Пространство время движение в механике ньютона реферат

Обновлено: 02.07.2024

Механика – наука о движении и равновесии тел, и происходящих при этом взаимодействиях между ними.

Пространство и время – это категории, обозначающие основные формы существования материи.

Пространство выражает порядок сосуществования отдельных объектов. Пространство однородно(во всех своих частях) и изотропно(его свойства не зависят от направления). Физическое пространство = Евклидово.

Время – свойство материальных процессов иметь определённую длительность, следовать друг за другом в определённой последовательности и развиваться по этапам и стадиям (Матвеев)

Время абсолютно(не зависит от тел) и едино – течёт одинаково во всех точках пространства.

Система отсчёта – тело отсчёта, связанная с ним система координат и часы.

Тело отсчёта – тело, относительно которого рассматривается движение других тел.

Система координат– совокупность трёх некомпланарных осей, пересекающихся в одной точке с указанием масштаба на них.

Часы – принятый за эталон измерения периодический процесс.

Основная задача механики состоит в том, чтобы зная начальные условия, определить закон движения тел системы.

Гироскопическими силами называют силы упругости, действующие на опору со стороны быстро вращающихся масс.

Волчки

Билет 2

Вопрос 1.

Кинематика материальной точки. Система материальных точек. Уравнение кинематической связи. Закон движения.

Кинематика – раздел механики, посвящённый изучению геометрических свойств движений тел, без учёта их масс и действующих на них сил.

Материальная точка – это тело, размеры которого пренебрежимо малы, что в рассматриваемом движении их можно не принимать во внимание и считать, что все вещество тела как бы сосредоточено в одной точке. Материальная точка – это абстракция, идеализированный образ реально существующих тел

Движение материальной точки будет описано полностью, если известно ее положение в любой момент времени в выбранной системе отсчета. Полное описание движения сводится к нахождению трех координат: x = x(t); y = y(t); z = z(t); или к нахождению векторной функции r = r(t). .

Производная скорости по времени называется ускорением материальной точки: ,

Понятие угловая скорость и угловое ускорение относятся к случаю движения материальной точки по окружности. Положение точки М на окружности задается углом a, который составляет радиус-вектор точки М с неизменным направлением ОХ. Производная этого угла по времени называется угловой скоростью w: . Если w = Сonst, то движение равномерно. n=w/2p – число оборотов в единицу времени (частота обращения).

Первая призводная угловой скорости и вторая производная угла по времени – это угловое ускорение: . Продифференцируем S=r´a по времени и получаем:

S’’=(w*r)’=r*w’+r’*w=re (r*w’ - тангенциальное ускорение) + (v*w =v 2 /r — центростремительное ускорение).

Закон движения – зависимость координат точки от времени.

Уравнение траектории – уравнение кривой, по которой движется точка.

Эквивалентное определение траектории – годограф радиус-вектора материальной точки.

Изучение пространства античными учеными. Отношение Ньютона ко времени, его отражение в специальной теории относительности Эйнштейна, называемой "неклассической". Сущность законов Ньютона. Исходные постулаты и принципы специальной теории относительности.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 10.09.2012
Размер файла 18,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Глазовский инженерно-экономический институт (филиал)

государственного образовательного учреждения

высшего профессионального образования

Кафедра “Естественно-научные и гуманитарные дисциплины”

по учебной дисциплине “Концепции современного естествознания”

на тему “Пространство и время в классической механике Ньютона и теории относительности Эйнштейна”

ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

СПИСОК ИСПОЛЬЗОВАНОЙ ЛИТЕРАТУРЫ

Все, что существует во Вселенной, живое и неживое, имеет пространственно-временное измерение. Пространство и время не отделимы от материи, неразрывно связаны с ее движением и друг с другом, количественно и качественно бесконечны. Таким образом, материя, пространство, время, движение являются основными понятиями науки.

Стремление понять окружающий мир, представить его структуру, сформулировать частные и общие законы его существования и развития на основе изучения взаимосвязей между природными явлениями и процессами всегда было присуще человечеству.

Так, древние греки создали две точные науки: геометрию, выросшую из техники земледелия, и астрономию, вызванную к жизни необходимостью измерять время.

Мы познаем мир прежде всего с помощью органов чувств - естественные физических приборов человеческого организма.

Мир наполнен самыми разнообразными звуками, но не все из них мы воспринимаем, за то людям с различными психическими отклонениями могут слышаться не существующие в данный момент звуки (слуховые галлюцинации).

В достаточной степени субъективны и наши вкусовые ощущения, восприятие запахов (обоняние), осязание, тепловые ощущения (озноб у больного, купание закаленных людей в проруби), чувство боли.

Постепенно человек научился создавать приборы и системы для получения объективной информации об окружающем мире.

Для наших далеких предков ориентация в пространстве имела огромное значение. Порядок обеспечивал безопасность.

Обычно под пространством (в том числе и космическим) мы понимаем некую протяженную пустоту, в которой могут находиться какие-либо предметы. Однако между небесными телами (звездами, планетами, кометами) всегда имеется некоторое количество вещества, поэтому в науке пространство рассматривается не как вместилище материи, а как физическая сущность, обладающая конкретными свойствами и структурой.

Евклид построил геометрию трехмерного пространства, известную в научном обиходе как евклидова геометрия. Для определения положения в пространстве Рене Декарт ввел прямоугольную систему координат. Физический мир Декарта состоит из двух сущностей: материи и движения.

Декартово представление о флюидах, заполняющих пространство, господствовало в науке 19 и частично 20 веков, оказав существенное влияние на развитие таких разделов физики, как оптика и электричество. Вес, как и любая сила, у Декарта является свойством движения тонкой материи, отождествляемой с пространством. Поэтому механизм Декарта сводит силы к свойствам пространства.

Исаак Ньютон открыл новые свойства пространства, изучая движение перемещающихся тел. Он рассматривал пространство как субстанцию, способную динамически действовать на материальные тела. Модель пространства, предложенная Ньютоном, - это модель независимо существующей субстанции, в которой могут перемещаться материальные тела и частицы света. Поэтому каждый объект обладает в пространстве определенным положением и ориентацией, а расстояние между двумя событиями точно определено, даже если эти события произошли в разные моменты времени. Таким образом, все равномерные движения у Ньютона относительны, а ускоренные - абсолютны.

В качестве первого закона динамики Ньютон принял закон, установленный еще Галилеем: материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока взаимодействие со стороны других тел не выведет ее из этого состояния.

Первый закон Ньютона показывает, что состояние покоя или равномерного и прямолинейного движения не требует для своего поддержания каких-либо внешних воздействий. В этом проявляется особое динамическое свойство тел, называемое их инертностью. Соответственно первый закон Ньютона называют законом инерции, а движение тела в отсутствие воздействий со стороны других тел - движением по инерции.

Система отсчета, по отношению к которой материальная точка, свободная от внешних воздействий, покоится или движется равномерно и прямолинейно, называется инерциальной системой отсчета. Содержание первого закона Ньютона сводиться по существу к двум утверждениям: во-первых, что все тела обладают свойством инертности и, во-вторых, что существуют инерциальные системы отсчета.

Основным законом динамики материальной точки является второй закон Ньютона, который говорит о том, как изменяется механическое движение материальной точки под действием приложенных к ней сил. Второй закон Ньютона гласит: скорость изменения импульса материальной точки равна действующей на нее силе. Если на материальную точку одновременно действуют несколько сил, то под силой во втором законе Ньютона нужно понимать геометрическую сумму всех действующих сил - как активных, так и реакций связей, т.е. равнодействующую силу.

Механическое действие тел друг на друга проявляется в виде их взаимодействия. Об этом говорит третий закон Ньютона: две материальные точки действуют друг на друга с силами, которые числено равны и направлены в противоположные стороны вдоль прямой, соединяющей эти точки. Третий закон Ньютона является существенным дополнением к первому и второму законам. Он позволяет перейти от динамики одной материальной точки к динамике произвольной механической системы (системы материальных точек). Из третьего закона Ньютона следует, что в любой механической системе геометрическая сумма всех внутренних сил равна нулю.

Из второго и третьего законов Ньютона следует, что первая производная по времени от импульса механической системы равна главному вектору всех внешних сил, приложенных к системе. Это уравнение выражает закон изменения импульса системы.

Если рассматриваемая система - твердое тело, которое движется поступательно, то скорости всех точек тела и его цента масс одинаковы и равны скорости тела.

ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Специальная теория относительности представляет собой современную физическую теорию пространства и времени. Специальная теория относительности и квантовая механика служат теоретической базой современной физики и техники. Специальную теорию относительности часто называют релятивисткой теорией, а специфические явления, описываемые этой теорией, - релятивистскими эффектами. Как правило, релятивистские эффекты при скоростях движения тел, близких по величине к скорости света в вакууме и называемых релятивистскими скоростями. Релятивистской механикой называется механика движений с релятивистскими скоростями, основанная на специальной теории относительности.

В специальной теории относительности так же, как и в классический ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно.

В основе специальной теории относительности лежат два основных принципа, принимаемых в качестве исходных постулатов.

Первый постулат является обобщением механического принципа относительности Галилея на любые физические процессы. Этот постулат, называемый принципом относительности, или релятивистским принципом относительности Эйнштейна, гласит: в любых инерциальных системах отсчета все физические явления при одних и тех же условиях протекают одинаково. Иначе говоря, принцип относительности утверждает, что физические законы независимы (инвариантны) по отношению к выбору инерциальной системы отсчета: уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета. Следовательно, на основе любых физических экспериментов, проведенных в замкнутой системе тел, нельзя установить, покоиться эта система или движеться равномерно и прямолинейно.

Второй постулат выражает принцип инвариантности скорости света: скорость света в вакууме не зависит от движения источника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета, являясь одной из важнейших физических постоянных. Указанные специфические закономерности процесса распространения света в вакууме позволяют использовать этот реальный физический процесс для установления процедуры хронометризации системы отсчета, т.е. для синхронизации часов, расположенных в разных точках пространства и перемещающихся вместе с рассматриваемой системой отсчета.

Чтобы объединить особенности распространения света в движущихся телах, Эйнштейн предложил свою теорию относительности, в которой свойства пространства кардинально отличаются от привычных представлений, начинают зависеть от распределения в нем тяготеющих масс и их движений, и оно становиться неевклидовым.

Для Ньютона время - абсолютно и является мерой длительности всех механических процессов. Оно однородно, т.е. все временные сдвиги симметричны, поэтому понятие начала не имеет смысла. Понимание времени как внешнего параметра сохранилось и в теории относительности, хотя ход времени стал зависеть от наличия движущейся материи.

СПИСОК ИСЛОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

пространство время закон ньютон относительность

Яворский Б. М. Физика для школьников старших классов и поступающих в вузы: учеб.пособие/Б.М.Яворский, А.А.Детлаф. - 7-е изд., стереотип.-М: Дрофа, 2004. - 795с.

Подобные документы

Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.

реферат [30,5 K], добавлен 30.07.2010

Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна. Основные закономерности развития биогеоценоза. Взаимодействие между компонентами как важнейший механизм поддержания целостности и устойчивости биогеоценозов.

контрольная работа [150,8 K], добавлен 13.04.2012

Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.

реферат [35,2 K], добавлен 11.07.2013

Истоки теории относительности, порядок ее формирования и значение. Принцип относительности Галилея. Сущность преобразования Галилея и Лоренца. Теория относительности А. Эйнштейна, особенности и отличительные признаки ее общей и специальной формы.

реферат [2,4 M], добавлен 09.11.2010

Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".

реферат [888,7 K], добавлен 07.01.2010

Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.

контрольная работа [40,6 K], добавлен 18.11.2009

Ознакомление с уравнениями Максвелла, ньютоновскими законов и концепциями близкодействия Фарадея как с этапами развития общей теорий относительности Эйнштейна, объединяющей пространство и время. Изучение эволюции и структурной организации Вселенной.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

на тему: Мир глазами Исаака Ньютона: пространство и время

Понятия пространства и времени являются философскими категориями и не определяются в естествознании. Для естественных наук важно уметь определять их численные характеристики - расстояния между объектами и длительности процессов, а так же - описывать их свойства, поддающиеся экспериментальному изучению.

Измерение расстояний.

Проблема ограниченности Вселенной. Измерить расстояние между двумя объектами - значит сравнить его с эталонным. До недавнего времени в качестве эталона использовалось тело, сделанное из твердого сплава, геометрическая форма которого слабо изменялась при изменении внешних условий. В качестве единицы длины был выбран метр, отрезок, сравнимый с характерными размерами человеческого тела. Очевидно, что в большинстве случаев эталон не укладывался целое число раз на длине измеряемого отрезка. Оставшаяся часть измерялась при помощи 1/10, 1/100 и т. эталона. В принципе считалось, что такую процедуру можно продолжать до бесконечности, в результате чего получалось бы точное значение длины, выражаемое бесконечной десятичной дробью, т.е. вещественным числом. (В математике понятие вещественного числа возникло как результат обобщения описанной процедуры измерения длин отрезков).

На практике многократное деление исходного эталона было невозможно. Для повышения точности измерения и измерения малых отрезков потребовался эталон существенно меньших размеров, в качестве которого по настоящее время используются стоячие электромагнитные волны оптического диапозона.

В природе существуют объекты, значительно меньшие длин волн оптического излучения (молекулы, атомы, элементарные частицы). При их измерениях помимо неудобства сравнения с эталоном больших размеров возникает более принципиальная проблема: объекты, размеры которых меньше длины волны электромагнитного излучения, перестают его отражать и, следовательно, оказываются невидимыми. Для оценки размеров таких мелких объектов свет заменяют потоком каких-либо элементарных частиц (электронов, нейтронов и т.д.). Величина объектов оценивается по т.н. сечениям рассеяния, определяемым отношением числа частиц, изменивших направления своего движения, к плотности падающего потока. Наименьшим расстоянием, известным в настоящее время, является характерный размер элементарной частицы (м). Говорить о меньших размерах, по-видимому, бессмысленно.

При измерении расстояний, значительно превышающих 1м, пользоваться эталоном длины вновь оказывается неудобно. Для измерения расстояний, сравнимых с размерами Земли, применяют методы триангуляции (определение большей стороны треугольника по точно измеренной меньшей стороне и двум углам) и радиолокации (измерение времени задержки отраженного сигнала, скорость распространения которого известна, относительно момента передачи), Для много больших расстояний (до удаленных звезд и соседних галактик) указанные методы оказываются вновь неприменимы (отраженный радиосигнал оказывается слишком слабым, углы треугольника отличаются от на слишком малую величину). На столь больших расстояниях наблюдаемыми оказываются только самосветящиеся объекты (звезды и галактики), расстояния до них оценивается исходя из наблюдаемой яркости.

Размеры наблюдаемой части вселенной имеют размеры порядка м. Вопрос о том, имеют ли смысл большие расстояния сводится к проблемам конечности и ограниченности Вселенной, до сих пор окончательно не решенным космологией. Со времен Ньютона считалось, что окружающий нас мир однороден и не может иметь границ (в противном случае возникал вопрос о их физической природе и о том, “что находится по другую сторону”). Однако, предположение о бесконечности Вселенной, совместно с естественным допущением о равномерном распределении звезд по объему и беспрепятственном распространении света в пространстве, приводил к заведомо абсурдному выводу о бесконечно ярком свечении ночного неба (т.н. парадокс ночного неба). Позднее пришло понимание того, что понятия бесконечности и неограниченности не эквивалентны друг другу (напр. шар не имеет границ, но площадь его конечна).

Измерение интервалов времени. Возраст Вселенной.

Измерить длительность процесса - значит сравнить его с эталонным. В качестве последнего удобно выбрать какой-либо периодически повторяющийся процесс (суточное вращение Земли, биение человеческого сердца, колебание маятника, движение электрона вокруг ядра атома). Долгое время в качестве эталонного процесса использовались колебания маятника. За единицу измерения времени выбрали секунду (интервал, примерно равный периоду сокращения сердечной мышцы человека).

Для измерения значительно более коротких времен возникла необходимость в новых эталонах. В их роли выступили колебания кристаллический решетки (кварцевые часы имеют характерный период колебаний в 1нс= с) и движение электронов в атоме (атомные часы с характерным временем с ). Еще меньшие времена можно измерять, сравнивая их со временем прохождения света через заданный промежуток. по-видимому, наименьшим осмысленным интервалом является время прохождения света через минимально возможное расстояние (с ).

При помощи маятниковых часов возможно измерение временных интервалов, значительно превосходящих 1с (человеческая жизнь длится около с), но и здесь возможности метода не беспредельны. Времена, сравнимые с возрастом Земли (ок. с) возможно оценивать лишь по полураспаду атомов радиоактивных элементов. Максимальным промежутком времени, о котором имеет смысл говорить в нашем мире, по-видимому является возраст Вселенной, оцениваемый периодом в с (началом существования нашего мира принято считать Большой взрыв, произошедший в весьма малой области пространства, в результате которого возник наблюдаемый сейчас мир, представляющий собой совокупность объектов, разлетающихся от начальной точки; события, произошедшие до Большого взрыва никак не влияют на настоящее и, следовательно, могут не рассматриваться).

В классическом естествознании, занимающимся главным образом описанием макроскопических (сравнимых с размерами человеческого тела) объектов, предполагается, что процедура измерения основных пространственно-временных характеристик (расстояний и длительностей) в принципе может быть выполнена сколь угодно точно и при этом может практически не влиять на измеряемый объект и происходящие с ним процессы.

Геометрические свойства пространства и времени. Геометрические свойства пространства изучаются геометрией, традиционно базирующейся на системе аксиом Евклида. В отличие от математики, для естествознания небезынтересен вопрос, соответствуют ли эти аксиомы реальным свойствам нашего пространства (напр. вполне мыслима ситуация, в которой сумма углов треугольника может отличаться от : на рис. 2_1 изображен треугольник, все углы которого прямые). Опыт показывает, что для наблюдателя, движущегося без ускорения вдали от массивных тел, аксиоматика Евклида выполняется с хорошей точностью.

Важной характеристикой материальных систем является их число степеней свободы (минимальной количество чисел, необходимое для исчерпывающего описания положения объекта в пространстве). Чем большим числом степеней свободы обладает объект, тем более трудоемко его описание. Возникает естественный вопрос о минимальном числе степеней свободы, которым может обладать объект в нашем мире. Опыт показывает, что для не взаимодействующих с другими объектами тел это число равно 3 (тремя степенями свободы обладают, например, элементарные частицы с нулевым спином). Об этом свойстве нашего пространства говорят как о его трехмерности (иногда говорят, что трехмерность означает возможность задания трех взаимно перпендикулярных направлений в пространстве). Число степеней свободы большинства реальных объектов может быть существенно большим (спортивный велосипед с хорошо затянутыми болтами и гайками обладает как минимум 18 степенями свободы), однако при решении многих практических задач “внутренние степени свободы” оказываются несущественными (на финише велогонки положение педалей велосипеда лидера никем не регистрируется). Число рассматриваемых степеней свободы можно существенно сократить вплоть до трех (при движении в пространстве), двух (при движении по поверхности) или одной (при движении вдоль заданной кривой). Реальное тело при этом по существу заменяется моделью материальной точки (тело, размеры и форма которого в рассматриваемой ситуации несущественны).

Для задания временных характеристик процессов может понадобиться несколько вещественных чисел (жизнь человека можно характеризовать, например, моментами его рождения, свадьбы и смерти). Однако существуют явления, для исчерпывающего временного описания которых достаточно одного числа (напр. распад элементарной частицы, который не имеет длительности, поскольку не может быть разделен на какие-то промежуточные процессы). Существование таких “элементарных” процессов позволяет утверждать, что время одномерно.

Аналогично тому, как в пространственном описании вводилась модельное представление о материальной точке, при описании эволюции во времени можно ввести понятие мгновенного события, т.е. процесса, длительностью которого в рассматриваемой ситуации можно пренебречь (напр. удар мяча о стену часто можно считать мгновенным, хотя детальное рассмотрение показывает, что это весьма сложный и многоэтапный процесс).

Относительность свойств пространства и времени. Во времена Ньютона считалось, что свойства пространства и времени абсолютны, т.е. не зависят от наличия материальных тел, протекающих процессов и наблюдателей. Современная физика показала ограниченность таких представлений: геометрические свойства пространства и времени тесно связаны с наличием и расположением массивных тел, зависят от характера протекающих процессов и даже от состояния наблюдателя. В связи с этим сейчас принято говорить, что свойства пространства и времени относительны.

В классическом естествознании рассматриваются макроскопические объекты и явления, происходящие в существующих независимо от них и друг от друга пространстве и времени, носящих абсолютный характер.

Пространство и время [20.11.12]

В обыденной жизни мы постоянно сталкиваемся с понятием пространства и времени, для нас это нечто привычное, известное и даже к какой-то мере очевидное. Однако в истории философии и естествознания напряженно обсуждались сложные вопросы, которые возникали вместе с попытками понять значение этих понятий.

Наряду с интерпретацией времени – пространства философией физики существуют многочисленные теории философов, придерживающихся идеалистических взглядов, так Анри Бергсон утверждал, что время может быть познано только нерациональной интуицией, а научные концепции, представляющие время, как имеющее какое-либо направление, неверно интерпретируют реальность.

1. Покажите значение понятий пространства и времени для научного познания.

Пространство и время являются весьма сложными естественнонаучными и философскими категориями.

Пространство и время есть понятия для отображения объективно существующих свойств материальных тел либо их связей. Свойства предметов материального Мира весьма в общем случае индивидуальны, разнообразны, они относительно устойчивы. Между тем понятия пространство и время универсальны как для отдельных предметов, так и для систем, включающих эти тела; эти понятия служат для отображения мгновений развития материальных тел. Все это заставляет нас остановиться на предположении, что понятия пространство и время отображают объективно существующие связи предметов действительного Мира.

Действительный Мир, как некое целое представляет собой совокупность объектов, образующих бесконечную последовательность структур разного порядка малости (субмикромир, микромир, макротела, мегамир и др.).

Пространство - это понятие, отражающее связь материальных объектов одного порядка малости.

Пространство отображает связь между частями целого. Говоря о размерах, расстоянии предполагается, что эти величины изменчивы, в любой фиксированный момент развития они различны. Следовательно, пространство есть понятие для отображения момента развития материального объекта, оно отображает не длительные, устойчивые связи или взаимоотношения на некотором этапе развития, а отражают эти связи как момент развития.

Установить закономерности взаимодействия тел, их движения можно лишь в том случае, когда используются соответствующие пространственные координаты. Пространство соответственно многомерно, и с учетом известных форм движения можно говорить о пространстве поступательного, вращательного, колебательного движений, пространстве крутильных колебаний.

Пространство – это понятие для отображения мгновенных объективно существующих связей тел одного порядка малости в данной форме движения.

Наиболее общая характеристика пространства — свойство объекта быть протяженным, занимать место среди других, граничить с другими объектами.

Понятие время отражает связь тела с бесконечной последовательностью тел существовавших в прошлом, с теми, что есть в объективном мире сейчас, с теми телами, которые составляют бесконечную последовательность, уходящую в будущее. Когда мы говорим о времени, то мы имеем в виду, что некоторое фиксированное событие или объект есть лишь мгновение в последовательности сменяющих друг друга тел или событий, идущих из бесконечного прошлого и уходящих в бесконечное будущее. Но по законам диалектики эта бесконечная последовательность как некое снятое единство, есть нечто иное, есть некая новая единая сущность, частью которой является данный объект. Это новое единое целое есть объект высшего по размерам порядка. Следовательно, время – понятие для отображения объективно существующей связи данного предмета с материальным объектом большего по размерам порядка.

Время одномерно и не зависит от выбора системы координат. Когда имеется в виду бесконечная последовательность тел, существовавших до настоящего момента, и последовательность, которая будет существовать потом, то полагается, что эта последовательность включает в себя все тела различного порядка малости, т.е. представляет собой бесконечный Мир как целое.

Время – это понятие, служащее для отображения мгновенной объективно существующей связи между данным конечным телом и движущейся материей, т.е. бесконечным Миром как целым в самом его широком смысле.

Материальный мир состоит из структурных объектов, которые находятся в движении и развитии, представляющие собой процессы, которые развертываются по определенным этапам.

Категории пространства и времени выступают как формы бытия материи. Существует две концепции пространства и времени:

  • субстанциальная — рассматривает пространство и время как особые сущности, которые существуют сами по себе, независимо от материальных объектов (Демокрит, Эпикур, Ньютон);
  • реляционная — рассматривает пространство и время как особые отношения между объектами и процессами и вне их не существуют (Лейбниц).

Различают метрические (т.е. связанные с измерениями) и топологические (например, связность, симметрия пространства и непрерывность, одномерность, необратимость времени) свойства пространства и времени.

Топологические характеристики описывают: прерывность и непрерывность, размерность, священность, ориентируемость.

Метрические характеристики: кривизну, конечность и бесконечность, изотропность, гомогенность.

Теория относительности вывела глубокую связь между пространством и временем, показав, что в природе существует единое пространство — время, а отдельно пространство и отдельно время выступают как его своеобразные проекции, на которые оно по-разному расщепляется в зависимости от характера движения тел.

2. Проанализируйте развитие взглядов на пространство и время от античности до Ньютона.

Понятие времени возникло на основе восприятия человеком смены событий, предоставленной смены состояний предметов и круговорота различных процессов.

Естественнонаучные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе и в первую очередь в макромире твердых физических тел, занимающих определенный объем. В анализе античных доктрин о пространстве и времени остановимся на двух наиболее полно исследовавших данный вопрос: атомизме Демокрита и системе Аристотеля.

Атомистическая доктрина была развита материалистами Древней Греции Левкиппом и Демокритом и во многом предвосхитила фундаментальные открытия ученных прошлого века. Согласно, этой доктрины, всё природное многообразие состоит из мельчайших частичек материи (атомов), которые двигаются, сталкиваются и сочетаются в пустом пространстве. Атомы (бытие) и пустота (небытие) являются первоначалами мира. Атомы не возникают и не уничтожаются, их вечность проистекает из отсутствия начала у времени. Атомы двигаются в пустоте бесконечное время, которому соответствует бесконечное время. По Демокриту атомы физически неделимы в силу плотности и отсутствия в них пустоты. Сама же концепция была основана на атомах, которые в сочетании с пустотой образуют всё содержание реального мира. В основе этих атомов лежат амеры (пространственный минимум материи). Отсутствие у амеров частей служит критерием математической неделимости. Атомы не распадаются на амеры, а последние не существуют в свободном состоянии. Это совпадает с представлениями современной физики о кварках. Характеризуя систему Демокрита как теорию структурных уровней материи - физического (атомы и пустота) и математического (амеры), мы сталкиваемся с двумя пространствами: непрерывное физическое пространство как вместилище и математическое пространство, основанное на амерах как масштабных единицах протяжения материи. В соответствии с атомистической концепцией пространства у Демокрита сложились представления о природе времени и движения. В дальнейшем они были развиты Эпикуром в стройную систему. Эпикур рассматривал свойства механического движения исходя из дискретного характера пространства и времени. Например, свойство изотахии заключается в том, что все атомы движутся с одинаковой скоростью. На математическом уровне суть изотахии состоит в том, что в процессе перемещения атомы проходят один атом пространства за один атом времени. Аристотель начинает анализ с общего вопроса о существовании времени, затем трансформирует его в вопрос о существовании делимого времени. Дальнейший анализ времени ведётся Аристотелем уже на физическом уровне, где основное внимание он уделяет взаимосвязи времени и движения. Аристотель показывает, что время немыслимо, не существует без движения, но оно не есть и само движение. В такой модели времени впервые реализована реляционная концепция.

Пространство для Аристотеля выступает в качестве некоего отношения предметов материального мира, оно понимается как объективная категория, как свойство природных вещей. Аристотелю удалось создать самую совершенную, для своего времени модель пространства-времени, просуществовавшую более двух тысячелетий.

В доньютоновский период развитие представлений о пространстве и времени носило преимущественно стихийный и противоречивый характер. В это время зарождаются геометрические представления об однородном и бесконечном пространстве. Геоцентрическая система К. Птолемея представляла собой первую универсальную математическую модель мира, в которой время было бесконечным, а пространство конечным, включающим равномерное круговое движение небесных тел вокруг неподвижной Земли.

Дальнейшее развитие представлений о пространстве и времени связано с рационалистической физикой Р. Декарта, который создал первую универсальную физико-космологическую картину мира. Декарт развил также представление о соотношении длительности и времени. Длительность, по его мнению, присуща материальному миру. Время же — присуще человеку и потому является модулем мышления.

Таким образом, развитие представлений о пространстве и времени в доньютоновский период способствовало созданию концептуальной основы изучения физического пространства и времени. Эти представления подготовили математическое и экспериментальное обоснование свойств пространства и времени в рамках классической механики.

3. Оцените познание пространства и времени в классической науке.

В своем описании, с одной стороны, он использовал представления о пространстве и времени как о внешних условиях бытия, в которые помещена материя и которые сохранились бы даже при исчезновении материи. С другой стороны, он сохранял понимание пространства и времени как протяженности и длительности материальных объектов, существующих во Вселенной.

Раскрывая сущность пространства и времени, Ньютон предлагает различать два типа этих понятий: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) пространство и время.

Разграничение абсолютного и относительного пространства и времени, произведенное Ньютоном, связано со спецификой человеческого познания, которое происходит на двух уровнях – эмпирическом и теоретическом. На эмпирическом уровне познания человек воспринимает пространство и время через свои органы чувств. Такое познание ограничено способностями познающей личности и не может адекватно передать реальность нашего мира. Лишь находясь на теоретическом уровне познания, человеческий разум способен представить пространство и время как абсолютные, универсальные и инерциальные системы отсчета.

Бог, являясь существом непространственным и вневременным, неподвластен времени, в котором все изменчиво и преходяще. Он вечен в своем бесконечном совершенстве и всемогуществе и является подлинной сущностью всякого бытия. К нему не применима категория времени, Бог существует в вечности, которая является атрибутом Бога. Чтобы полнее реализовать свою бесконечную мудрость и могущество, он создал мир из ничего, творит материю, а вместе с ней пространство и время как условия бытия материи. Но когда-нибудь мир полностью осуществит заложенный в нем при творении божественный план развития и его существование прекратиться, а вместе с миром исчезнут пространство и время. И снова будет только вечность как атрибут Бога и его бесконечная вездесущность. Подобные взгляды выражались еще Платоном, Аврелием, Августином, Фомой Аквинским и их последователями.

Проблема пространства и времени была тесно связана с концепциями близкодействия и дальнодействия. Дальнодействие мыслилось как мгновенное распространение гравитационных и электрических сил через пустое абсолютное пространство, в котором силы находят свою конечную цель благодаря божественному проведению. Концепция же близкодействия (Декарт, Гюйгенс, Френель, Фарадей) была связана с пониманием пространства как протяженности вещества и эфира, в котором свет распространяется с конечной скоростью в виде волн. Это привело в дальнейшем к понятию поля, от точки к точке которого и передавалось взаимодействие. Именно это понимание взаимодействия и пространства, развивавшееся в рамках классической физики, было унаследовано и развито далее в XX веке, после крушения гипотезы эфира, в рамках теории относительности и квантовой механики. Пространство и время вновь стали пониматься как атрибуты материи, определяющиеся ее связями и взаимодействиями.

Современное понимание пространства и времени было сформулировано в теории относительности А. Эйнштейна, по-новому интерпретировавшей реляционную концепцию пространства и времени и давней ей естественнонаучное обоснование.

Заключение

Проблема времени и пространства всегда интересовала человека. Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Физические, химические и другие величины непосредственно или опосредованно связаны с измерением длин и длинностей, то есть пространственно-временных характеристик объектов. Поэтому расширение и углубление знаний о мире связано с соответствующими учениями о пространстве и времени.

На протяжении развития этих понятий существовали разные гипотезы и о времени, и о пространстве. Некоторые отрицали возможность существования пустого пространства, а некоторые утверждали, что пустота существует, как материи и атомы, и необходима для перемещений и соединений.

Ньютоновская концепция пространства и времени, на основе которой строилась физическая картина мира, оказались господствующей вплоть до конца XIX века.

Список использованной литературы

1. Лавриенко В.Н., Ратников В.П., Баранов Г.В. Концепция современного естествознания: Учебник для 65 вузов.-2-е изд., перпераб. и доп. – М.: ЮНИТИ-ДАНА, 2002.

2. Новиков Н.Д. Куда течет река времени. М., 1990.

3. Рейхенбах Г. Философия пространства и времени. М., 1985.

4. Хокинг С. Краткая история времени. Спб., 2001

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).

Чтобы скачать бесплатно Рефераты на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Рефераты для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.

Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Если Реферат, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.

Читайте также: