Происхождение эукариотической клетки реферат по биологии

Обновлено: 02.07.2024

Вопрос о происхождении жизни на Земле интересует учёных в области биологии и геологии уже не одно столетие. По их мнению, возраст планеты составляет более 5 млрд. лет. Из курса биологии нам известно, что в природе организмы бывают одноклеточными и многоклеточными. Клетка осуществляет обмен веществ и энергии, растет, размножается, передает свои свойства по наследству, реагирует на внешнюю среду, двигается. Все это изучает наука цитология. В настоящее время при изучении клетки используют новейшие физические, химические методы, а также современные электронные микроскопы. Для изучения химического состава клетки применяют метод центрифугирования, который основан на неодинаковой плотности разных клеточных органоидов. Такое современное и подробное изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни и ее происхождения.

Теория Биохимической эволюции

В 1923 году советским биохимиком Алексеем Опариным была разработана теория биохимической эволюции. Основу этой теории составляла идея о том, что миллиарды лет назад при формировании планеты первыми органическими веществами были углеводороды, которые образовались в океане из более простых соединений, а соединения углеводорода с азотом и простейших молекул аммиака, воды, метана и водорода с рядом других химических элементов образовывали сложные органические вещества. Энергию для осуществления этих процессов создавали частые грозовые электрические разряды и интенсивная солнечная радиация, выделявшая значительное количество ультрафиолетового излучения, падавшего на Землю до того, как образовался озоновый слой. Органические вещества, постепенно накапливаясь в океане и создавали прочные молекулярные связи, которые были устойчивы к разрушающему действию ультрафиолетового излучения. Позднее теория биохимической эволюции получила развитие в трудах английского учёного Джона Холдейна, который сформулировал гипотезу о том, что жизнь явилась результатом длительных эволюционных углеродных соединений. Вещества, близкие по своему химическому составу к белкам и другим органическим соединениям, составляющие основу живых организмов, возникли на основе углеводородов. Теория биохимической эволюции, важным этапом которой явилось формирование мембранной структуры, предполагала, что с появлением мембраны ускорился процесс упорядочения и усовершенствования метаболизма, а дальнейшее усложнение обмена веществ происходило с помощью катализаторов. Теория биохимической эволюции и происхождения жизни на Земле, высказанная Алексеем Опариным, была признана многими ученые, однако из-за большого количества предположений и допущений, она вызывает некоторые сомнения. Например то, что внутренние структуры клеток почти всегда разрушаются, и обычно мы не можем отличить прокариотические клетки от эукариотических. Переход от простой прокариотической к сложной эукариотической клетке с ее многообразными субструктурами остается до сих пор загадкой для биологов. Наиболее остроумная гипотеза возникновения клетки принадлежит Саган . Она предположила, что эукариотическая клетка возникла в результате симбиоза двух или более различных прокариотических клеток. В основе этой идеи лежит тот факт, что внутри прокариотических клеток нет мембран, способных защитить всю клетку от токсических продуктов, образующихся в процессе метаболизма. Важнейший из таких продуктов - кислород, который выделялся уже при фотосинтезе. Известно что кислород, образующийся при фотосинтезе в некоторых участках клетки, способен окислить многие вещества и тем самым погубить клетку. В эукариотических клетках фотосинтез происходит в хлоропластах, и благодаря мембранам кислород уходит из клетки, не причиняя ей вреда. По теории Саган, первым шагом к образованию эукариотической клетки был симбиоз прокариотических организмов двух разных типов. При это один из них должен был быть гетеротрофным анаэробом, питавшимся органическими веществами.

Еще в начале XX в. русские ботаники А. С. Фаминцин и К. С. Мережковский выдвинули гипотезу о том, что клетка зеленых растений (эукариот) получила пластиды в результате симбиоза бесхлорофилльной клетки с клетками сине-зеленых. Эта гипотеза симбиогенетического происхождения клетки эукариот вновь привлекла внимание в середине XX в. Помимо ядерной ДНК небольшое ее количество обнаружено в митохондриях, пластидах, центриолях, в основании жгутиков.

Электронно-микроскопическое сравнение строения жгутиков и центриолей говорит о несомненности их родства. В основе этих органелл всегда находится одиннадцать трубочек, девять из которых расположены по окружности и две лежат в центре. Установлено, что внеядерная ДНК жгутиков и центриолей способна самостоятельно редуплицироваться. Оказалось, что ДНК митохондрий, пластид, по-видимому, и жгутиков, а также центриолей имеет нитчатую структуру, связанную в кольцо, как у типичных прокариот. Все эти факты позволили в конце 60-х годов вновь вернуться к гипотезе симбиогенетического происхождения клетки эукариот.

Названную гипотезу разработала американская исследовательница Л. Маргулис. Согласно этой гипотезе первичная клетка крупной прокариотической бактерии, вступив в симбиоз с клетками сине-зеленых, приобрела пластиды. Симбиоз с гетеротрофными прокариотическими клетками привел к их преобразованию в митохондрии. Симбиоз со спирохетоподобными бактериями мог привести к возникновению жгутиков и т. д. Биохимические, генетические, электронно-микроскопические данные последних лет делают гипотезу Л. Маргулис все более обоснованной. В любом случае, двойственная природа ДНК ядра и ДНК цитоплазматических органелл и удивительное сходство последней с ДНК прокариот свидетельствует о том, что симбиоз сыграл выдающуюся роль в возникновении клетки эукариот.

Методы исследования клетки

Современная цитология располагает многочисленными и разнообразными методами исследования, без которых было бы невозможно накопление и совершенствование знаний о строении и функциях клеток.

Современный световой микроскоп представляет собой весьма современный прибор, который до сих пор имеет первостепенное значение в изучении клеток и их органоидов. С помощью светового микроскопа достигается увеличение в 2000 – 2500 раз. Увеличение микроскопа зависит от его разрешающей способности, т. е. наименьшего расстояния между двумя точками, которые видны раздельно. В настоящее время создано много разнообразных моделей световых микроскопов. Они обеспечивают возможность многостороннего исследования клеточных структур и их функций.

С изобретением электронного микроскопа в 1933 году началась новая эпоха в изучении строения клетки.

С помощью современного электронного микроскопа удалось рассмотреть много новых важных органоидов клетки, которые при изучении в световом микроскопе казались просто бесструктурными участками.

Основное отличие электронного микроскопа от светового в том, что в нем вместо света используется быстрый поток электронов, а стеклянные линзы заменены электромагнитными полями. Источником электронов, т. е. катодом, служит вольфрамовая нить, нагреваемая электрическим током до раскаленного состояния. Пучок электронов, вылетающих из раскаленной вольфрамовой нити, направляется к аноду. Движение электронов от катода к аноду осуществляется под ускоряющим воздействием разности потенциалов. В центре анода имеется небольшое отверстие. Сквозь него проходят электроны, и пучок их фокусируется магнитной катушкой, играющей роль линзы, которая направляет его на объект. Когда пучок электронов уже прошел через объект, изображение его увеличивается с помощью второй магнитной катушки, которая действует как линза объектива; затем пучок электронов проходит через третью магнитную катушку, действующую в качестве окуляра или проекционной линзы и увеличивающую уже полученное изображение объекта.

Для электронномикроскопического исследования пригодны только препараты фиксированных клеток, подвергнутых очень сложной предварительной обработке. Живые клетки с помощью электронного микроскопа пока еще не исследуются. Причина этого заключается в том, что свободное движение электронов в микроскопе достигается только в достаточно высоком вакууме, а живые клетки, содержащие значительное количество воды, сильно повреждаются при помещении их в вакуум. Кроме того, живые клетки повреждаются и при облучении интенсивным потоком электронов.

Электронный микроскоп особенно широко стал применяться для биологических исследований в последние 10 – 15 лет и неизмеримо расширил возможности изучения тончайших деталей строения клетки.

Методы исследования живых клеток

Микроскопическое исследование живых клеток и тканей широко применяется в цитологии для самых различных целей, например для изучения изменений, происходящих в клетках при разнообразных внешних воздействиях, для выяснения закономерностей обмена веществ в клетках, для изучения клеточных структур, токов цитоплазмы, клеточной проницаемости и т. д.

Приготовление препаратов живых клеток. Наблюдения над живыми клетками требуют, прежде всего, приготовления специальных препаратов. Мелкие организмы, такие, как одноклеточные водоросли, простейшие, бактерии и др. переносятся вместе с каплей среды, в которой они культивируются, на предметное стекло. Препарат накрывается покровным стеклом, и его можно исследовать под микроскопом. Живые клетки из тканей многоклеточных организмов исследовать труднее, так как для приготовления препаратов эти клетки нужно отделить от ткани, что связано с нанесением им каких-то повреждений. Выделение клеток, а также наблюдения над ними необходимо производить в средах, пригодных для более или менее продолжительного переживания их и разных для различных организмов. Так, клетки растений обычно исследуются в воде, а клетки разнообразных холоднокровных и теплокровных животных – в физиологическом растворе.

Методы прижизненной окраски

Прижизненные красители – это органические соединения ароматического ряда, обладающие относительно небольшой токсичностью для живых клеток. Различаются основные и кислые красители. Проникая в клетку, они соединяются главным образом с белками, и вначале вся цитоплазма приобретает диффузную окраску, после чего некоторые красители откладываются в цитоплазме в виде гранул.

Окраска живых клеток дает возможность выявлять изменения, происходящие в клетках и тканях при разных внешних воздействиях. В последнем случае чрезвычайно важно то, что количество красителя, поглощенного неповрежденными или поврежденными путем какого-либо воздействия клетками, можно точно определить и выразить количественно. Разница в количестве красителя, поглощенного неповрежденными и поврежденными клетками, свидетельствует о характере и степени изменений, возникающих под влиянием различных внешних воздействий.

Методы микрургии (микрохирургия)

Экспериментальные методы, и в первую очередь разнообразные операции на клетках (микрооперации), стали применяться цитологами уже во второй половине прошлого столетия. Первые микрооперации проводились на сравнительно крупных объектах, например на развивающихся клетках различных животных, без использования каких-либо специальных приспособлений и при небольших увеличениях лупы или препаровального микроскопа. Микрооперации на крупных клетках и до сих пор проводятся вручную без каких-либо сложных приборов.

Микрооперации на отдельных клетках мелких размеров стали проводить только в начале XX столетия, когда был сконструирован прибор, называемый микроманипулятором. Микроманипуляторы позволяют проводить очень тонкие операции над клеткой и ее органоидами. Для этих операций требуются большие увеличения микроскопа и специальные микроинструменты, которые чаще всего изготовляются самим экспериментатором из тонких стеклянных нитей или палочек.

Методы микрургии широко применяются и для выделения тканевых клеток или одноклеточных органоидов при переносе их в новую культуральную среду или в организм животного, что особенно важно для получения клонов. Наконец, к числу сложных микрургических операций, которые начали применяться сравнительно недавно, относится извлечение и трансплантация ядер, ядрышек и других органоидов клетки. Для этих операций пригодны главным образом крупные клетки простейших и других одноклеточных организмов, а также и крупные клетки некоторых многоклеточных животных, например амфибий. Так осуществляется перемещение макронуклеуса инфузорий из одной особи в другую.

Операции по пересадке ядер дают возможность изучить роль ядра и цитоплазмы в жизни клеток, изучить изменения, происходящие в безъядерных клетках, выяснить участие ядра и цитоплазмы в передаче по наследству тех или иных признаков.

Методы микрохимического и ультрамикрохимического

К микрохимическим относятся те методы, с помощью которых производится определение от 10 до 0,01 мг вещества. Эти методы широко используются в цитологии для определения содержания в клетках белков, фосфора, аминокислот, нуклеиновых кислот, сахаров и т. д.

Но для целого ряда цитологических исследований совершенно необходимо определение очень малых количеств веществ в отдельных клетках или в отдельных частях клетки. В таких случаях применяются ультрамикрохимические методы, позволяющие проводить определение химических веществ в очень маленьком количестве материала, например в кусочках ткани, весящих 100 – 500 мкг, или в очень малых объемах растворов.

Метод рентгеносруктурного анализа

Метод рентгеносруктурного анализа основан на явлении дифракции рентгеновских лучей. Он применяется для изучения строения молекул белков, нуклеиновых кислот и других веществ, входящих в состав цитоплазмы и ядра клеток. Метод дает возможность определить пространственное расположение молекул, точно измерить расстояние между ними и изучить внутримолекулярную структуру.

Метод меченых атомов (авторадиография)

Меченые атомы широко применяются в цитологии для изучения разнообразных химических процессов, протекающих в клетке, например для изучения синтеза белков и нуклеиновых кислот, проницаемости клеточной оболочки, локализации веществ в клетке и т. д. Для этих целей применяются соединения, в которые введены радиоактивная метка. В молекуле меченого вещества, например аминокислоты или углевода, один из атомов замещен атомом того же вещества, но обладающим радиоактивностью, т. е. радиоактивным изотопом. Известно, что изотопы одного и того же элемента не отличаются друг от друга по своим химическим свойствам, и, попав в организм животного или растения, они ведут себя во всех процессах так же, как и обычные вещества. Однако благодаря тому, что эти изотопы обладают радиоактивным излучением, их можно легко обнаружить, применяя фотографический метод.

Электронная микроскопия раскрыла перед нами новый мир кристаллических систем внутри живой клетки, исследования которой имеют большое значение для разгадки множества заболеваний. Именно в клетках начинают развиваться патологические изменения, приводящие к возникновению заболеваний. Злокачественные изменения, приводящие к развитию раковых опухолей, возникают также на уровне клеток.

Изучение строения, химического состава, обмена веществ и всех проявлений жизнедеятельности клеток необходимо не только в биологии, но также и в медицине и ветеринарии.

Основные закономерности молекулярной биологии и цитологии, лежащие в основе механизмов эволюционного процесса, позволяют дать понятие о явлениях наследственности и изменчивости.

Единство строения и жизнедеятельность клеток различных организмов - одна из важнейших общебиологических закономерностей, указывающих на общность происхождения органического мира, и поэтому изучение структуры и функции клетки - важнейшая задача общей биологии.

С писок литературы

В. Азерников. Тайнопись жизни. Москва, 1973г.

Н. Н. Воронцов, Л. Н. Сухорукова. Эволюция органического мира. Москва, 1991г.

Л. Я. Кулинич. Справочник по биологии. Москва, 1986г.

Б. М. Медников. Аксиомы биологии. Москва, 1985г.

Э. Рис, М. Стернберг. От клеток к атомам. Москва, 1988г.

А. С. Трошин, А. Д. Браун, Ю. Б. Вахтин, Л. Н. Жинкин,

К. М. Суханова. Цитология. Москва, 1970г.

С. Штрбанова. Кто мы? Книга о жизни, клетках и ученых. Москва, 1984г.

Спонтанное образование органических молекул и продолжительная эволюция дали начало прокариотическим клеткам, которые появились на планете примерно 3,5 млрд. лет назад. Такую гипотезу выдвинул А. И. Опарин.

Решающим этапом в этом процессе стало появление ферментативных (каталитических) молекулярных механизмов.

Для первых клеток было характерным использование каталитических свойств белков и РНК. При этом, РНК у них выступала в качестве вещества наследственности. Постепенно структура и функции клеток становились сложнее, накапливались дополнительные каталитические белки. В итоге место молекулы РНК заняла двухцепочная ДНК, взявшая на себя функцию сохранения генетической информации.

Симбиотическая гипотеза объясняет, как появились эукариотические клетки. Согласно этой гипотезы, клеткой-хозяином выступал анаэроб. Аэробное дыхание возникло в связи с тем, что аэробные бактерии проникли в клетку-хозяина и стали сосуществовать с ней в виде митохондрий.

Благодаря наличию в зеленых растениях хлоропластов, они способны к фотосинтезу. Хлоропласты, по мнению многих, возникли из прокариотических сине-зеленых водорослей: они были симбионтами клетки-хозяина.

Состоятельность симбиотической гипотезы подтверждается следующим аргументом: в митохондриях и хлоропластах есть собственная ДНК.

Система внутриклеточных мембран, образующая гладкую и зернистую эндоплазматические сети (ЭПС), ядерную оболочку и комплекс Гольджи, является производной внешней мембраны клетки, которой характерно ветвление.

Происхождение генетического материала ядра является довольно сложным вопросом. Есть предположения, что он тоже образовался из симбиотических прокариот. Скорее всего, что увеличение числа ядерной ДНК происходило постепенно — по мере перемещения генетического материала из геномов симбионтов в участок клетки, ограниченный мембраной.

Появление митоза, как механизма, равномерно распределяющего генетический материал и воспроизводящего клетки, также было очень важным. В процессе эволюции возник еще одни механизм деления клеток — мейоз. Это решило проблему, связанную с размножением многоклеточных организмов.

В связи с переходом к половому размножению возникла комбинаторная изменчивость, а также заметно увеличилась скорость эволюции.

Все эти процессы на протяжении 1 млрд лет эволюции позволили эукариотическому типу клеточной эволюции обусловить многообразие живых организмов и пройти путь от простейших до человека.

Эволюция клетки прокариот

Ископаемые останки бактерий и цианобактерий, изученные учеными, дают основания предполагать, что начальная клеточная форма — это примитивная прокариотическая клетка, возникшая 3,5 млрд. лет назад.

Чтобы обеспечить собственное существования, клетки этого типа использовали органические молекулы небиологического происхождения. Образование мембраны, окружающей клеточное вещество, стало первым шагом на пути формирования примитивной клетки.

Позже в клетках примитивных прокариот возникли механизмы синтеза и энергетического обеспечения. У первых прокариотических клеток были простейшие каталитические системы. Поэтому основой получения ими энергии было брожение.

Затем клетки отдельных видов прокариот сменили процесс брожения на дыхание, в результате чего получение энергии стало более эффективным.

Эволюция клетки эукариот

Клетки эукариот в ходе эволюции менялись за счет увеличения разнообразия форм, структуры и функций, а также компартментализации биохимических систем и сохранения общего для всех аэробного метаболизма, происходящих одновременно.

Возникновение эукариотической клетки из прокариотической произошло примерно менее 1 млрд лет назад.

Есть 4 гипотезы, объясняющие происхождение эукариотической клетки.

Первая гипотеза происхождения эукариот

Одна из гипотез возникновения эукариот — гипотеза клеточного симбиоза. Эта гипотеза имеет наибольшее число сторонников. Согласно ей, эукариотическая клетка — это симбиотическая структура, состоящая из нескольких клеток различного типа, которые окружены общей для всех мембраной.

Многие считают, что пластиды клеток современных зеленых растений возникли из бактерий, предшественников современных цианобактерий, которые способны к фотосинтезу. Митохондрии эукариотических клеток появились из аэробных бактерий — последние вступали в симбиоз с примитивными анаэробными клетками, у которых была способность к фотосинтезу. В результате образовались клетки, которые могли существовать в кислородной атмосфере и использовать кислород в процессе дыхания.

Считается, что ядро — это рудимент какого-либо внутриклеточного симбионта, потерявшего свою цитоплазму после того, как был включен в исходную клетку.

Подтверждением этого являются данные о временных симбиотических связях отдельных организмов.

К примеру, одноклеточная зеленая водоросль хлорелла проживает в цитоплазме зеленого лишайника парамеции. Поскольку для этой водоросли характерен фотосинтез, то она является для парамеции поставщиком питательных веществ.

Пластиды и митохондрии содержат свою систему генетической информации о синтезе белков. Она представлена в виде ДНК, тРНК, мРНК и соответствующих ферментов.

Прокариоты митохондрий и хлоропластов характеризуются похожими репродуктивными способами — они размножаются с помощью простого деления пополам.

Вторая гипотеза происхождения эукариот

Последователи второй гипотезы утверждают, что эукариотическая клетка образовалась от клетки прокариот и содержала несколько геномов, которые были прикреплены к клеточной мембране.

Впячивание клеточной мембраны внутрь цитоплазмы привело к образованию мезосом, у которых в первое время была способность к фотосинтезу. Потом произошла специализация этих органелл: одна из них потеряла способность к дыханию и фотосинтезу и преобразовалась в ядро, а другие — развили эти опции, дав начало митохондриям и пластидам.

Подтверждение этой гипотезы — наличие двойного строения мембран ядра, пластид и митохондрий.

Третья гипотеза происхождения эукариот

В ее основе — мысль о том, что все живые формы произошли от предковых анаэробных гетеротрофов. Эукариоты — это сублиния бесстеночных анаэробных прокариот, у которых есть способность к эндоцитозу.

Четвертая гипотеза происхождения эукариот

Возникновение клеток эукариот произошло из прокариот — изначально они содержали множество распадающихся на части геномов, давших начало структурам с различными функциями. Завершающим этапом было клонирование структур с подобными функциями. Далее они покрывались двойными мембранами, происходило образование ядра, митохондрий и мембранной сети.

Также можно утверждать о схожести генетического кода, который находится в ядерной и митохондриальной ДНК, и регуляции дыхательной функции ядра и митохондрий.

Из всех перечисленных первая гипотеза самая популярная. При этом важно обозначить, что, несмотря на похожесть митохондрий и хлоропластов на временные бактерии-аэробы и цианобактерии, между ними существуют заметные различия. Одно из таких различий заключается в том, что митохондрии и хлоропласты содержат меньше ДНК, чем клетки бактерий.

Эволюционируя, митохондрии и хлоропласты постоянно меняли свои размеры.

Геном эукариот развивался при помощи объединения молекул ДНК и белков. Хроматин и хромосомы в этом случае формировались разной формы и в различном количестве. Отмечалась специализация хроматина: формировались эухроматин и гетерохроматин, аутосомы и половые хромосомы.

Пока не до конца понятно, почему в ходе эволюции у конкретных организмов сформировалось именно такое количество хромосом. Зачастую у примитивных организмов их больше, чем в клетках более эволюционно развитых.

Но что точно ясно, так это то, что в образовании новых видов большую роль играли структурные и количественные изменения в кариотипах. Кроме того, в это же время усложнялась структура и функции компонентов клетки, происходило развитие регуляторных механизмов.

Большое значение также имело эволюционное развитие митоза. Важное условие, обеспечивающее многоклеточность — точное распределение хромосом в процессе митоза. Но логичных объяснений происхождения самого митоза нет. Предполагают, что он развивался из примитивного митоза, в ходе которого при расхождении реплицировавшихся хромосом не происходило разрушения ядерной мембраны.

Расцвет эукариот на Земле начался около 1 млрд лет назад, хотя первые из них появились намного раньше (возможно 2,5 млрд лет назад). Происхождение эукариот могло быть связано с вынужденной эволюцией прокариотических организмов в атмосфере, которая стала содержать кислород.

Симбиогенез — основная гипотеза происхождения эукариот

Существует несколько гипотез о путях возникновения эукариотических клеток. Наиболее популярная — симбиотическая гипотеза (симбиогенез). Согласно ей, эукариоты произошли в результате объединения в одной клетке разных прокариот, которые сначала вступили в симбиоз, а затем, все более специализируясь, стали органоидами единого организма-клетки. Как минимум симбиотическое происхождение имеют митохондрии и хлоропласты (пластиды вообще). Произошли они от бактериальных симбионтов.

Клеткой-хозяином мог быть относительно крупный анаэробный гетеротрофный прокариот, похожий на амебу. В отличие от других, он мог приобрести способность питаться путем фаго- и пиноцитоза, что позволяло ему захватывать других прокариот. Они не все переваривались, а снабжали хозяина продуктами своей жизнедеятельности). В свою очередь, получали от него питательные вещества.

Митохондрии произошли от аэробных бактерий и позволили клетке-хозяину перейти к аэробному дыханию, которое не только намного эффективней, но и облегчает существование в атмосфере, содержащей достаточно большое количество кислорода. В такой среде аэробные организмы получают преимущество над анаэробными.

Позже в некоторых клетках поселились похожие на ныне живущих синезеленых водорослей (цианобактерий) древние прокариоты. Они стали хлоропластами, дав начало эволюционной ветви растений.

Кроме митохондрий и пластид симбиотическое происхождение могут иметь жгутики эукариот. В них превратились симбионты-бактерии наподобие современных спирохет, имеющих жгутик. Считается, что в последствии из базальных тел жгутиков произошли центриоли, столь важные структуры для механизма клеточного деления эукариот.

Эндоплазматическая сеть, комплекс Гольджи, пузырьки и вакуоли могли произойти от наружной мембраны ядерной оболочки. С другой точки зрения, некоторые из перечисленных органелл могли возникнуть путем упрощения митохондрий или пластид.

Во многом неясным остается вопрос происхождения ядра. Могло ли оно также образоваться из прокариота-симбионта? Количество ДНК в ядре современных эукариот во много раз превышает его количество в митохондриях и хлоропластах. Возможно часть генетической информации последних со временем переместилась в ядро. Также в процессе эволюции происходило дальнейшее увеличение размера ядерного генома.

Кроме того в симбиотической гипотезе происхождения эукариот не все так однозначно с клеткой-хозяином. Им мог и не быть один вид прокариот. Используя методы сравнения геномов, ученые делают вывод, что клетка-хозяин близок к археям, при этом сочетает в себе признаки архей и ряда неродственных групп бактерий. Отсюда можно сделать вывод, что появление эукариот происходило в сложном сообществе прокариот. При этом процесс скорее всего начался с метаногенной археи, вступавшей в симбиоз с другими прокариотами, что было вызвано необходимостью обитания в кислородной среде. Появление фагоцитоза способствовало притоку чужих генов, а ядро образовалось для защиты генетического материала.

Молекулярный анализ показал, что различные белки эукариот происходят от разных групп прокариот.

Доказательства симбиогенеза

В пользу симбиотического происхождения эукариот говорит то, что митохондрии и хлоропласты имеют собственную ДНК, причем кольцевую и не связанную с белками (также обстоит дело у прокариот). Однако в генах митохондрий и пластид есть интроны, чего нет у прокариот.

Пластиды и митохондрии не воспроизводятся клеткой с нуля. Они образуются из ранее существующих таких же органелл путем их деления и последующего роста.

В настоящее время существуют амебы, у которых нет митохондрий, а вместо них есть бактерии симбионты. Также есть простейшие, сожительствующие с одноклеточными водорослями, выполняющими в клетке-хозяине роль хлоропластов.

Инвагинационная гипотеза происхождения эукариот

Кроме симбиогенеза существуют и другие взгляды на происхождение эукариот. Например, инвагинационная гипотеза. Согласно ей, предком эукариотической клетки был не анаэробный, а аэробный прокариот. К такой клетке могли прикрепляться другие прокариоты. Потом их геномы объединялись.

Ядро, митохондрии и пластиды возникли путем впячивания и отшнуровывания участков клеточной мембраны. В эти структуры попадала чужеродная ДНК.

Усложнение генома происходило в процессе дальнейшей эволюции.

Инвагинационная гипотеза происхождения эукариот хорошо объясняет наличие двойной мембраны у органелл. Однако она не объясняет, почему система биосинтеза белка в хлоропластах и митохондриях сходна с прокариотической, в то время как таковая в ядерно-цитоплазматическом комплексе имеет ключевые отличия.

Причины эволюции эукариот

Все разнообразие жизни на Земле (от простейших до покрытосеменных и млекопитающих) дали клетки эукариотического, а не прокариотического типа. Возникает вопрос, почему? Очевидно, ряд особенностей, возникших у эукариот, существенно повысили их эволюционные возможности.

Во-первых, у эукариот есть ядерный геном, который во много раз превосходит количество ДНК у прокариот. При этом эукариотические клетки диплоидны, кроме этого в каждом гаплоидном наборе определенные гены многократно повторяются. Все это обеспечивает, с одной стороны, большие масштабы для мутационной изменчивости, а с другой — уменьшает угрозу резкого снижения жизнеспособности в результате вредной мутации. Таким образом, эукариоты, в отличие от прокариот, обладают резервом наследственной изменчивости.

Эукариотические клетки имеют более сложный механизм регуляции жизнедеятельности, у них существенно больше различных регуляторных генов. Кроме того, молекулы ДНК образовали комплексы с белками, что позволило наследственному материалу упаковываться и распаковываться. Все вместе это дало возможность считывать информацию частями, в разных сочетаниях и количестве, в разное время. (Если в клетках прокариот транскрибируется почти вся информация генома, то в эукариотических клетках обычно менее половины.) Благодаря этому эукариоты могли специализироваться, лучше приспосабливаться.

У эукариот появились митоз, а затем и мейоз. Митоз позволяет воспроизводить генетически сходные клетки, а мейоз сильно увеличивает комбинативную изменчивость, что ускоряет эволюцию.

Большую роль в процветании эукариот сыграло приобретенное их предком аэробное дыхание (хотя оно есть и у многих прокариот).

На заре своей эволюции эукариоты обзавелись эластичной оболочкой, обеспечивавшей возможность фагоцитоза, и жгутиками, позволившими им двигаться. Это дало возможность эффективней питаться.

Читайте также: