Принципы построения баз данных реферат

Обновлено: 08.07.2024

В настоящее время успешное функционирование различных фирм, организаций и предприятий просто не возможно без развитой информационной системы, которая позволяет автоматизировать сбор и обработку данных. Обычно для хранения и доступа к данным, содержащим сведения о некоторой предметной области, создается база данных.

База данных (БД) - именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области. Под предметной областью понимается некоторая область человеческой деятельности или область реального мира, на основе которой создается БД и её структура.

Система управления базами данных (СУБД) - совокупность языковых и программных средств, предназначенных для создания, наполнения, обновления и удаления баз данных.

Принципы построения баз данных

К современным базам данных, а, следовательно, и к СУБД, на которых они строятся, предъявляются следующие основные требования:

· Высокое быстродействие (малое время отклика на запрос). Время отклика - промежуток времени от момента запроса к БД до фактического получения данных.

· Простота обновления данных.

· Независимость данных - возможность изменения логической и физической структуры БД без изменения представлений пользователей.

· Совместное использование данных многими пользователями.

· Безопасность данных - защита данных от преднамеренного или непреднамеренного нарушения секретности, искажения или разрушения.

· Стандартизация построения и эксплуатации БД (фактически СУБД).

· Адекватность отображения данных соответствующей предметной области.

· Простой интерфейс пользователя.

Важнейшими являются первые два противоречивых требования: повышение быстродействия требует упрощения структуры БД, что, в свою очередь, затрудняет процедуру обновления данных, увеличивает их избыточность.

Безопасность данных включает их целостность и защиту. Целостность данных - устойчивость хранимых данных к разрушению и уничтожению, связанных с неисправностями технических средств, системными ошибками и ошибочными действиями пользователей. Она предполагает:

· отсутствие неточно введенных данных или двух одинаковых записей об одном и том же факте;

· защиту от ошибок при обновлении БД;

· невозможность удаления (или каскадное удаление) связанных данных разных таблиц;

· неискажение данных при работе в многопользовательском режиме и в распределенных базах данных;

· сохранность данных при сбоях техники (восстановление данных).

Целостность обеспечивается триггерами целостности - специальными приложениями-программами, работающими при определенных условиях. Защита данных от несанкционированного доступа предполагает ограничение доступа к конфиденциальным данным и может достигаться:

· введением системы паролей;

· получением разрешений от администратора базы данных (АБД);

· запретом от АБД на доступ к данным;

· формирование видов - таблиц, производных от исходных и предназначенных конкретным пользователям.

Стандартизация обеспечивает преемственность поколений СУБД, упрощает взаимодействие БД одного поколения СУБД с одинаковыми и различными моделями данных. При этом может быть осуществлен как локальный, так и удаленный доступ к данным (технология клиент/сервер или сетевой вариант).

Проектирование баз данных - процесс решения класса задач, связанных с созданием баз данных.

Основные задачи проектирования баз данных :

· Обеспечение хранения в БД всей необходимой информации.

· Обеспечение возможности получения данных по всем необходимым запросам.

· Сокращение избыточности и дублирования данных.

· Обеспечение целостности данных (правильности их содержания): исключение противоречий в содержании данных, исключение их потери и т.д.

Основные этапы проектирования баз данных:

Основные элементы данной модели:

· Описание объектов предметной области и связей между ними.

· Описание информационных потребностей пользователей (описание основных запросов к БД).

· Описание алгоритмических зависимостей между данными.

· Описание ограничений целостности, т.е. требований к допустимым значениям данных и к связям между ними.

2) Логическое (даталогическое) проектирование – отображение инфологической модели на модель данных, используемую в конкретной СУБД, например на реляционную модель данных. Для реляционных СУБД даталогическая модель – набор таблиц, обычно с указанием ключевых полей, связей между таблицами. Если инфологическая модель построена в виде ER-диаграмм (или других формализованных средств), то даталогическое проектирование представляет собой построение таблиц по определённым формализованным правилам, а также нормализацию этих таблиц. Этот этап может быть в значительной степени автоматизирован.

3) Физическое проектирование – реализация даталогической модели средствами конкретной СУБД, а также выбор решений, связанных с физической средой хранения данных: выбор методов управления дисковой памятью, методов доступа к данным, методов сжатия данных и т.д. – эти задачи решаются в основном средствами СУБД и скрыты от разработчика БД.

На этапе инфологического проектирования в ходе сбора информации о предметной области требуется выяснить:

· основные объекты предметной области (объекты, о которых должна храниться информация в БД);

Современные информационные системы характеризуются большими объемами хранимых данных, их сложной организацией, а также высокими требованиями к скорости и эффективности обработки этих данных. Это становится возможным при использовании специальных программных средств - систем управления базами данных (СУБД).

База данных (БД) - это поименованная совокупность данных, относящихся к определенной предметной области.

Система управления базами данных - это комплекс программных и языковых средств, необходимых для создания, обработки баз данных и поддержания их в актуальном состоянии.

Почти все современные СУБД основаны на реляционной модели данных. Название "реляционная" связано с тем, что каждая запись в такой базе данных содержит информацию, относящуюся (related) только к одному объекту. Кроме того, с данными о двух объектах можно работать как с единым целым , основанным на значениях связанных между собой данных. Все данные в реляционной БД представлены в виде таблиц. Каждая строка таблицы содержит информацию только об одном объекте и называется записью . Столбец таблицы содержит однотипную для всех записей информацию и называется полем .

Для успешного функционирования базы данных важна правильная организация данных в ней. При определении структуры данных в базе выделяют следующие основные понятия.

Класс объектов - совокупность объектов, обладающих одинаковым набором свойств. Например, в базе данных о ВУЗе классами объектов являются студенты, преподаватели, предметы. Для каждого отдельного объекта из данного класса объектов в таблице создается отдельная запись.

Свойство (атрибут) - определенная часть информации о некотором объекте. Хранится в виде столбца ( поля ) таблицы. Например, фамилия, имя, отчество - это свойства для объекта Студент .

Связь (отношение) - способ , которым связана информация о разных объектах.

Типы связей между объектами

Основным структурным компонентом базы данных, как правило, является таблица. При определении состава таблиц следует руководствоваться правилом: в каждой таблице должны храниться данные только об одном классе объектов . Например, в одной таблице нельзя хранить анкетные данные студента и фамилии преподавателей, которым он сдавал экзамены, т.к. это свойства разных классов объектов.

Если в базе данных должна содержаться информация о разных классах объектов, то она должна быть разбита на отдельные таблицы. Связь между таблицами осуществляется с помощью общих полей.

Связи между любыми двумя таблицами относятся к одному из трех типов: один-к-одному (1:1) , один-ко-многим (1:М) и много-ко-многим (М:М).

Связь типа “один-к-одному” (1:1)

При этом типе связи каждой записи в одной таблице соответствует не более одной записи в другой таблице. Этот вид связи встречается довольно редко. В основном в тех случаях, когда часть информации об объекте либо редко используется, либо является конфиденциальной (такая информация хранится в отдельной таблице, которая защищена от несанкционированого доступа).

Связь типа “один-ко-многим” (1:М)

При таком типе связи каждой записи в одной таблице соответствует несколько записей в связанной таблице. Этот наиболее распространенный тип связей. Для его реализации используются две таблицы. Одна из них представляет сторону "один", другая - сторону "много". Например, нужно иметь информацию о студентах и результатах сдачи ими экзаменов (дата сдачи, предмет, оценка и т.д.). Если все это хранить в одной таблице, то ее объем неоправданно возрастет, т.к. в ней для каждой записи об очередном экзамене должны повторяться все анкетные сведения о студенте. Поскольку Студент и Экзамены - это разные классы объектов, то и свойства их должны храниться в разных таблицах.

Решением этой задачи является создание двух таблиц. Условно назовем их Студенты и Экзамены . В каждой из них хранятся соответствующие свойства. Для связи этих таблиц нужно использовать только часть информации о студенте, сдающем экзамен. Но она должна однозначно определять каждого студента среди всех. Такой информацией может явиться, например, номер зачетки (он уникален для каждого студента).

В таблице со стороны "один" ( в нашем примере Студенты ) такие поля называются ключевыми . Основное требование к значениям в ключевых полях - это их уникальность для каждой записи (т.е. они не должны повторяться).

Связь типа “много-ко-многим” (М:М)

При таком типе связи множеству записей в одной таблице соответствует множество записей в связанной таблице. Большинство современных СУБД непосредственно не поддерживают такой тип связи . Для его реализации такая связь разбивается на две связи типа один-ко-многим . Соответсвенно, для хранения информации потребуется уже три таблицы: две со стороны "много" и одна со стороны "один". Связь между этими тремя таблицами также осуществляется по общим полям.

Структура MS Access 97

Первая версия MS Access была создана в 1993 г. фирмой Microsoft. MS Access - это функционально полная реляционная СУБД, работающая в среде Windows. Access позволяет создавать сложные базы данных, определяя структуру таблиц, связи между ними. Access обладает совершенной системой создания запросов, отчетов и форм любой сложности. В Access, как любом приложении Windows, можно использовать все возможности обмена данными между приложениями (DDE и OLE), что позволяет включить в базу данных графическую и (или) звуковую информацию.

В Access база данных включает в себя все объекты, связанные с хранимыми данными (таблицы, формы, отчеты, запросы, макросы, модули). Все объекты Access хранятся в одном файле с расширением .mdb. В таблицах хранятся данные, которые можно просматривать, редактировать, добавлять. Используя формы, можно выводить данные на экран в удобном виде, просматривать и изменять их. Запросы позволяют быстро выбирать необходимую информацию из таблиц. С помощью отчетов можно создавать различные виды документов для вывода на печать. макросы и модули позволяют автоматизировать работу с базой данных.

Справочная система MS Access 97

В Access97 реализована мощная система оперативной помощи, которая предоставляет пользователям возможность получения справочной информации без прерывания работы с программой. В Access предусмотрено несколько способов быстрого доступа к справочной информации с помощью команд из меню Справка.

Выбор пункта Вызов справки выводитна экран диалоговое окно справочной системы, содержащее три вкладки: Содержание, Предметный указатель и Поиск . Первые две вкладки снабжены краткими инструкциями, вкладка Поиск вызывает вспомогательное диалоговое окно. В нижней части окна расположены управляющие клавиши. Окно справочной системы всегда расположено поверх всех остальных окон.

Вкладка Содержание открывает страницу с перечнем папок, содержащих разделы справочной системы, этой вкладкой удобно пользоваться при систематическом изучении разделов Access. При единичных обращениях к справке, удобнее пользоваться вкладкой Предметный указатель . Вкладкой Поиск обычно пользуются в тех случаях, когда не удается разрешить вопрос первыми двумя способами.

Помощник MS Office

Помощник MS Office появляется на экране сразу после запуска Access 97 и выдает советы и справки об особенностях работы Access 97.

В англоязычной версии Access, помощник умеет отвечать на вопросы. В русской редакции это свойство отсутствует, он лишь периодически выводит на экран полезные советы. Кроме этого помощник подбирает разделы справки о выполняемом задании.

Что это такое?


Эта команда меню Справка позволяет выяснить назначение различных элементов диалоговых окон. Для вывода пояснения к любому из элементов окна диалога достаточно нажать кнопку в области заголовка окна, при этом к указателю мыши “прилипает” знак вопроса. Чтобы узнать назначение какого-либо элемента окна, достаточно поместить на этот элемент указатель и щелкнуть клавишей мыши.

Начало работы с MS Access


Запуск Access осуществляется двойным щелчком мыши по значку MS Access на рабочем столе, в окне Microsoft Office.

После запуска на экране появится рабочий экран программы MS Access 97, в верхней строке которого расположено Главное меню , а под ним панель инструментов . Она содержит кнопки, дублирующие действия команд главного меню. С помощью команды Вид\Панели инструментов можно самостоятельно определить, которые из них будут отображены на экране.

В средней части расположено начальное окно Microsoft Access , состоящее из двух полей. Верхнее поле предлагает создать новую БД и содержит кнопки для выбора способа ее создания: с помощью конструктора (Новая база данных ) или с помощью Мастера баз данных (Запуск мастера ). Нижнее поле этого окна предлагает открыть уже созданную ранее БД.

После нажатия кнопки Новая база данных Access97 запрашивает имя для файла, в котором будет храниться база данных и открывает окно новой базы данных (рис.1).

Нажав кнопку Запуск Мастера Access97 приглашает создать базу данных, используя некоторые стандартые темы приложений из своей библиотеки. Эти приложения включают в себя весь необходимый набор объектов: таблицы, запросы, формы, отчеты, макросы, модули. Из предложенных примеров можно выбрать подходящий и на его основе создать свою БД. После этого пользователю остается только ввести в таблицы нужные данные.

Мастер баз данных не может учитывать все нюансы конкретного применения БД, поэтому созданное таким образом приложение можно откорректировать, используя режим Конструктора для нужного объекта БД .

Создание новой базы данных с помощью Конструктора

После запуска Access нужно щелкнуть на кнопке Новая база данных в окне Miсrosoft Access и в предложенном диалоговом окне задать имя для файла БД. После этого на экране появляется окно базы данных (рис.1), из которого можно получить доступ ко всем ее объектам: таблицам, запросам, отчетам, формам, макросам, модулям.

Для создания новой таблицы нужно перейти на вкладку Таблица и нажать кнопку Создать. В следующем окне следует выбрать способ создания таблицы - Конструктор .

После этого Access выводит окно Конструктора таблицы (рис.2), в котором задаются имена, типы и свойства полей для создаваемой таблицы .

Имя поля не должно превышать 68 символа и в нем нельзя использовать символы ! . [ ] .

Каждая строка в столбце Тип данных является полем со списком, элементами которого являются типы данных Access (таблица 1). Тип поля определяется характером вводимых в него данных.

Среди типов данных Access есть специальный тип - Счетчик . В поле этого типа Access автоматически нумерует строки таблицы в возрастающей последовательности. Редактировать значения такого поля нельзя.

Каждое поле обладает индивидуальными свойствами, по которым можно установить, как должны сохраняться, отображаться и обрабатываться данные. Набор свойств поля зависит от выбранного типа данных. Для определения свойств поля используется бланк Свойства поля в нижней части окна конструктора таблиц.

Размер поля - определяется только для текстовых и Memo-полей; указывает максимальное количество символов в данном поле. По умолчанию длина текстового поля составляет 50 символов

Формат поля – определяется для полей числового, денежного типа, полей типа Счетчик и Дата\Время . Выбирается один из форматов представления данных.

Число десятичных знаков - определяет количество разрядов в дробной части числа.

Маска ввода - определяет шаблон для ввода данных. Например, можно установить разделители при вводе телефонного номера

Подпись поля - содержит надпись, которая может быть выведена рядом с полем в форме или отчете ( данная надпись может и не совпадать с именем поля, а также может содержать поясняющие сведения).

Значение по умолчанию - содержит значение, устанавливаемое по умолчанию в данном поле таблицы. Например, если в поле Город ввести значение по умолчанию Уфа , то при вводе записей о проживающих в Уфе, это поле можно пропускать, а соответствующее значение (Уфа) будет введено автоматически. Это облегчает ввод значений, повторяющихся чаще других.

Восприятие реального мира можно соотнести с последовательностью разных, хотя иногда и взаимосвязанных, явлений. С давних времен люди пытались описать эти явления (даже тогда, когда не могли их понять). Такое описание называют данными.

Традиционно фиксация данных осуществляется с помощью конкретного средства общения, например, с помощью естественного языка на конкретном носителе.

В настоящее время успешное функционирование различных фирм, организаций и предприятий просто не возможно без развитой информационной системы, которая позволяет автоматизировать сбор и обработку данных. Обычно для хранения и доступа к данным, содержащим сведения о некоторой предметной области, создается база данных.

База данных (БД) — именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области.

Под предметной областью принято понимать некоторую область человеческой деятельности или область реального мира, подлежащих изучению для организации управления и автоматизации, например, предприятие, вуз и.т.д.

Система управления базами данных (СУБД) — совокупность языковых и программных средств, предназначенных для создания, наполнения, обновления и удаления баз данных.

Программы, с помощью которых пользователи работают с БД, называются приложениями.

1. ПРИНЦИПЫ ПОСТРОЕНИЯ БАЗ ДАННЫХ

К современным базам данных, а, следовательно, и к СУБД, на которых они строятся, предъявляются следующие основные требования.

1. Высокое быстродействие (малое время отклика на запрос).

Время отклика - промежуток времени от момента запроса к БД до фактического получения данных. Похожим является термин время доступа - промежуток времени между выдачей команды записи (считывания) и фактическим получением данных. Под доступом понимается операция поиска, чтения данных или записи их. Часто операции записи, удаления и модификации данных называют операцией обновления.

2. Простота обновления данных.

3. Независимость данных.

4. Совместное использование данных многими пользователями.

5. Безопасность данных - защита данных от преднамеренного или непреднамеренного нарушения секретности, искажения или разрушения.

6. Стандартизация построения и эксплуатации БД (фактически СУБД).

7. Адекватность отображения данных соответствующей предметной области.

8. Дружелюбный интерфейс пользователя.

Важнейшими являются первые два противоречивых требования: повышение быстродействия требует упрощения структуры БД, что, в свою очередь, затрудняет процедуру обновления данных, увеличивает их избыточность.

Независимость данных - возможность изменения логической и физической структуры БД без изменения представлений пользователей.

Безопасность данных включает их целостность и защиту.

Целостность данных - устойчивость хранимых данных к разрушению и уничтожению, связанных с неисправностями технических средств, системными ошибками и ошибочными действиями пользователей.

1. отсутствие неточно введенных данных или двух одинаковых записей об одном и том же факте;

2. защиту от ошибок при обновлении БД;

3. невозможность удаления (или каскадное удаление) связанных данных разных таблиц;

4. неискажение данных при работе в многопользовательском режиме и в распределенных базах данных;

5. сохранность данных при сбоях техники (восстановление данных).

Целостность обеспечивается триггерами целостности – специальными приложениями-программами, работающими при определенных условиях. Защита данных от несанкционированного доступа предполагает ограничение доступа к конфиденциальным данным и может достигаться:

1. введением системы паролей;

2. получением разрешений от администратора базы данных (АБД);

3. запретом от АБД на доступ к данным;

4. формирование видов - таблиц, производных от исходных и предназначенных конкретным пользователям.

Три последние процедуры легко выполняются в рамках языка структуризованных запросов Structured Query Language - SQL, часто называемого SQL2.

Стандартизация обеспечивает преемственность поколений СУБД, упрощает взаимодействие БД одного поколения СУБД с одинаковыми и различными моделями данных. Стандартизация (ANSI/SPARC) осуществлена в значительной степени в части интерфейса пользователя СУБД и языка SQL. Это позволило успешно решить задачу взаимодействия различных реляционных СУБД как с помощью языка SQL, так и с применением приложения Open DataBase Connection (ODBC). При этом может быть осуществлен как локальный, так и удаленный доступ к данным (технология клиент/сервер или сетевой вариант).

2. КОНЦЕПЦИЯ ПОСТРОЕНИЯ БАЗЫ ДАННЫХ

Существует два подхода к построению БД, базирующихся на двух подходах к созданию автоматизированной системы управления (АСУ).

Первый из них, широко использовавшийся в 80-е годы и потому получивший название классического (традиционного), связан с автоматизацией документооборота (совокупность документов, движущихся в процессе работы предприятия). Исходными и выходными координатами являлись документы, как это видно из примера1.

Использовался следующий тезис. Данные менее подвижны, чем алгоритмы, поэтому следует создать универсальную БД, которую затем можно использовать для любого алгоритма. Однако вскоре выяснилось, что создание универсальной БД проблематично. Господствовавшая до недавнего времени концепция интеграции данных при резком увеличении их объема оказалась несостоятельной. Более того, стали появляться приложения (например, текстовые, графические редакторы), базирующиеся на широко используемых стандартных алгоритмах.

К 90-м годам сформировался второй, современный подход, связанный с автоматизацией управления. Он предполагает первоначальное выявление стандартных алгоритмов приложений (алгоритмов бизнеса в зарубежной терминологии), под которые определяются данные, а стало быть, и база данных. Объектно-ориентированное программирование только усилило значимость этого подхода.

В работе БД возможен одно- и многопользовательский (несколько пользователей подключаются к одному компьютеру через разные порты) режимы.

Используют восходящее и нисходящее проектирование БД. Первое применяют в распределенных БД при интеграции спроектированных локальных баз данных, которые могут быть выполнены с использованием различных моделей данных. Более характерным для централизованных БД является нисходящее проектирование.

3. ЭТАПЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ

Проектирование баз данных происходит в четыре этапа.

На этапе формулирования и анализа требований устанавливаются цели организации, определяются требования к БД. Они состоят из общих требований, определенных в разделе 1, и специфических требований. Для формирования специфических требований обычно используется методика интервьюирования персонала различных уровней управления. Все требования документируются в форме, доступной конечному пользователю и проектировщику БД.

Этап концептуального проектирования заключается в описании и синтезе информационных требований пользователей в первоначальный проект БД. Исходными данными могут быть совокупность документов пользователя при классическом подходе или алгоритмы приложений (алгоритмы бизнеса) при современном подходе. Результатом этого этапа является высокоуровневое представление (в виде системы таблиц БД) информационных требований пользователей на основе различных подходов.

Сначала выбирается модель БД. Затем создается структура БД, которая заполняется данными с помощью систем меню, экранных форм или в режиме просмотра таблиц БД. Здесь же обеспечивается защита и целостность (в том числе ссылочная) данных с помощью СУБД или путем построения триггеров.

В процессе логического проектирования высокоуровневое представление данных преобразуется в структуру используемой СУБД. Основной целью этапа является устранение избыточности данных с использованием специальных правил нормализации. Цель нормализации – минимизировать повторения данных и возможные структурные изменения БД при процедурах обновления. Это достигается разделением (декомпозицией) одной таблицы в две или несколько с последующим использованием при запросах операции навигации. Заметим, что навигационный поиск снижает быстродействие БД, т.е. увеличивает время отклика на запрос. Полученная логическая структура БД может быть оценена количественно с помощью различных характеристик (число обращений к логическим записям, объем данных в каждом приложении, общий объем данных). На основе этих оценок логическая структура может быть усовершенствована с целью достижения большей эффективности.

Специального обсуждения заслуживает процедура управления БД. Она наиболее проста в однопользовательском режиме. В многопользовательском режиме и в распределенных БД процедура сильно усложняется. При одновременном доступе нескольких пользователей без принятия специальных мер возможно нарушение целостности. Для устранения этого явления используют систему транзакций и режим блокировки таблиц или отдельных записей.

На этапе физического проектирования решаются вопросы, связанные с производительностью системы, определяются структуры хранения данных и методы доступа.

Взаимодействие между этапами проектирования и словарной системой необходимо рассматривать отдельно. Процедуры проектирования могут использоваться независимо в случае отсутствия словарной системы. Сама словарная система может рассматриваться как элемент автоматизации проектирования.

Средства проектирования и оценочные критерии используются на всех стадиях разработки. В настоящее время неопределенность при выборе критериев является наиболее слабым местом в проектировании БД. Это связано с трудностью описания и идентификации большого числа альтернативных решений.

Проще обстоит дело при работе с количественными критериями, к которым относятся время ответа на запрос, стоимость модификации, стоимость памяти, время на создание, стоимость на реорганизацию. Затруднение может вызывать противоречие критериев друг другу.

В то же время существует много критериев оптимальности, являющихся неизмеримыми свойствами, трудно выразимыми в количественном представлении или в виде целевой функции.

К качественным критериям могут относиться гибкость, адаптивность, доступность для новых пользователей, совместимость с другими системами, возможность конвертирования в другую вычислительную среду, возможность восстановления, возможность распределения и расширения.

Процесс проектирования является длительным и трудоемким и обычно продолжается несколько месяцев. Основными ресурсами проектировщика БД являются его собственная интуиция и опыт, поэтому качество решения во многих случаях может оказаться низким.

Основными причинами низкой эффективности проектируемых БД могут быть:

1. недостаточно глубокий анализ требований (начальные этапы проектирования), включая их семантику и взаимосвязь данных;

2. большая длительность процесса структурирования, делающая этот процесс утомительным и трудно выполняемым при ручной обработке.

В этих условиях важное значение приобретают вопросы автоматизации разработки.

1 Балдин К. В. Информационные системы в экономике: Учебник / К. В. Балдин. – ИНФРА – М, 2008. – 395 с.

2 Барановская Т. П. Информационные системы и технологии в экономике: Учебник / Т. П. Барановская, М. И. Семенов, А. И. Трубилин. - ЮНИТИ – ДАНА, 2007. – 198 с.

3 Исаев Г. И. Информационные системы в экономике / Г. И. Исаев. – Омега – Л, 2008. – 464 с.

4 Филимонова Е. В. Информационные системы в экономике / Е. В. Филимонова, Н. А. Черненко, А. С. Шубин. – М.: Феникс, 2008. – 448 с.

5 Чернышов Ю. И. Информационные технологии в экономике / Ю. И. Чернышов. – Горячая Линия – Телеком, 2008. – 240 с.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Восприятие реального мира можно соотнести с последовательностью разных, хотя иногда и взаимосвязанных, явлений. С давних времен люди пытались описать эти явления (даже тогда, когда не могли их понять). Такое описание называют данными.

Традиционно фиксация данных осуществляется с помощью конкретного средства общения, например, с помощью естественного языка на конкретном носителе.

В настоящее время успешное функционирование различных фирм, организаций и предприятий просто не возможно без развитой информационной системы, которая позволяет автоматизировать сбор и обработку данных. Обычно для хранения и доступа к данным, содержащим сведения о некоторой предметной области, создается база данных.

База данных (БД) — именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области.

Под предметной областью принято понимать некоторую область человеческой деятельности или область реального мира, подлежащих изучению для организации управления и автоматизации, например, предприятие, вуз и.т.д.

Система управления базами данных (СУБД) — совокупность языковых и программных средств, предназначенных для создания, наполнения, обновления и удаления баз данных.

Программы, с помощью которых пользователи работают с БД, называются приложениями.

1. ПРИНЦИПЫ ПОСТРОЕНИЯ БАЗ ДАННЫХ

К современным базам данных, а, следовательно, и к СУБД, на которых они строятся, предъявляются следующие основные требования.

1. Высокое быстродействие (малое время отклика на запрос).

Время отклика - промежуток времени от момента запроса к БД до фактического получения данных. Похожим является термин время доступа - промежуток времени между выдачей команды записи (считывания) и фактическим получением данных. Под доступом понимается операция поиска, чтения данных или записи их. Часто операции записи, удаления и модификации данных называют операцией обновления.

2. Простота обновления данных.

3. Независимость данных.

4. Совместное использование данных многими пользователями.

5. Безопасность данных - защита данных от преднамеренного или непреднамеренного нарушения секретности, искажения или разрушения.

6. Стандартизация построения и эксплуатации БД (фактически СУБД).

7. Адекватность отображения данных соответствующей предметной области.

8. Дружелюбный интерфейс пользователя.

Важнейшими являются первые два противоречивых требования: повышение быстродействия требует упрощения структуры БД, что, в свою очередь, затрудняет процедуру обновления данных, увеличивает их избыточность.

Независимость данных - возможность изменения логической и физической структуры БД без изменения представлений пользователей.

Безопасность данных включает их целостность и защиту.

Целостность данных - устойчивость хранимых данных к разрушению и уничтожению, связанных с неисправностями технических средств, системными ошибками и ошибочными действиями пользователей.

1. отсутствие неточно введенных данных или двух одинаковых записей об одном и том же факте;

2. защиту от ошибок при обновлении БД;

3. невозможность удаления (или каскадное удаление) связанных данных разных таблиц;

4. неискажение данных при работе в многопользовательском режиме и в распределенных базах данных;

5. сохранность данных при сбоях техники (восстановление данных).

Целостность обеспечивается триггерами целостности – специальными приложениями-программами, работающими при определенных условиях. Защита данных от несанкционированного доступа предполагает ограничение доступа к конфиденциальным данным и может достигаться:

1. введением системы паролей;

2. получением разрешений от администратора базы данных (АБД);

3. запретом от АБД на доступ к данным;

4. формирование видов - таблиц, производных от исходных и предназначенных конкретным пользователям.

Три последние процедуры легко выполняются в рамках языка структуризованных запросов Structured Query Language - SQL, часто называемого SQL2.

Стандартизация обеспечивает преемственность поколений СУБД, упрощает взаимодействие БД одного поколения СУБД с одинаковыми и различными моделями данных. Стандартизация (ANSI/SPARC) осуществлена в значительной степени в части интерфейса пользователя СУБД и языка SQL. Это позволило успешно решить задачу взаимодействия различных реляционных СУБД как с помощью языка SQL, так и с применением приложения Open DataBase Connection (ODBC). При этом может быть осуществлен как локальный, так и удаленный доступ к данным (технология клиент/сервер или сетевой вариант)

2. КОНЦЕПЦИЯ ПОСТРОЕНИЯ БАЗЫ ДАННЫХ

Существует два подхода к построению БД, базирующихся на двух подходах к созданию автоматизированной системы управления (АСУ).

Первый из них, широко использовавшийся в 80-е годы и потому получивший название классического (традиционного), связан с автоматизацией документооборота (совокупность документов, движущихся в процессе работы предприятия). Исходными и выходными координатами являлись документы, как это видно из примера1.

Использовался следующий тезис. Данные менее подвижны, чем алгоритмы, поэтому следует создать универсальную БД, которую затем можно использовать для любого алгоритма. Однако вскоре выяснилось, что создание универсальной БД проблематично. Господствовавшая до недавнего времени концепция интеграции данных при резком увеличении их объема оказалась несостоятельной. Более того, стали появляться приложения (например, текстовые, графические редакторы), базирующиеся на широко используемых стандартных алгоритмах.

К 90-м годам сформировался второй, современный подход, связанный с автоматизацией управления. Он предполагает первоначальное выявление стандартных алгоритмов приложений (алгоритмов бизнеса в зарубежной терминологии), под которые определяются данные, а стало быть, и база данных. Объектно-ориентированное программирование только усилило значимость этого подхода.

В работе БД возможен одно- и многопользовательский (несколько пользователей подключаются к одному компьютеру через разные порты) режимы.

Используют восходящее и нисходящее проектирование БД. Первое применяют в распределенных БД при интеграции спроектированных локальных баз данных, которые могут быть выполнены с использованием различных моделей данных. Более характерным для централизованных БД является нисходящее проектирование.

22. Использование баз данных в профессиональной деятельности
Широкое внедрение информационных технологий в жизнь современного общества привело к появлению ряда общих проблем информационной безопасности:

- необходимо гарантировать непрерывность и корректность функционирования важнейших информационных систем (ИС), обеспечивающих безопасность людей и экологической обстановки;

- необходимо обеспечить защиту имущественных прав граждан, предприятий и государства в соответствии с требованиями гражданского, административного и хозяйственного права (включая защиту секретов и интеллектуальной собственности);

- необходимо защитить гражданские права и свободы, гарантированные действующим законодательством (включая право на доступ к информации).

Требования по обеспечению безопасности в различных ИС могут существенно отличаться, однако они всегда направлены на достижение трех основных свойств:

- целостность – информация, на основе которой принимаются решения, должна быть достоверной и точной, защищенной от возможных непреднамеренных и злоумышленных искажений;

- доступность (готовность) – информация и соответствующие автоматизированные службы должны быть доступны, готовы к работе всегда, когда в них возникает необходимость;

- конфиденциальность – засекреченная информация должна быть доступна только тому, кому она предназначена.

Для решения проблем информационной безопасности необходимо сочетание законодательных, организационных, технологических и стандартизационных мероприятий.

Основное внимание в теории и практике обеспечения безопасности применения информационных технологий и систем сосредоточено на защите от злоумышленных разрушений, искажений и хищений программных средств и информации баз данных. Для этого разработаны и развиваются проблемно-ориентированные методы и средства защиты:

- от несанкционированного доступа;

- от различных типов вирусов;

- от утечки информации по каналам электромагнитного излучения

и т. д. При этом подразумевается наличие лиц, заинтересованных в доступе к программам и данным с целью их несанкционированного использования, хищения, искажения или уничтожения.

Рассмотрим современные методы выявления и предотвращения непредумышленных угроз безопасности функционирования программных средств (ПС) и баз данных (БД), снижения соответствующих рисков до допустимого уровня и определения реального достигнутой степени безопасности использования ИС. В связи с этим будем говорить об алгоритмической и программно-технологической безопасности, используя для краткости термины "технологическая безопасность" или просто "безопасность". В качестве основной непредумышленной угрозы будет рассматриваться наличие внутренних дефектов ПС и БД, вызванных ошибками проектирования и реализации.

Факторы, определяющие технологическую безопасность сложных информационных систем:

- показатели, характеризующие технологическую безопасность информационных систем;

- требования, предъявляемые к архитектуре ПС и БД для обеспечения безопасности ИС;

- ресурсы, необходимые для обеспечения технологической безопасности ИС;

- внутренние и внешние дестабилизирующие факторы, влияющие на безопасность функционирования программных средств и баз данных;

- методы и средства предотвращения и снижения влияния угроз безопасности ИС со стороны дефектов программ и данных;

- оперативные методы и средства повышения технологической безопасности функционирования ПС и БД путем введения в ИС временной, программной и информационной избыточности;

- методы и средства определения реальной технологической безопасности функционирования критических ИС.

Использование баз данных характеризуется следующими свойствами:

1. ОПЕРАТИВНОСТЬ : средства вычислительной техники позволяют осуществлять оперативный доступ к информации;

2. ПОЛНАЯ ДОСТУПНОСТЬ : вся информация, содержащаяся в БД, доступна для использования;

3. ГИБКОСТЬ : имеется возможность легко изменять состав и форму выдачи, интересующих пользователя данных, изменения в БД вносятся также достаточно просто;

4. ЦЕЛОСТНОСТЬ (данных): минимизируется дублирование данных, предоставляется возможность упорядочения и согласованности данных а также работ по их обновлению.

С общими характеристиками БД связан также ряд взаимозависимых понятий:

- Целостность БД [database integrity] - состояние БД, при котором все значения данных правильно отражают предметную область (в пределах заданных ограничений по точности и согласованности во времени) и подчиняются правилам взаимной непротиворечивости, Поддержание целостности БД предполагает ее проверку и восстановление или корректировку из любого неправильного состояния, которое может быть обнаружено. Это входит в функции администратора БД, который пользуется средствами системы управления БД. Аналогичным образом можно говорить и о целостности файла, хотя в типичных случаях файлы подвергаются менее обширным проверкам на целостность.

- Защищенность БД [database security] - Наличие и характеристика средств (аппаратных, программных, организационных, технологических, юридических и т.п.) обеспечивающих предотвращение или исключение:

- Доступа к информации лиц, не получивших на то соответствующего разрешения.

- Умышленного или непредумышленного разрушения или изменения данных.

- Безопасность БД [database safety] - свойство БД, которое заключается в том, что содержащиеся в ней данные не причинят вреда пользователю при правильном их применении для решения любых функциональных задач системы, для которой она была создана. Часто понятия "безопасность" и "защита" БД рассматриваются как синонимичные.

- Эффективность БД [database efficiency] -

- степень соответствия результатов использования БД затратам на ее создание и поддержание в рабочем состоянии, в случае оценки этого показателя в денежном выражении он носит наименование экономической эффективности БД;

- обобщающий показатель качества состояния и использования БД по совокупности признаков (в том числе - скорость, доступность, гибкость, целостность, защищенность, безопасность и др.) - техническая эффективность БД Эффективность БД принято оценивать применительно к условиям их использования в конкретных автоматизированных системах.

Наиболее распространенными угрозами безопасности для баз данных являются следующие:

- несанкционированный доступ к данным через сеть Интернет;

- похищение информации запросом вида SELECT *. Обеспечить защиту от угроз такого типа весьма сложно, так как их производят, в основном, аналитики, взаимодействующие с ядром БД и имеющие привилегии на всевозможные выборки данных из всех таблиц базы;

- резервное копирование с целью воровства БД.

В состав типовой модели защиты БД необходимо включить следующие элементы: организационные меры по обеспечению доступа к серверу (желательно только локально); ограничения доступа к корпоративной сети; защита доступа к СУБД; ограничения на использование прикладного программного обеспечения конкретным пользователем.

Для решения рассмотренных проблем можно использовать наиболее распространенные методы защиты БД: защита паролем, встроенные в СУБД средства защиты информации и мониторинга действий пользователей, идентификация пользователя и проверка его полномочий.

Каждый из этих способов имеет свои достоинства, но надо понимать, что абсолютную защиту данных обеспечить невозможно.

Также можно применить и наиболее классический способ защиты данных – зашифровать все таблицы БД при помощи достаточно стойкого крипто- алгоритма. Но это решение также имеет ряд недостатков, например, таких как потеря времени при шифровании/дешифровании данных, невозможность индексирования полей, практическая невозможность полного восстановления при системных сбоях и др.

Читайте также: