Теплообмен в помещении реферат

Обновлено: 02.07.2024

В химической промышленности широко распространены тепловые процессы - нагревание и охлаждение жидкостей и газов и конденсация паров, которые проводятся в теплообменных аппаратах. Теплообменные аппараты или просто теплообменники используются практически во всех отраслях промышленности. Их основная задача обеспечить температурный режим технологических процессов.
В настоящее время все теплообменные аппараты, используемые в химической промышленности, подразделяются на определённые группы по следующим признакам: по назначению (нагреватели, испарители и кипятильники; холодильники, конденсаторы и т. д.),по режиму работы, по особенностям конструкции и т. д. Холодильники и конденсаторы служат для охлаждения потока или конденсации паров с применением специальных хладоагентов (вода, воздух, пропан, хлористый метил, фреоны и т. д.).
Поверхностные теплообменные аппараты можно разделить на следующие типы по конструктивным признакам:
а) кожухотрубчатые теплообменники (жёсткого типа; с линзовым компенсатором на корпусе; с плавающей головкой; с U-образными трубками);
б) теплообменники типа “труба в трубе”;
в) подогреватели с паровым пространством (рибойлеры);
г)конденсаторы воздушного охлаждения.
Кожухотрубчатые теплообменники в настоящее время наиболее широко распространены, по некоторым данным они составляют до 80% от всей теплообменной аппаратуры. Основной частью такого теплообменника является пучок труб, закреплённых в трубных решётках. Трубки располагаются в трубном пучке в шахматном порядке или по вершинам треугольников. Одна из теплообменивающихся сред движется по трубкам, а другая – внутри корпуса между трубками.
Достоинством кожухотрубчатого теплообменника является возможность получения значительной поверхности теплообмена при сравнительно небольших габаритах и хорошо освоенная; недостатком – более высокий расход материала по сравнению с некоторыми современными типами теплообменных аппаратов (спиральными, пластинчатыми теплообменниками и т. д.). Теплообменники могут быть вертикального горизонтального исполнения. Оба варианта установки одинаково широко распространены и выбираются в основном по соображениям монтажа: вертикальные занимают меньшую площадь в цехе, горизонтальные могут быть размещены в сравнительно невысоком помещении. Материал изготовления теплообменников – углеродистая или нержавеющая сталь.
По оценкам экспертов на изготовление трубчатых теплообменников расходуется около трети всего металла, потребляемого машиностроением. Поэтому разработка методов интенсификации теплообмена способствующих снижению массы теплообменников, экономии материалов, является актуальной проблемой, которой занимаются специалисты многих стран. Одним из наиболее простых и эффективных путей интенсификации теплообмена является изменение формы и режима движения теплоносителя.
Разделяемая смесь (бензол-толуол) обладает токсичными, коррозийными свойствами. Выберем для изготовления аппарата марку стали: обычные М.Ст.2, М..Ст.3..

1.1ТЕПЛОВОЙ РАСЧЁТ
Цель: нахождение поверхности теплообмена. По рассчитанной поверхности производится подбор нормализированного варианта теплообменника по каталогам. Величину необходимой поверхности теплообмена определяем на основе уравнения теплопередачи [1]:

где Q - тепловая нагрузка аппарата Вт,
K – коэффициент теплопередачи Вт/м?К,
F – поверхность теплообмена м?,
?tср. – средняя движущая сила процесса теплопередачи К,
В соответствии с приведённым уравнением поверхность теплообмена можно определить следующим образом:
( 2 )

1.1.1. ТЕПЛОВОЙ БАЛАНС
Цель: определение тепловой нагрузки аппарата и нахождение неизвестного расхода теплоносителя.
Для нахождения тепловой нагрузки аппарата составим уравнение теплового баланса процесса. Процесс идёт с изменением агрегатного состояния горячего теплоносителя, поэтому уравнение теплового баланса имеет вид:
?Gг r = Gх ( Iхк – Iхн ) (3)
где ? – величина тепловых потерь равная 5%,
G – расход горячего теплоносителя, кг/с,
r– удельная теплота фазового перехода, Дж/кг,
G – расход холодного теплоносителя, кг/с,
I – энтальпия вещества потока, Дж/кг,
Энтальпии веществ найдём по уравнению:
I = Cp t (4 )
где Ср – теплоёмкость теплоносителя
при определяющей температуре, Дж/кг град,
t – температура теплоносителя, град.
Для нахождения температуры, при которой ведётся конденсация воспользуемся t x (y) диаграммой. В основе построения лежат законы Дальтона, Рауля и Рауля – Дальтона. Это рабочая диаграмма зависимости температуры кипения жидкости от состава и температуры конденсации пара в зависимости от его состава. Состав бинарной смеси всегда определяется по низкокипящему компоненту.
tнк = 86° (бензол) [ 1 ]
tвк = 117° (толуол) [ 1 ]
Таблица № 1
T° P°нк P°вк П Xнк Y* нк
86 912 365 912 1 1
88 963 387 912 0,91 0,96
90 1016 408 912 0,82 0,91
92 1081 440 912 0,73 0,86
94 1147 472 912 0,65 0,81
96 1212 504 912 0,57 0,75
98 1278 536 912 0,50 0,70
100 1344 571 912 0,44 0,64
102 1424 607 912 0,37 0,57
104 1504 643 912 0,31 0,51
106 1584 679 912 0,25 0,43
108 1644 715 912 0,21 0,37
110 1748 751 912 0,12 0,23
112 1846 795 912 0,11 0,22
114 1944 839 912 0,06 0,12
116 2042 883 912 0,02 0,04
117 2091 905 912 0,005 0,01

Рисунок №2
Температура конденсации равна 89°С

Рисунок №3 Температурная диаграмма.
По формуле (4) найдём энтальпии при заданных температурах:

Ср15= 4173,24 Дж/кг град.. [ 1 ]
Cp45=4183,715 Дж/кг град. [ 1 ]
I15вода = 4173,24 · 15 = 62598,6 Дж/кг,
I45вода = 4183,715 · 45 = 188267,1 Дж/кг,
Для нахождения удельной теплоты фазового перехода воспользуемся формулой:
Rсм = r1 x1 + r2 x2 (5)
x – массовая доля компонента в смеси кгком./кгсм.,

Ма · х
х = .
Мсм
78 · 0,92
Х = . = 0,78 кмоль ком./кмоль см.,
92
хбензол = 0,78; хтолуола = 1 – 0,78 = 0,22

r бензола = 418203,9 Дж/кг, rтолуола =418455,3 Дж/кг [ 1 ]

rcm = 418203.9 * 0.92 + 418455.3 * 0.08 = 418223.9 Дж/кг
Из формулы (3) найдём расход холодного теплоносителя:
0,95 · 418223,9 · 6500
Gx = . = 5,7 кг/с
(188267,1 – 62598,6) · 3600

Зная расход холодного теплоносителя и энтальпии при заданных температурах найдем тепловую нагрузку аппарата по правой части уравнения (3).

Q = Gх ( Iхк - Iхн )

Q = 5,7(188267,1-62598,6)=716310,45 Вт

1.1.2. ОПРЕДЕЛЕНИЕ ДВИЖУЩЕЙ СИЛЫ ПРОЦЕССА

В самом общем случае температуры теплоносителей могут изменяться, а могут оставаться постоянными вдоль поверхности теплопередачи. Часто встречаются такие варианты, когда температура одного теплоносителя не изменяется, в то время как другого - изменяется (увеличивается или уменьшается). В этих случаях для расчета процесса теплопередачи вводят понятие о средней движущей силе процесса теплопередачи.
На практике среднюю движущую силу процесса теплопередачи рассчитывают следующим образом [1]:

?tб - ?tм
?tср = . (6)
ln (?tб / ?tм )

где ?tб = tгн – tхн =89° – 15° = 74°C
?tм = tгн –tхк = 89° – 45° = 44°C

74 - 44
?tср = . = 58°C
ln (74 / 44)

1.1.3.ОПРЕДЕЛЕНИЕ СРЕДНИХ ТЕМПЕРАТУР ТЕПЛОНОСИТЕЛЕЙ

Процесс конденсации насыщенного водяного пара ведётся при постоянной температуре. Эта температура и будет средней температурой горячего теплоносителя. Среднюю температуру холодного теплоносителя вычислим по формуле:

tхср = tгср - ?tср = 89° - 58° =31°С

1.1.4. НАХОЖДЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПЕРЕДАЧИ

Вначале на первом этапе принимаем ориентировочное значение коэффициента теплопередачи Кор. и рассчитываем ориентировочное значение теплопередающей поверхности Fор. По уравнению (2). После этого по ориентировочному значению теплопередающей поверхности подбираем по табличным данным нормализированный вариант конструкции теплообменного аппарата, а затем проводим уточнённый расчёт коэффициентов теплоотдачи и теплопередачи и требуемой поверхности ( Fрасч. ).

Примем Кор. =300 Вт/м?град. [ 2 ]
По уравнению (2 ) рассчитаем ориентировочную поверхность теплообмена:

716310,45
Fор. = . = 41 м?
300 · 58
Рассчитав Fор. Подбираем по каталогам нормализированные варианты теплообменных аппаратов.
Для каждого из аппаратов рассчитываем критерий Рейнольдса [1]:

Re = ? · dэ · ? / ? (7)
где ? – линейная скорость потока м/с,
Dэ – диаметр эквивалентный м,
? – плотность вещества кг/м?,
? – вязкость вещества Па/с

Скорость рассчитываем по формуле:
? = М / ?·S (8)
где М – массовый расход теплоносителя кг/с,
? – плотность вещества кг/м?,
S – площадь сечения одного хода по трубам м?,

Выбираем теплообменник №4, так как у него значение Рейнольдса наибольшее и равно 3819,38. Режим переходный 2300
е e
е = ?/ dэ = 0,06/16 = 0,00375

? = 0,06 мм [2]
dэ = 16 мм (таблица 1,2)
2666,66
? = 0,11( е + 68 / 3819,382 )0,25 = 0,04214
Рассчитываем по формуле
М
?шт = . (24)
? S

d = 150 мм [2]
?d? 3.14*(0.15)?
S = . = . = 0.01766
4 4

?31вода = 997,6 кг/м?
5,7
?шт = . = 0,01836 м/с
997,6 * 0,01766

По формуле (3,2) найдём:
2 · 4 (0,2010)? · 997,6
?Рп.тр. = 0,04214 · . · . + [2,5(4-1) + 2 · 4]
0,016 2
(0,2010)? · 997,6 997,6 · (0,01836)?
* -. + 3 . + 997,6 · 9,8 · 2 ·3 = 59396,3424 Па
2 2
?Р 59396.3424
Нп = . = . = 6.06 [ м ст. жидкости]
?g 997.6 * 9.81

По формуле (21) найдём:
?н. =0,40 [2]
?пер. = 1 [2]
?дв. = 1 [2]

0,001809 · 59396,3424
N = . = 0,268619 кВт
1000 · 0,40 · 1 · 1

Подбираем центробежный насос.
Расчётные Стандартные
Q м? /с 1,8*10-3 2,4*10-3
Нп м ст. жидкости 6,06 11,3
Nн кВт 2,6 3
Марка Х8/18Электродвигатель тип А02-31-2


2. КОНСТРУКТИВНО-МЕХАНИЧЕСКИЙ РАСЧЁТ

В задачу конструктивно-механического расчёта входит определение необходимых геометрических размеров отдельных деталей и узлов, которые определяют конструкцию теплообменного аппарата, его механическую прочность и геометрические размеры.

2.1. РАСЧЁТ И ПОДБОР ШТУЦЕРОВ

Диаметр условного прохода (внутренний диаметр) штуцеров для подвода и отвода теплоносителей рассчитывается на основе уравнения массового расхода:
?d?вн.шт.
G = ? ?шт. . (25)
4
откуда
___________
dвн.шт. = ? 4G / ? ? ?шт.
.
?шт. – скорость течения теплоносителя в штуцере м/с,
1. Для насыщенного пара.
Мсм. = Мб. · Хб. + Мт· (1 – Хт.) (27)
Мсм. = 78 · 0,92 + 93 · 0,08 = 79,2
Мсм. 273 Р
?пара = . · . (28)
22,4 Т Р0

79,2 273 · 1,2
?пара = . · . = 3,0723
22,4 (88 + 273) · 1,034

Предельно допустимая скорость насыщенного пара - (15-25 м/с) – 20 м/с
По уравнению (26) найдём:

__________________________
dвн.шт. = ? 4·6500/3,14 · 20·3,0723·3600 =93,4 мм

2. Для конденсата.
Предельно допустимая скорость конденсата – (0,1 – 0,5) – 0,1 м/с
По уравнению (4,2) найдём:
___________________________
dвн..шт. = ? 4·6500/3,14·3600 · 0,1 · 796,812 = 169 мм

3. Для холодного теплоносителя.
dвн..шт = 150 [мм]

Ду, мм Дт, мм До 0,6 МПа
Sт, мм Нт, мм
150 х 2 159 6 155;215
200 х 2 219 6 160;250

Рабочее давление 0,12МПа.
Конструкцию фланцевого соединения принимают в зависимости от рабочих параметров аппарата: плоские приварные фланцы при Р?2.5МПа, t?300°C. Во фланцевых соединениях при Р?4.0МПа,t?300°C применяют болты.

Фланцы для труб и трубной арматуры стальные плоские приварные с соединительным выступом (ГОСТ 1255-67).
РуМПа Размеры, мм Число отверстийZ

150 260 225 202 161 13 3 18 8
200 315 280 258 222 15 3 18 12

Диаметр резьбы болтов dб для всех фланцев при соответствующих d
d, мм 12 14 18 23
d, мм М10 М12 М16 М20


Фланцы для аппаратов стальные плоские приварные ОСТ-26-426-79.

Д,мм РуМПа Дф Дб Д1 h S d Число отверстий Z
600 0,3/0,6 720 680 644 25/30 8 23 20

2.2. ОБЕЧАЙКА ТЕПЛООБМЕННОГО АППАРАТА
2.3.
Обечайка – это цилиндрический корпус аппарата, который работает, как правило, под избыточным внутренним или внешним давлением. Толщина стенки обечаек, работающих под внутренним давлением рассчитывается по уравнению:

PR · D
SR = . (29)
2[?] ?p. · ?R

где PR – расчетное давление в аппарате, МПа,
D – диаметр обечайки, мм,
[?] – предельно-допускаемое напряжение, МПа,
?p. – коэффициент прочности шва

S ? SR + C, где С – прибавка. (30)

PR ? (1.25- 1.5)P[?]20/ [?]t (31)

PR ? 1.4 · 0.12 · 140/133,4
PR ? 0.176

По формуле (30) найдём:

0.176 · 600
SR = . = 0.47761
2 · 134 · (1-0.175)

C = 2
S ? SR + C = 0.4776 + 2
S ? 2.4776 ? 3мм

2.3. ТОЛЩИНА ТРУБНЫХ РЕШЁТОК
В среднем толщина трубных решёток составляет от 15 до 35мм в зависимости от диаметра развальцованных теплообменных труб и конструкции теплообменника, поскольку напряжение, под действием которых находится напряжение, под действием которых находится и работает трубная решётка, определяется не только давлением рабочей среды, но и особенностями конструкции аппарата.
Ориентировочно, толщину трубных решёток можно принять равной:

Sтр.реш. = (dн/ 8) + 5мм. = (20/8) + 5 = 7,5 мм.

2.4. ПОДБОР ДНИЩА

Днище – это составной элемент корпуса химических аппаратов, который ограничивает корпус снизу и сверху и изготавливается из того же материала, что и корпус. По форме днища могут быть, в зависимости от давления среды и конструктивных соображений, эллиптическими, сферическими, коническими, плоскими, цилиндрическими; могут присоединяться к корпусу пайкой, сваркой или с помощью фланцев.

Днища эллиптические отбортованные стальные с внутренними базовыми размерами.


2.5. ОПОРЫ АППАРАТА

На фундаменты или специальные несущие конструкции химические аппараты устанавливаются с помощью опор. В зависимости от рабочего положения аппарата различают опоры для горизонтальных и вертикальных аппаратов.
Вертикальные аппараты обычно устанавливают или на стойках, когда их размещают внизу в помещении, или на подвесных лапах, когда аппарат размещают между перекрытиями в помещении.
Горизонтальные аппараты устанавливают на Седловых опорах.
В зависимости от толщины стенки корпуса аппарата лапы привариваются или непосредственно к корпусу, или к накладному листу.
Накладной лист выполняется из того же материала, что и корпус и приваривается к нему сплошным швом.
Опоры подбираются в зависимости от массы аппарата.

Gап. = Gоб. + 2Gкр. + Gтруб. + 2Gтр.реш + Gр-ра + 15 % (от веса аппарата) (32)

Gоб = h · ?D · ? · ?стали. = 3.14 · 2 · 0.003 · 7850 · 0.6 =88.73

2Gкр. = S · F · ?стали. = 0.003 · 0.44 · 7850 = 10.362, S=0.003м,F=0.44м? [3]

Gтруб. = h · ?d · ?тр. · ?стали. · Nтр. = 3,14·0,020·2·7850·0,002·316=623,12

?D? ?d?
2Gтр.реш = . - N * . · ?стали. · Sтр.реш.
4 4

3,14*(0,6)? 3,14*(0,02)?
2Gтр.реш = . - 316· . · 7850 · 0,0075 = 10,796262
4 4
?D? 3,14*(0,6)?
Gр-ра = . · h ·?воды = . · 2 ·1000 =565,2
4 4

G = 88,73 + 10,79 + 623,12 + 10,79 =733,43

733,43 - 100 %
Х - 15%

Gап. = 733,43 +565,2 + 110,0145 = 1408,6445 кг

1408,6445 · 9,8
Qап. = . = 13,8 кН
1000

Опоры (лапы) для вертикальных аппаратов, ОСТ 26-665-79, мм.
Q,кН а а1 а2 в в1 в2 с с1 h h1 S1 K K1 d dб fmax
25 125 155 100 255 120 115 45 90 310 16 8 25 65 24 М20 140

Величина зазора между аппаратом и подпорной рамой f принимается конструктивно, но не более fmax.


Министерство образования Российской Федерации
Томский Государственный
Промышленно-Гуманитарный колледж

РАСЧЁТ КОНДЕНСАТОРА
Пояснительная записка к курсовому проекту
2501 Химические технологии органических веществ и ВМС

Студентке группы 233 Иванниковой Марии Анатольевне ТГПГК на выполнение курсового проекта по “Процессам и аппаратам химической технологии”.

Расчёт конденсатора
Тема курсового проекта : _______________________________________

Исходные данные:
Состав насыщенного пара: бензол – 0.92 %, толуол – 0.08 % (мольные)
Рпара = 1.2 ата.
Gпо пару = 6.5 т/час.
Конденсация ведётся охлаждённой водой: tн = 15?, tк = 45?.
Конденсат пара отводится при температуре конденсации.

1 – крышка 4 - трубы
2 – трубная решётка 5 - днище
3 – корпус

3. АТОМАТИЗАЦИЯ
4.

Регулирование процесса конденсации осуществляется за счёт подачи холодного теплоносителя. При сравнении подачи пара и холодного теплоносителя, срабатывает исполнительный механизм на линии подачи холодног теплоносителя.


Обозначение Наименование
Первичный измерительный преобразователь расхода,установленный по месту.
Прибор для измерения расхода, показывающий, регистрирующий, установленный на щите.
Прибор для измерения расхода, преобразующий, регулирующий, установленный на щите.
Прибор для измерения температуры, показывающий, регистрирующий, установленный на щите.
Прибор для измерения температуры, показывающий, регистрирующий, сигнализирующий.
Прибор для измерения давления, показывающий, регистрирующий, установленный на щите.
Прибор для измерения расхода, преобразовывающий, установлен по месту,


3.СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУТЫ

1. Физико-химические и термодинамические свойства веществ. Справочник Гусев В.П., Гусева Ж.А./ Томск, изд. ТХТК, 1994 – 69с.
2. Процессы и аппараты химической технологии. Расчёт теплообменных аппаратов. Методическое указание к курсовому проектированию для студентов Томского химико-технологического колледжа. /Гусев В.П./ Томск, изд. ТХТК, 1994 – 70с.
3. Конструктивно-механический расчёт. Методические пособие к выполнению курсового проекта по процессам аппаратам химической технологии /Медведева С.С./ Томск, изд. ТХТЛ, 1997 – 30с.
4. Молоканов Ю.К. Процессы и аппараты нефтегазо-переработки.1987, 2-е изд. М. Химия с. 143-150,
5. А.Г. Касаткин. Процессы и аппараты химической технологии. 1971, Москва изд. “Химия” с. 784.

1. РАСЧЕТНАЯ ЧАСТЬ

1.1. Тепловой расчет аппарата
1.1.1. Тепловой баланс
1.1.2. Определение средней движущей силы процесса
1.1.3. Определение средних температур теплоносителей
1.1.4. Расчет коэффициента теплоотдачи
1.1.5. Подбор конденсатора
1.2. Расчет тепловой изоляции
1.3. Гидравлический расчет теплообменных аппаратов
1.3.1 Расчет гидравлического сопротивления

2. КОНСТРУКТИВНО-МЕХАНИЧЕСКИЙ РАСЧЕТ

2.1. Расчет и подбор штуцеров
2.2. Подбор фланцев
2.3. Расчет обечайки
2.4. Расчет толщины трубных решеток
2.5. Подбор днища
2.6. Подбор опор

Основные понятия теплообмена. Сущность теплопроводности. Конвективный теплообмен. Тепловое излучение и его эффективность.

Работа любой тепловой установки основана на явлении теплообмена между телами. Без знания основных законов перехода теплоты от одного тела к другому невозможна технически грамотная эксплуатация, а также проектирование новых высокопроизводительных и экономичных конструкций разнообразных тепловых установок. Успехи, достигнутые за последние годы в области теплотехники, свидетельствуют о возрастающей роли науки в техническом прогрессе страны. Новые научные открытия нашли отражение в создании ряда мощных тепловых установок в энергетике, металлургии, промышленности строительных материалов и многих других отраслях народного хозяйства.

Основные понятия теплообмена

Теория теплообмена изучает процессы распространения теплоты в твердых, жидких и газообразных телах. Перенос теплоты может передаваться тремя способами: теплопроводностью; конвекцией; излучением (радиацией). Процесс передачи теплоты теплопроводностью происходит при непосредственном контакте тел или частицами тел с различными температурами и представляет собой молекулярный процесс передачи теплоты. При нагревании тела, кинетическая энергия его молекул возрастает и частицы более нагретой части тела, сталкиваясь с соседними молекулами, сообщают им часть своей кинетической энергии.

Конвекция – это перенос теплоты при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа.

При этом, перенос теплоты зависит от скорости движения жидкости или газа прямо пропорционально. Этот вид передачи теплоты сопровождается всегда теплопроводностью. Одновременный перенос теплоты конвекцией и теплопроводностью называется конвективным теплообменом. В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

Процесс передачи теплоты внутренней энергии тела в виде электромагнитных волн называется излучением (радиацией). Этот процесс происходит в три стадии: превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение э/м волн в пространстве, поглощение энергии излучения другим телом. Совместный теплообмен излучением и теплопроводностью называют радиационно-кондуктивным теплообменом.

Процессы теплообмена могут происходит в различных средах: чистых веществах и разных смесях, при изменении и без изменения агрегатного состояния рабочих сред и т.д. В зависимости от этого теплообмен протекает по разному и описывается различными уравнениями. Процесс переноса теплоты может сопровождаться переносом вещества (массообмен). Например испарение воды в воздух, движение жидкостей или газов в трубопроводах и.т.п. и.т.д. Тогда процесс теплообмена усложняется, так как теплота дополнительно переносится с массой движущегося вещества.

Сущность теплопроводности

Теплопроводность – это перемещение теплоты от более нагретых частей тела к менее нагретым, обусловленный движением частиц (молекул, атомов, ионов, свободных электронов и др.).

Если температура твердого тела или неподвижной жидкости неодинакова, то происходит распространение теплоты теплопроводностью от точек с высокой температурой к точкам с низкой. Теплообмен между отдельными частями тела объясняется взаимным обменом кинетической энергией через молекулярные связи, распространением упругих волн, а в металлах также диффузией электронов.

Рассмотрим теплообмен путем теплопроводности применительно к твердым телам. Предварительно установим некоторые элементарные понятия.

Совокупность значений температуры в данный момент времени для всех точек пространства, в котором протекает процесс, называется температурным полем. Если температура тела для данного отрезка времени постоянна, поле называется стационарным, если температура изменяется во времени, то поле называется нестационарным.

Изменение температуры на единицу расстояния между изотермическими поверхностями называется температурным градиентом. При возрастании температуры он имеет положительное значение, при падении — отрицательное.

Количество теплоты, проходящее между двумя изотермическими поверхностями в сторону понижения температур, называется тепловым потоком. Его выражают в ваттах. Наибольший тепловой поток направлен по нормам к изотермическим поверхностям.

Теплопроводность зависит от состояния тела, его физических свойств и температуры. Стенки тепловых установок, работающих при сравнительно невысоких температурах — сушильных и пропарочных камер, выполняют однослойными. Стенки высокотемпературных установок—топок, котельных и печей выполняются из нескольких слоев: внутреннюю поверхность футеруют огнеупорным материалом, средний слой является изоляционным, наружную поверхность делают из глиняного строительного кирпича.

Тепловой поток, проходящий через многослойную плоскую стенку, прямо пропорционален разности температур поверхностен первого и последнего слоя площади поверхности, через которую он проходит, и обратно пропорционален полному термическому сопротивлению многослойной плоской стенки.

Особенностью прохождения теплового потока через цилиндрическую стенку (например, трубы) является то, что изотермические поверхности ее цилиндрические, имеющие общую ось с трубой, а температура изменяется по радиусу.

Аналогично плоской стенке разность, стоящая в знаменателе,— это термическое сопротивление 1 м длины трубы.

Из закона Фурье следует: при равном перепаде температур на внешних поверхностях чем больше термическое сопротивление стенки, тем меньший поток теплоты проходит через нее.

Конвективный теплообмен

Конвективным теплообменом называется одновременный перенос теплоты конвекцией и теплопроводностью. В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

1). Природа возникновения движения жидкости вдоль поверхности стенки. Самопроизвольное движение жидкости (газа) в поле тяжести, обусловленное разностью плотностей её горячих и холодных слоев, называют свободным движением (естественная конвекция). Движение, создаваемое вследствие разности давлений, которые создаются насосом, вентилятором и другими устройствами, называется вынужденным (вынужденная конвекция).

2). Режим движения жидкости. Упорядоченное, слоистое, спокойное, без пульсаций движение называется ламинарным. Беспорядочное, хаотическое, вихревое движение называется турбулентным.

3). Физические свойства жидкостей и газов. Большое влияние на конвективный теплообмен оказывают следующие физические параметры: коэффициент теплопроводности (l), удельная теплоемкость (с), плотность (ρ), κкоэффициент температуропроводности (а = λ/cр•ρ), коэффициент динамической вязкости (μ) или кинематической вязкости (ν = μ/ρ), тεмпературный коэффициент объемного расширения (β = 1/Т). 4). Форма (плоская, цилиндрическая), размеры и положение поверхности (горизонтальная, вертикальная).

Теплоотдача при конденсации пара имеет большое практическое значение при проектировании и эксплуатации конденсаторов, установок для тепловлажностной обработки железобетонных и силикатных изделий.

Пар при соприкосновении с холодными поверхностями конденсируется. Образовавшиеся на поверхности капли конденсата, растекаясь, образуют пленку. Такая конденсация называется пленочной в отличие от капельной, при которой на поверхности сохраняются капли конденсата, если, например, поверхность покрыта маслом.

Коэффициент теплоотдачи при капельной конденсации значительно выше, чем при пленочной, так как пленка препятствует передаче теплоты к стенке. Теплоотдача от пара к стенке при пленочной конденсации происходит последовательно теплопроводностью через слой пленки и затем конвекцией от движущейся ламинарно по стенке пленки.

Температура поверхности пленки, обращенной к пару, равна температуре насыщения газа соприкасающейся со стенкой — температуре стенки tCT- Если температура поверхности выше температуры насыщения, то конденсации не происходит.

Теплоотдача к бетонным изделиям в установках для тепловлажностной обработки происходит при пленочной конденсации.

В паровоздушной среде теплоотдача замедляется, так как при конденсации пара на стенке оседают пузырьки воздуха, препятствующие стеканию конденсата. Это следует учитывать при проектировании установок для тепловлажностной обработки железобетонных изделий, в которых изделия пропариваются как в среде чистого пара, так и в паровоздушной смеси.

Для определения коэффициента теплоотдачи в чисто паровой среде рекомендуют следующие эмпирические формулы как в наибольшей мерепростые: при вертикальном расположении изделий.

Тепловое излучение и его эффективность

Тепловое излучение — это процесс распространения теплоты с помощью электромагнитных волн, обусловленный только температурой и оптическими свойствами излучающего тела. При этом внутренняя энергия тела (среды) переходит в энергию излучения. Процесс превращения внутренней энергии вещества в энергию излучения, переноса излучения и его поглощения веществом называется тепловым излучением.

Эффективность излучения можно ощутить или измерить прибором. Зависимость теплового излучения от температуры выражена законом Стефана — Больцмана: поверхностная плотность (излучательность) лучистого потока (сро) абсолютно черного тела пропорциональна его абсолютной температуре в четвертой степени.

Согласно закону теплового излучения Кирхгофа, отношение излучателыюсти тела к его коэффициенту поглощения не зависит от природы тел и равно излучательности абсолютно черного тела при той же температуре.

Абсолютно черное тело, поглощающее всю падающую на него энергию излучения, отличается также наибольшей излучательностью.

Выбор тел с наибольшей излучательностью имеет большое значение для создания источников радиационной теплоты. При передаче теплоты излучением следует иметь в виду, что тела с большим коэффициентом поглощения нагреются быстрее, что сокращает время их нагрева, а следовательно, повышает производительность тепловых установок. Эти свойства тел устанавливают, сравнивая излучательности данного тела в абсолютно черного, отношение которых называют коэффициентом черноты.

Кроме твердых тел при высоких температурах большими излучательностью и коэффициентом поглощения обладают трехатомные и многоатомные жидкости и газы в отличие от одноатомных .и двухатомных газов, почти прозрачных для тепловых лучей. В качестве примера можно назвать продукты сгорания (СО2, Н20 и Др.).

При высокотемпературной обработке строительных материалов (клинкера, керамики и др.) широко используется теплообмен излучением от продуктов сгорания топлива. В котельных установках этот способ теплообмена имеет место при отдаче теплоты от факела топлива и газов к радиационной поверхности нагрева паровых котлов, являющихся генераторами пара.

Тепловой поток, передаваемый от газов излучением к нагреваемой поверхности, зависит не только от их температуры, но и от содержания в них С02, Н20 и от толщины газового слоя.

Как показала практика, последнее мероприятие позволило значительно ускорить обжиг клинкера во вращающихся печах с расширенной зоной спекания, обжиг кирпича в кольцевых печах при разреженной садке, увеличивающей толщину газового своя между соседними кирпичами.

Список литературы

2. Недужий И.А., Алабовский А.Н. Техническая термодинамика и теплопередача. - К.: Высшая школа, 1981.-248с.

Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

>>>>> Перейти к скачиванию файла с работой
Кстати! В нашей группе ВКонтакте мы бесплатно помогаем с поиском рефератов, курсовых и информации для их написания. Не спешите выходить из группы после загрузки работы, мы ещё можем Вам пригодиться ;)

Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.

Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.


Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.


Похожие работы:
Основы теории живучести

Оценка живучести узлов нагрузки и надежности схем систем электроснабжения. Функции распределения интервалов времени между выходами из строя оборудования по вине человека. Отказы элементов схемы. Многопроцессорные вычислительные системы реального времени.

Основы теории и технологии контактной точечной сварки. Процессы, протекающие при контактной точечной сварке: деформирования свариваемых деталей; формирования механических и электрических контактов, электрической проводимости зоны сварки; нагрева металла.

Понятие объекта управления. Принципы управления и регулирования. Элементы линейной теории автоматического регулирования. Модели статики. Математическое описание. Понятие о линейных элементах. Линеаризация реальных элементов САР, её способы и предпосылки.

Основы теории резания пищевых продуктов. Оборудование для очистки овощей и фруктов, машины для нарезания и измельчения мясных полуфабрикатов, схемы дисковых овощерезок. Машины для нарезки хлебобулочных изделий, для дробления твердых пищевых продуктов.

Основы теории и сущность процессов выпаривания. Особенности процессов многократного выпаривания и применение термокомпрессоров в выпарных установках. Технологическая схема производства сгущенного молока. Расчет двухкорпусной вакуум-выпарной установки.


Похожие учебники и литература 2019:
Готовые списки литературы по ГОСТ


Производственное оборудование и станки

Материаловедение: материалы, применяемые в машиностроении

Стандартизация, метрология, сертификация. Учебник


Перейти в список рефератов, курсовых, контрольных и дипломов по
дисциплине Производство и технологии

При эксплуатации зданий определяющим является тепловой режим помещения.

Тепловая обстановка определяется:

подвижностью и влажностью воздуха;

наличием струйных течений;

распределением параметров воздуха в плане и по высоте;

радиационным излучением окружающих поверхностей, зависящим от температуры, геометрии и радиационных свойств.

Под действием конвективного и лучистого теплообмена и процессов, масса переноса температуры воздуха и поверхностей в помещении взаимосвязаны и оказывают большое воздействие друг на друга.

1.1 Общая схема теплообмена в помещении

Общая схема теплообмена в помещении приведена на рисунке 1.1. Из него следует, что в помещении в обмене теплом участвует ряд элементов. Это воздух основного (не занятого струйными течениями) объема помещения, поверхности, обращенные в помещение, объемы струй воздуха, внешние среды (наружный воздух, теплоноситель в приборах системы отопления–охлаждения). Между перечисленными элементами происходят следующие виды обмена теплом.

Конвективный теплообмен (К) возникает между воздухом и поверхностями ограждений и приборами системы отопления-охлаждения, лучистый (Л) – теплообмен между отдельными поверхностями.

Вследствие турбулентного перемешивания не изотермических струй воздуха с воздухом основного объема помещения происходит струйный (Ст) теплообмен.

Внутренние поверхности наружных ограждений в основном передают теплопроводностью через толщину конструкций и теплообменом наружному воздуху, а поверхности приборов также теплопроводностью приборов и теплообменом – теплохладоносителю системы отопления-охлаждения.


–воздух основного объема помещения;– поверхности, обращенные в помещение;– струи воздуха;– внешняя среда;

–конвективный теплообмен; – лучистый теплообмен; | - наружное ограждение; || - панель; ||| - не изотермическая струя приточного воздуха

Рисунок1.1 – Общая схема теплообмена в помещении

Важной составляющей сложного процесса, формирующего тепловой режим помещения, является теплообмен на поверхностях.

Тепловой баланс любой поверхности i в помещении (рисунок 1) в стационарных и не стационарных условиях может быть представлен на основе закона сохранения энергии:

Лучистая Лi, конвективная Кi, кондуктивная (теплопроводностью) Тi составляющие теплообмена на поверхностях в помещении могут изменяться во времени, иметь различную величину и знак, но уравнение (9) остается неизменным для всех поверхностей в стационарных и нестационарных условиях теплообмена.

Исключения – явления, связанные (испарение воды и конденсация влаги, облучение сосредоточенным источником тепла) для таких условий в уравнение теплового баланса учитывается слагаемые дополнительных источников или стоков тепла.

2 Общий теплообмен на поверхности в помещении

Количество тепла, которое воспринимает или отдает произвольная поверхность i в результате лучисто-конвективного теплообмена в по­мещении, равно количеству тепла, которое передается к поверхности или отводится от нее теплопроводностью.

Теплопроводностью передается количество тепла Тi, которое при средних по всей площади Fi значениях температурного градиента около поверхности ti/n и коэффициента теплопроводности λi составляет:


(2.1)

В стационарных условиях, когда температурный градиент в толще ограждения остается неизменным во времени, уравнение (10) удобнее написать в виде:


(2.2)

где К / i – коэффициент теплопередачи от внутренней поверхности ограждения до внешней среды, температура которой равна tср i.

Общее уравнение теплового баланса поверхности i в помеще­нии имеет вид:


(2.3)

Тепловой баланс поверхности в помещении можно записать в виде двух уравнений:


(2.4)


(2.5)

где αкi – коэффициент конвективного теплообмена, средний по поверхности;

Qi – прочие источники и стоки тепла на поверхности.

Слагаемые в уравнениях (2.4) и (2.5) имеют одинаковую структуру записи. Все составляющие тепловой баланс потоки тепла про­порциональны соответствующим разностям температур (в, ° С). Такая запись уравнений оказывается удобной для расчета теплообмена при использовании метода электротепловой аналогии или ЭВМ.

Как было сказано, учет многократного отражения значительно усложняет расчет теплового баланса поверхности и в то же время не оказывает большого влияния на конечные результаты. В строительной практике обычно ограничиваются учетом только первого отраже­ния. В этом случае тепловой баланс поверхности описывается одним уравнением:


(2.6)

В соответствии с особенностями теплообмена все поверхности в помещении можно разделить на три характерные группы: охлаждающие, нагревающие и нейтральные.

Охлаждающими помещение поверхностями в зимний период года будут внутренние поверхности наружных ограждений. Таких поверх­ностей может быть несколько. Особенность написания уравнения (15) для наружных ограждений в том, что τi заменяют на темпера­туру внутренней поверхности наружного ограждения τв, а К'i – на приведенный коэффициент теплопередачи К'но от внутренней поверх­ности ограждения к наружному воздуху, отнесенный к площади Fi. Последняя определяется по размерам внутренней поверхности, обра­щенной в помещение. Температура внешней среды tcpi – это темпе­ратура наружного воздуха tн.

Для нагретых поверхностей (зимой, например, это отопительные панели или другие нагревательные приборы) значения отдельных ве­личин в уравнении (3.6) будут следующими: τi –температура панели τп; К'i – коэффициент теплопередачи от поверхности панели к теплоносителю К'нп; tcpi – средняя температура теплоносителя в трубах панели tтн.

Для нейтральных поверхностей внутренних стен и перекрытий в уравнении (3.6) составляющая передачи тепла теплопроводностью Ti (третье слагаемое) равна нулю. Эти поверхности в стационарных условиях не нагреваются и не охлаждаются со стороны ограждений и являются как бы адиабатическими отражателями, так как полученное тепло от помещения они ему же и отдают. Поверхности внутренних стен могут иметь положительный радиационный баланс, получая в результате Лучистого теплообмена определенное количество тепла. Такое же количество тепла они будут отдавать конвекцией воздуху помещения.


В теплообмене может участвовать тепло солнечной радиации, про­никающее через лучепрозрачные ограждения. Прямые солнечные лучи нагревают отдельные части внутренних ограждений. Диффузно рас­сеянная радиация распределяется равномерно. В расчете теплообмена допустимо принимать, что вся прямая и рассеянная радиация , непосредственно проникающая в помещение, равномерно распределяется по площади всех внутренних поверхностей. В уравнениях теплового баланса (2.6) всех поверхностей дополнительное слагаемое Qi равно доле проникающей радиации. Величину Qi можно определить в виде:


(2.7)

В помещении могут быть поверхности, которые омываются струей охлажденного или нагретого воздуха, подаваемого в помещение. Струя воздуха, настилаясь на ограждение, нагревает или охлаждает его. За счет подмешивания воздуха помещения и конвективного теплообмена струя изменяет температуру и постепенно достигает рабочей зоны помещения.

По направлению движения изменяются температура и скорость воздуха в струе, а, следовательно, и условия теплообмена. В общей постановке уравнение теплового баланса такой поверхности должно быть записано в интегральной форме, учитывающей изменение условий теплообмена в направлении движения струи. Такая запись осложнит решение и для целей инженерного расчета ее желательно упростить. Поверхность разбивают на элементарные площадки, в пределах кото­рых все параметры принимают осредненными. Для каждой элементарной площадки поверхности составляют свое уравнение теплового баланса вида (2.6).

ТЕПЛОТА, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Содержание

1. Введение. Понятие теплоты
2. Теплопередача
3. Три основных вида передачи тепла
4. Роль теплоты и её использование
5. Список используемой литературы.

Работа содержит 1 файл

РЕФЕРАТ теплота.doc

Работа Бирюковой А.В.

Уфимский политехнический техникум

1. Введение. Понятие теплоты

3. Три основных вида передачи тепла

4. Роль теплоты и её использование

5. Список используемой литературы.

ТЕПЛОТА, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

Теплопередача – это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

Три основных вида передачи тепла

Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.

Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное).

Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения Т/x разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м2) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(мК)]. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид:

Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин – коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию.

В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов. Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы.

ТЕПЛОПРОВОДНОСТЬ НЕКОТОРЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ

Вещества и материалы

Теплопроводность, Вт/(м К)

Гагачий пух (неплотный)

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества.

Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.

Конвекция. Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха.

Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона

где q – тепловой поток (измеряемый в ваттах), A – площадь поверхности источника тепла (в м2), TW и T – температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м2хК).

Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность – это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные.

Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса.

Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.

Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен – отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение – это один из видов электромагнитного излучения. Другие его виды – радиоволновое, ультрафиолетовое и гамма-излучения – возникают в отсутствие разности температур.

На рис. 8 представлена зависимость энергии теплового (инфракрасного) излучения от длины волны. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана

где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт), A – площадь поверхности излучающего тела (в м2), а T1 и T2 – температуры (в кельвинах) излучающего тела и окружения, поглощающего это излучение. Коэффициент  называется постоянной Стефана – Больцмана и равен (5,66961х0,00096)х10–8 Вт/(м2 К4).

Читайте также: