 23 25 29 30 35 40 50
K 0,95 0,87 0,77 0,64 0,51 0,47 0,33
Dj, o 14,4 21,6 30,6 18 18 18 18

Графики представлены ниже

График 4. АЧХ параллельного контура


График 5. ФЧХ для параллельного контура


По полученным данным можно определить резонансную частоту.

fp = 23 кГц.

Определение добротности параллельного контура:

(С = 10 000 пФ; R = 1 кОм; L=2,6 мГн).

Снова рассчитаем добротность Q двумя способами:


= 2,35

1. Был исследован последовательный колебательный контур, получены амплитудно-частотные и фазово-частотные характеристики, определена резонансная частота, равная 26 кГц. Расхождения с теорией лежат в пределах допустимой погрешности. Графики, полученные в ходе работы, совпадают с ожидаемым результатом.

2. Исследован параллельный колебательный контур. Для него также были построены АЧХ и ФЧХ. Определена резонансная частота fp = 23 кГц.

3. Исследован и зарисован отклик последовательного и параллельного контуров на импульсное воздействие. По полученному графику определен период затухания контура при данных параметрах Т = 18*10 -6 с.

4. По полученным данным определены добротности последовательного и параллельного контура. Различия между значениями добротностей были объяснены выше.

3. П.Н.Урман, М.А. Фаддеев: ”Расчет погрешностей экспериментальных результатов”.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Колебательный контур. Получение электромагнитных колебаний. МБОУ «Глебычевска.

Описание презентации по отдельным слайдам:

Колебательный контур. Получение электромагнитных колебаний. МБОУ «Глебычевска.

Колебательный контур- колебательная система, в которой могут существовать эле.

Колебательный контур- колебательная система, в которой могут существовать электромагнитные колебания. Он состоит из конденсатора и проволочной катушки.


Колебательной системой, в которой можно создать электромагнитные колебания.

Колебательной системой, в которой можно создать электромагнитные колебания, является колебательный контур. Колебательным контуром называют электрическую цепь, состоящую из конденсатора и катушки индуктивности.

Возникновение электромагнитных колебаний Соединим конденсатор с источником т.

Возникновение электромагнитных колебаний Соединим конденсатор с источником тока, поставив переключатель в положение 1. Конденсатор зарядится, на его пластинах появится электрический заряд: на одной +, на другой - . Переведём переключатель в положение 2, отключив тем самым конденсатор от источника тока.




Электромагнитные колебания Периодические изменения электрического заряда, си.

Электромагнитные колебания Периодические изменения электрического заряда, силы тока, электрического и магнитного полей, происходящие в колебательном контуре, называют электромагнитными колебаниями. свободные вынужденные затухающие незатухающие

Электромагнитные колебания Свободные колебания - это колебания в системе, ко.

Период электромагнитных колебаний

Период электромагнитных колебаний

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания


Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 25 человек из 18 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 602 414 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 29.03.2017 17493
  • PPTX 450 кбайт
  • 2079 скачиваний
  • Рейтинг: 3 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Ефимова Любовь Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В приграничных пунктах Брянской области на день приостановили занятия в школах

Время чтения: 0 минут

Время чтения: 2 минуты

Школы граничащих с Украиной районов Крыма досрочно уйдут на каникулы

Время чтения: 0 минут

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

Минпросвещения России подготовит учителей для обучения детей из Донбасса

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


На примере радиовещания, вводятся в рассмотрение электромагнитные колебания. Дается определение колебательного контура и свободным электромагнитным колебаниям.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Колебательный контур. Получение электромагнитных колебаний"

О, сколько нам открытий чудных

Готовят просвещенья дух

И опыт, сын ошибок трудных

И гений, парадоксов – друг

И случай – бог изобретатель.

А. С. Пушкина

В данной теме речь пойдет о колебательном контуре и получении электромагнитных колебаний.

Прежде чем приступить к изучению новой темы, повторим основные понятия, которые помогут разобраться в данной теме.

Явление самоиндукции заключается в возникновении индукционного тока в проводнике при изменении силы тока в нем.

Индуктивность контура — это физическая величина, введенная для оценивания способности проводника противодействовать изменению силы тока в нем.

Конденсатор — это устройство, предназначенное для накопления заряда и энергии электрического поля.

Радиовещание (т.е. передача звуковой информации на большие расстояния) осуществляется посредством электромагнитных волн, излучаемых антенной радиопередающего устройства. Известно, что источником электромагнитных волн являются ускоренно движущиеся заряженные частицы. Значит, для того, чтобы антенна излучала электромагнитные волны, в ней нужно возбуждать колебания свободных электронов. Такие колебания называются электромагнитными, поскольку они порождают электромагнитным полем, распространяющееся в пространстве в виде электромагнитной волны.

Таким образом, электромагнитные колебания — это периодические изменения со временем электрических и магнитных величин (заряда, силы тока, напряжения, напряженности, магнитной индукции и др.) в электрической цепи.

Как известно, для создания мощной электромагнитной волны, которую можно было бы зарегистрировать приборами на больших расстояниях от излучающей антенны, необходимо, чтобы частота волны не меньше 0,1 МГц. Колебания таких больших частот невозможно получить от генератора переменного электрического тока, поэтому они подаются на антенну от генератора высокочастотных электромагнитных колебаний, имеющегося в каждом радиопередающем устройстве.



Одной из основных частей генератора является колебательный контур — это колебательная система, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью C и резистора сопротивлением R.


Если из такой системы удалить активное сопротивление, то полученный контур будет называться идеальным (или, контуром Томсона).

Рассмотрим свободные электромагнитные колебания, т.е. колебания, происходящие в идеальном колебательном контуре за счет расходования сообщенной этому контуру энергии, которая в дальнейшем не пополняется.

Получим их и удостоверимся в существовании с помощью установки, состоящей из источника тока, конденсатора и катушки.

Катушка и конденсатор, соединенные друг с другом через переключатель, составляют колебательный контур. На некоторое время с помощью переключателя зарядим конденсатор, замкнув его на источник тока.


Теперь наш заряженный конденсатор подсоединим обратно с катушкой. Что же происходит дальше.

Так как цепь замкнута (в данном случае через катушку индуктивности), то электроны начнут перемещаться по проводнику от отрицательно заряженной обкладки конденсатора к положительной. Перемещаясь, электроны уравновесят напряжение на обкладках конденсатора и сделают его равным нулю, но в тот момент, когда напряжение на пластинах конденсатора будет нулевым, ток в катушке индуктивности, а, следовательно, и энергия магнитного поля вокруг ее витков, будут максимальными.



Затем электрический ток в колебательном контуре вновь течет от минуса к плюсу. Описанное выше повторяется. Когда минус второй раз стал плюсом, а плюс - минусом, говорят, что в колебательном контуре было совершено одно полное колебание. Вот так и происходят электромагнитные колебания в контуре.

Теперь обратимся к истории открытия этих колебаний. Дело все в том, что они были открыты почти случайно.

После того как изобрели лейденскую банку (первый конденсатор) и научились сообщать ей большой заряд с помощью электростатической машины, начали изучать электрический разряд банки. Замыкая обкладки лейденской банки с помощью катушки, обнаружили, что стальные спицы внутри катушки намагничиваются.


В этом ничего удивительного не было: электрический ток и должен намагничивать стальной сердечник катушки.

Странным же было то, что нельзя было предсказать, какой конец сердечника катушки окажется северным полюсом, а какой южным.

Повторяя опыт примерно в одинаковых условиях, получали в одних случаях один результат, а в других другой.

Далеко не сразу поняли, что при разрядке конденсатора через катушку в электрической цепи возникают колебания.

За время разрядки конденсатор успевает много раз перезарядиться, и ток меняет направление много раз, в результате чего сердечник может намагничиваться различным образом.

Известно, что колебания, происходящие только благодаря начальному запасу энергии называются свободными. Период свободных колебаний равен собственному периоду колебательной системы, в данном случае периоду контура. Формула для определения периода свободных электромагнитных колебаний была получена английским физиком Уильямом Томсоном в 1853 г. Она называется формулой Томсона и выглядит так:


Данная формула показывает, что период колебательного контура определяется параметрами составляющих его элементов: индуктивностью катушки и емкостью конденсатора. Из формулы Томсона следует, например, что при уменьшении емкости или индуктивности период колебаний должен уменьшиться, а их частота — увеличиться и, наоборот, при увеличении емкости или индуктивности период колебаний увеличивается, а их частота уменьшается.

Но надо отметить еще одну важную особенность. Изначально между обкладками конденсатора запасено определенное количество энергии. Эта энергия неизбежно будет расходоваться на совершаемую работу, а именно, на передвижение электронов по проводнику, а это означает, что колебания в контуре рано или поздно прекратятся. Но избежать прекращения колебательного процесса в контуре довольно не сложно, для этого необходимо всего лишь подключить контур к источнику тока, который будет вбрасывать внутрь цепи новые порции энергии, не давая энергии израсходоваться полностью. В генераторе это осуществляется автоматически.


Основные выводы:

– Колебательный контур — это колебательная система, состоящая из включенных последовательно катушки, конденсатора и активного сопротивления.

– Свободные электромагнитные колебания — это колебания, происходящие в идеальном колебательном контуре за счет расходования сообщенной этому контуру энергии, которая в дальнейшем не пополняется.

– Период свободных электромагнитных колебаний можно рассчитать с помощью формулы Томсона.


– Из этой формулы следует, что период колебательного контура определяется параметрами составляющих его элементов: индуктивности катушки и емкости конденсатора.

Колебательное движение – одно из самых распространенных движений в природе и технике. Колеблются деревья в лесу, струны музыкальных инструментов, вагоны на стыках рельсов, в природе наблюдаются приливы и отливы, возникают землетрясения, колеблются атомы в кристаллической решетке и так далее. Физическая природа колебаний может быть различной (механические, электромагнитные, электромеханические и др.). Например, качание маятника в часах – это механические колебания, колебания напряжения в сети переменного тока – это электромагнитные колебания.

Содержание

Введение
Переменный ток
Индуктивность и емкость в цепи переменного тока
Колебательный контур
Основное уравнение колебательного контура
Собственные колебания контура
Формула Томсона
Реактивное сопротивление в цепи переменного тока
Затухающие колебания
Уравнение для затухающих колебаний
Заключение
Литература

Работа состоит из 1 файл

ЭМК.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Реферат на тему:

студентка 1-го курса биологического факультета БашГУ

Индуктивность и емкость в цепи переменного тока

Основное уравнение колебательного контура

Собственные колебания контура

Реактивное сопротивление в цепи переменного тока

Уравнение для затухающих колебаний

Колебания – это движения или процессы, характеризующиеся определенной повторяемостью во времени.

Колебательное движение – одно из самых распространенных движений в природе и технике. Колеблются деревья в лесу, струны музыкальных инструментов, вагоны на стыках рельсов, в природе наблюдаются приливы и отливы, возникают землетрясения, колеблются атомы в кристаллической решетке и так далее. Физическая природа колебаний может быть различной (механические, электромагнитные, электромеханические и др.). Например, качание маятника в часах – это механические колебания, колебания напряжения в сети переменного тока – это электромагнитные колебания.

Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи, электрические и магнитные поля) изменяются периодически. Электромагнитные колебания используют в различных важных технических устройствах и применяют в целях связи (телефоны, телеграфы, радиосвязь). Технические переменные токи также являются электрическими колебаниями. И даже световые явления представляют собой не что иное, как электромагнитные колебания.

Таким образом, приступая к изучению электромагнитных колебаний, полезно вспомнить колебания механические, несколько уточнить и расширить знания по данной теме.

Переменный ток

Этот человек открыл переменный ток, флуоресцентный свет, беспроводную передачу энергии, построил первые электрические часы, турбину, двигатель на солнечной энергии. Он изобрёл радио раньше Маркони и Попова, получил трёхфазный ток раньше Доливо-Добровольского. На его патентах, в сущности, выросла вся энергетика ХХ века. Но этого ему было мало. Он несколько десятилетий работал над проблемой энергии всей Вселенной. Изучал, что движет солнце и светила. Пытался сам научиться управлять космической энергией. И наладить связь с другими мирами. Но, всё это он не считал своей заслугой. Уверял, что просто выполняет роль проводника идей, идущих из эфира.

Этого гениального учёного зовут Никола Тесла.

Ещё с юношеских лет, его увлекало электричество. Когда Тесла учился в Пражском университете, на втором курсе его осенила идея индукционного генератора переменного тока. Профессор, с которым Тесла поделился идеей, счел ее бредовой. Но это заключение только подстегнуло изобретателя, и в 1882 году, уже работая в Париже, он построил действующую модель.

Переменный ток – это по существу вынужденные колебания электрических зарядов в проводнике под действием приложенной переменной ЭДС.

Переменный электрический ток в энергетических электрических цепях является результатом возбуждения в них вынужденных электромагнитных колебаний. Эти вынужденные колебания создаются генераторами переменного тока, работающими на электростанциях. Генераторы- это источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению.

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Индуктивность и ёмкость в цепях переменного тока

Емкостной элемент в цепи переменного тока.

Емкостной элемент(конденсатор) ведет себя по сравнению с индуктивностью с точностью до наоборот. Здесь ток опережает напряжение на 90°. Физически это означает, что в момент включения цепи ток в ней будет максимальным. По мере зарядки конденсатора напряжение на нем будет приближаться к напряжению источника и как только они сравняются, ток в цепи будет ноль. После этого в следующую четверть периода начнется разрядка напряжения, а ток будет возрастать. Далее синусоидальное напряжение сменит полярность и процесс повторится. Мгновенная мощность в емкостном элементе положительна в те интервалы времени, в течение которых напряжение(а не ток, как в индуктивном элементе) возрастает(независимо от знака). В течение этих интервалов происходит зарядка емкости и в его электрическом поле накапливается энергия. При уменьшении напряжения (опять-таки по модулю, т.е по абсолютному значению)на емкости мгновенная мощность отрицательна. Емкостной элемент разряжается и энергия, запасенная в его электрическом поле, возвращается к источнику. Таким образом, в емкостном элементе, так же как и в индуктивном, синусоидальный ток не совершает работы. Энергетический режим емкостного элемента принято определять реактивной емкостной мощностью, равной максимальному отрицательному значению мгновенной мощности

Индуктивный элемент в цепи переменного тока.

Совсем иная картина при включении в цепь катушки индуктивности. Здесь для наглядности сравнения графиков мы приняли индуктивное сопротивление за 1Ом. Также необходимо сразу сказать, что на графиках и в формулах между собою равны следующие обсуждаемые значения на оси времени: 0,005сек = п/2 = 90°; 0,01сек = п= 180°; 0,015сек = 1,5п = 270°; 0,02сек = 2п = 360°. Здесь п - число "пи" - и оно же 180°. Это все одно и то же. То есть период Т , за который величина возвращается в исходное положение - это 2п. Говорят, что в идеальной индуктивности ток отстает от напряжения на 90°. Разберемся, как это выглядит в действительности. В момент включения ток через катушку равен нулю, в то время как напряжение на катушке равно напряжению источника. Через время 0,005сек = п/2 = 90° ток через катушку имеет максимальное значение, а напряжение равно нулю. Еще через 90°(т.е. когда t = 0,01сек = п = 180°) напряжение на катушке снова максимально(разумеется, обратной полярности), а ток равен нулю. И так через каждые 90°. Это явление получило название самоиндукции. Самоиндукция препятствует резкому нарастанию тока при включении источника и убыванию тока при выключении источника. В этом, собственно, и заключается назначение дроссельного элемента люминесцентных ламп. Использование такого дросселя приведено для примера в разделе "Маленькие хитрости". Что касается мощности, то получается нижеследующая картина. В первую четверть(от 0сек до 0,005сек)периода мгновенная мощность положительна при нарастании тока(независимо от его знака) в индуктивном элементе - в это время энергия накапливается в магнитном поле индуктивного элемента. В течение следующей четверти(от 0,005сек до 0,01сек)периода при спадании тока индуктивный элемент уже не получает энергию от источника, а наоборот, отдает ему. Поэтому среднее значение мощности за период равно нулю, т.е синусоидальный ток в индуктивном элементе работы не совершает. И в отличие от резистивного элемента энергетический режим индуктивного элемента принято определять не активной, а реактивной индуктивной мощностью, равной максимальному положительному значению мгновенной мощности. Ее единицей является вольт-ампер реактивный (вар).
P.S. Для пытливых умов все же стоит заметить, что некоторая активная мощность на индуктивном элементе все же выделяется, поскольку имеется сопротивление намотанной медной проволоки.

Очень часто индуктивный элемент в цепи постоянного тока применяют в качестве токоограничительного элемента при запуске. В люминесцентных светильниках дроссельный элемент является индуктивным и позволяет в момент запуска ограничить ток внутри лампы особенно в первый момент. В радиоприемных устройствах индуктивность вместе с емкостным элементом входит в состав колебательных контуров, позволяя выделить нужную частоту. В звуковоспроизводящих устройствах индуктивность входит в состав всевозможных фильтров, позволяя "отсеивать" ненужные частотные помехи.

Колебательный контур

Колебательный контур- это электрическая цепь, содержащая катушку индуктивности и конденсатор, в которой могут возбуждаться электрические колебания. Если в некоторый момент времени зарядить конденсатор до напряжения V0, то энергия, сосредоточенная в электрическом поле конденсатора, равна Ес = , где С - ёмкость конденсатора. При разрядке конденсатора в катушке потечёт ток I, который будет возрастать до тех пор, пока конденсатор полностью не разрядится. В этот момент электрическая энергия Колебательный контур Ec = 0, а магнитная(энергия), сосредоточенная в катушке, EL= , где L - индуктивность катушки, I0 - максимальное значение тока. Затем ток в катушке начинает падать, а напряжение на конденсаторе возрастать по абсолютной величине, но с противоположным знаком. Спустя некоторое время ток через индуктивность прекратится, а конденсатор зарядится до напряжения - V0. Энергия колебательного контура вновь сосредоточится в заряженном конденсаторе. Далее процесс повторяется, но с противоположным направлением тока. Напряжение на обкладках конденсатора меняется по закону V = V0 cos w0t, а ток в катушке индуктивности I = I0 sin w0t т. е. в колебательном контуре возбуждаются собственные гармонические колебания напряжения и тока с частотой w0 = 2 p/T0, где T0 - период собственных колебаний равен: T0 = 2p . В колебательном контуре дважды за период происходит перекачка энергии из электрического поля конденсатора в магнитное поле катушки индуктивности и обратно.

В реальных колебательных контурах, однако, часть энергии теряется. Она тратится на нагрев проводов катушки, обладающих активным сопротивлением, на излучение электромагнитных волн в окружающее пространство и потери в диэлектриках, что приводит к затуханию колебаний. Амплитуда колебаний постепенно уменьшается, так что напряжение на обкладках конденсатора меняется уже по закону: V=V0e -dt coswt, где коэффициент d = R/2L - показатель (коэффициент) затухания, а w = - частота затухающих колебаний. Таким образом, потери приводят к изменению не только амплитуды колебаний, но и их периода Т = 2 p/w. Качество колебательного контура обычно характеризуют его добротностью . Величина Q определяет число колебаний, которое совершит колебательный контур после однократной зарядки его конденсатора, прежде чем амплитуда колебаний уменьшится в е раз (е - основание натуральных логарифмов).

Если включить в колебательный контур генератор с переменной Э.Д.С: U = U0cosW(t), то в колебательном контуре возникнет сложное колебание, являющееся суммой его собственных колебаний с частотой w0 и вынужденной с частотой W. Через некоторое время после включения генератора, собственные колебания в контуре затухнут и останутся только вынужденные. Амплитуда этих стационарных вынужденных колебаний определяется соотношением:

, т. е. зависит не только от амплитуды внешней Э.Д.С U0, но и от её частоты W. Зависимость амплитуды колебаний в колебательном контуре

от частоты внешней Э.Д.С называется резонансной характеристикой контура. Резкое увеличение амплитуды имеет место при значениях W, близких к собственной частоте w 0 колебательного контура, при W = w0 амплитуда колебаний Vmakc в Q раз превышает амплитуду внешней Э.Д.С U. Т. к. обычно 10 железный сердечник, то намагниченность железа, а с ним и индуктивность L катушки меняется с изменением тока, текущего через неё. Период колебания в таком Колебательный контур зависит от амплитуды, поэтому резонансная кривая приобретает наклон, а при больших амплитудах становится неоднозначной. В последнем случае имеют место скачки амплитуды при плавном изменении частоты W внешней Э.Д.С.. Нелинейные эффекты проявляются тем сильнее, чем меньше потери в колебательном контуре. В колебательном контуре с низкой добротностью, нелинейность вообще не сказывается на характере резонансной кривой.

Колебательный контур обычно применяются в качестве резонансной системы генераторов и усилителей в диапазоне частот от 50 кГц до 250 МГц. На более высоких частотах роль колебательных контуров играют отрезки двухпроводных и коаксиальных линий, а также объёмные резонаторы.

Читайте также: