Применение радиопоглощающих материалов и маскирующих пенных покрытий реферат

Обновлено: 05.07.2024

Различие между собственно материалами (РПМ) и покрытиями (РПП) до некоторой степени условно и предполагает, что первые входят в состав конструкции объекта, а вторые — как правило, наносятся на его поверхности. Условность разделения связана и с тем обстоятельством, что любой радиопоглощающий материал является не только материалом, но микроволновым устройством-поглотителем. Способность материала поглощать высокочастотное излучение зависит от его состава и структуры. РПМ и РПП не обеспечивают поглощения излучения любой частоты, напротив, материал определенного состава характеризуется лучшей поглощающей способностью при определенных частотах. Не существует универсального поглощающего материала, приспособленного для поглощения излучения радиолокационной станции (РЛС) во всем частотном диапазоне.

Связанные понятия

Доплеровский измеритель скорости и сноса (ДИСС) — бортовое радиолокационное устройство, основанное на использовании эффекта Доплера, предназначенное для автоматического непрерывного измерения и индикации составляющих вектора скорости, модуля путевой скорости, угла сноса и координат летательного аппарата, автономно или в комплексе с навигационным оборудованием.

Эффекти́вная пло́щадь рассе́яния (ЭПР; в некоторых источниках — эффективная пове́рхность рассеяния, эффективный попере́чник рассеяния, эффективная отража́ющая площадь, ЭОП) в радиолокации — площадь некоторой фиктивной плоской поверхности, расположенной нормально к направлению падающей плоской волны и являющейся идеальным и изотропным переизлучателем, которая, будучи помещена в точку расположения цели, создаёт в месте расположения антенны радиолокационной станции ту же плотность потока мощности, что.

Щелевая антенна — антенна, выполненная в виде металлического радиоволновода, жёсткой коаксиальной линии, объёмного резонатора или плоского металлического листа (экрана), в проводящей поверхности которых прорезаны отверстия (щели), служащие для излучения (или приёма) радиоволн. Излучение происходит в результате возбуждения щелей: в волноводах, резонаторах и коаксиальных линиях — внутренним электромагнитным полем, в плоских экранах — с помощью радиочастотного кабеля, подключённого непосредственно к.

Гиперзвук — упругие волны с частотами от 101000 до 1012—1018 Гц. По физической природе гиперзвук не отличается от звуковых и ультразвуковых волн. Гиперзвук часто представляют как поток квазичастиц — фононов.

Радиотехническая система ближней навигации (РСБН) — советская/российская система навигационного обеспечения полётов авиации. Радиомаяки РСБН обеспечивают автоматическое и непрерывное измерение и индикацию азимута и дальности летательного аппарата относительно наземного радиомаяка.

Радиодальноме́р — средство для определения расстояний бесконтактным методом с помощью радиоволн, технически реализованное в виде автономного прибора либо в составе радиодальномерной системы. Радиодальномеры применяются в воздушной и космической навигации, геодезии, военном деле, для локального позиционирования транспортного средства и в других целях. Частным случаем радиодальномера можно считать радиовысотомер, однако, на практике, в технической классификации эти понятия разделяют.

Стержнева́я радиола́мпа — электронная лампа с электродами, выполненными в виде системы тонких сплошных стержней, расположенных параллельно катоду.

Микроминиатюриза́ция — направление научно-технической деятельности, основными задачами которого являются уменьшение габаритов, массы и стоимости радиоэлектронной аппаратуры при одновременном повышении ее надёжности и экономичности за счет совершенствования схемотехнических, конструкторских и технологических методов. Тенденция микроминиатюризации представляет собой непрерывный процесс, который опирается главным образом на достижения микроэлектроники, в том числе на использование интегральной технологии.

Миллиметро́вые во́лны (ММВ) — диапазон радиоволн с длиной волны от 10 мм до 1 мм, что соответствует частоте от 30 ГГц до 300 ГГц (крайне высокие частоты, КВЧ, англ. Extremely high frequency, EHF).

Дозвуковая скорость — скорость движения тела (транспортного средства, в частном случае), меньшая чем скорость распространения звуковых колебаний при заданных условиях в заданной среде.

Станция предупреждения об облучении, иначе система предупреждения об облучении, аббр. СПО — бортовое радиоэлектронное оборудование, предназначенное для автоматического обнаружения излучения посторонней РЛС и предупреждения об этом экипажа. СПО применяются, главным образом, на самолётах и вертолётах военной авиации, также устанавливаются на кораблях, танках и других подвижных военных объектах.

Моноимпульсная радиолокация — метод измерения радиолокационной станцией (РЛС) угловых координат объекта, основанный на определении угловой ошибки положения луча антенны, направленного на объект, по принятому одиночному (отражённому или переизлучённому объектом) импульсному сигналу. Основное преимущество этого метода перед другими радиолокационными методами, основанными на обработке непрерывных или нескольких последовательно принимаемых импульсных сигналов заключается в более высокой точности измерений.

Финишное плазменное упрочнение (ФПУ) – безвакуумный и бескамерный процесс плазмоструйного осаждения тонкоплёночного покрытия на основе соединений кремния из газовой фазы при использовании малогабаритного плазмохимического реактора с одновременной плазменной активацией реакционного газового потока и локального участка поверхности изделия, на который наносится покрытие.

Микроволновая монолитная интегральная схема (МИС) — интегральная схема, изготовленная по твердотельной технологии и предназначенная для работы на сверхвысоких частотах (300 МГц — 300 ГГц). СВЧ МИС обычно выполняют функции смесителя, усилителя мощности, малошумящего усилителя, преобразователя сигналов, высокочастотного переключателя. Применяются в системах связи (в первую очередь сотовой и спутниковой), а также в радиолокационных системах на основе активных фазированных антенных решёток (АФАР).

Управляемый боевой блок (УББ) — боевой блок ракеты, совершающий управляемое движение на участке снижения в плотных слоях атмосферы с целью повышения вероятности преодоления системы противоракетной обороны и повышения точности стрельбы, для чего оснащается специальной системой управления (СУ).Проблема управления УББ связана с особенностями физических условий полёта: большим диапазоном изменения скоростей (от 7 до 1,5—2,5 км/с) и перегрузок ( от 0 до 100—180 единиц), значительным интегральным притоком.

Сверхзвуковое движение — перемещение тела в пространстве со скоростью, превышающей значение скорости звука. Момент движения, когда значение скорости тела достигает значения скорости распространения звуковой волны, соответствует точке звукового барьера. Характеристики движения тел при скоростях ниже звукового барьера и выше звукового барьера, отличаются существенно. Отличительная особенность в данном случае - образование ударной волны перед телом, преодолевшим звуковой барьер и находящимся в условиях.

Электромагнитная безопасность — система знаний, посвящённая возможному вреду, наносимому человеку электромагнитным излучением.

Kapton — плёнка (материал) из полиимида, разработан химической компанией DuPont. Хороший диэлектрик, стабилен в широком диапазоне температур от −273 до +400 °C (−459 — 752 °F / 0 — 673 K). Используется для изготовления гибких печатных плат (гибкая электроника) и внешних слоёв скафандров.

Бомбовый прицел — устройство, предназначенное для прицельного сброса авиационных бомб с борта бомбардировщика. Несмотря на то, что бомбовым прицелом можно назвать и простейший визирный прицел с двумя перекрестиями, термин чаще всего используется для более сложных приборов, позволяющих учитывать ряд факторов, влияющих на баллистическую траекторию бомбы. Такими факторами являются высота, скорость и курс бомбардировщика, направление и скорость ветра, аэродинамические характеристики конкретного вида.

Микрокана́льные пласти́ны (МКП) — вид изделий вакуумной микроэлектроники. Предназначены для работы в вакууме в качестве многоканальных детекторов, преобразователей и вторично-электронных усилителей пространственно-организованных потоков заряженных частиц и излучений. Основное применение — преобразователь и усилитель яркости изображения индивидуальных приборов ночного видения.

Да́тчик углово́й ско́рости (ДУС) — устройство, первичный прибор (датчик) для измерения угловой скорости поворота корпуса летательных аппаратов относительно невращающейся инерциальной системы координат. Используется в системах управления различных летательных аппаратов: ракет, самолётов, вертолётов и др. Выходной сигнал устройства обычно электрический, пропорциональный угловой скорости и используется в пилотажных системах летательных аппаратов, в частности, автопилоте, системах стабилизации траектории.

Пла́зменное напыле́ние — процесс нанесения покрытия на поверхность изделия с помощью плазменной струи.

Диэлектри́ческое зе́ркало — зеркало, отражающие свойства которого формируются благодаря покрытию из нескольких чередующихся тонких слоёв из различных диэлектрических материалов. Используются в разнообразных оптических приборах. При надлежащем выборе материалов и толщин слоёв можно создать оптические покрытия с требуемым отражением на выбранной длине волны. Диэлектрические зеркала могут обеспечивать очень большие коэффициенты отражения, (так называемые суперзеркала), которые обеспечивают отражение.

Облучатель − сосредоточенный элемент параболической антенны, находящийся в её фокусе (фазовом центре) или фокальной плоскости, формирующий диаграмму направленности и поляризацию антенны.

Ремонтопригодность — свойство объекта техники, характеризующее его приспособленность к восстановлению работоспособного состояния после отказа или повреждения.

Инфракрасная головка самонаведения (Тепловая головка самонаведения, ТГС; англ. Heatseeker) — головка самонаведения, работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью. Представляет собой оптико-электронный прибор, предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Антенная решётка (АР) — сложная антенна, состоящая из совокупности отдельных антенн (излучающих элементов), расположенных в пространстве особым образом. Антенные решётки применяются для повышения коэффициента направленного действия антенны как системы излучающих элементов по сравнению с одиночным элементом и для получения возможности управления формой диаграммы направленности (в том числе, ориентации в пространстве) с помощью электрических сигналов (электрическое сканирование луча в противовес механическому.

Бесконтактный датчик, также сенсорный выключатель (англ. proximity sensor) — позиционный выключатель, срабатывающий без механического соприкосновения с подвижной частью (машины). Позиционный выключатель — автоматический выключатель цепей управления, механизм управления которого приводится в действие при достижении подвижной частью машины заданного положения.Отсутствие механического контакта между воздействующим объектом и чувствительным элементом обеспечивает ряд специфических свойств устройства.

Объёмный резона́тор — устройство, основанное на явлении резонанса, в котором вследствие граничных условий возможно существование на определённых длинах волн добротных колебаний в виде бегущей или стоячей волны.

Твердоте́льный ла́зер — лазер, в котором в качестве активной среды используется вещество, находящееся в твёрдом состоянии (в отличие от газов в газовых лазерах и жидкостей в лазерах на красителях).

Управление вектором тяги (УВТ) реактивного двигателя — отклонение реактивной струи двигателя от направления, соответствующего крейсерскому режиму.

Тензометрический датчик (тензодатчик; от лат. tensus — напряжённый) — датчик, преобразующий величину деформации в удобный для измерения сигнал (обычно электрический), основной компонент тензометра (прибора для измерения деформаций). Существует множество способов измерения деформаций: тензорезистивный, пьезоэлектрический, оптико-поляризационный, пьезорезистивный, волоконно-оптический, или простым считыванием показаний с линейки механического тензодатчика. Среди электронных тензодатчиков наибольшее.

Ги́перзвуковая ско́рость (ГС) в аэродинамике — скорости, которые значительно превосходят скорость звука в атмосфере.

Рупорная антенна — металлическая конструкция, состоящая из волновода переменного (расширяющегося) сечения с открытым излучающим концом. Как правило, рупорную антенну возбуждают волноводом, присоединённым к узкому концу рупора. По форме рупора различают E-секториальные, H-секториальные, пирамидальные и конические рупорные антенны.

Под приборным оборудованием летательного аппарата понимается следующее авиационное оборудование.

Фототранзи́стор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от обычного биполярного транзистора тем, что полупроводниковый базовый слой прибора доступен для воздействия внешнего оптического облучения, за счёт этого ток через прибор зависит от интенсивности этого облучения.

Ферромагни́тная жи́дкость (ФМЖ, магни́тная жи́дкость, феррожидкость, феррофлюид) (от латинского ferrum — железо) — жидкость, сильно поляризующаяся в присутствии магнитного поля.

Пьезоэлектри́ческие преобразова́тели — устройства, использующие пьезоэлектрический эффект в кристаллах, керамике или плёнках и преобразующие электрическую энергию в механическую и наоборот.

Оптические материалы — природные и синтетические материалы, монокристаллы, стёкла (оптическое стекло, фотоситаллы), поликристаллические (Прозрачные керамические материалы), полимерные (Органическое стекло) и другие материалы, прозрачные в том или ином диапазоне электромагнитных волн. Их применяют для изготовления оптических элементов, работающих в ультрафиолетовой, видимой, инфракрасной областях спектра.

Антимони́д и́ндия — кристаллическое бинарное неорганическое химическое соединение, соединение индия и сурьмы. Химическая формула InSb.

Микроволно́вый ска́нер, сканер на миллиметровых волнах — устройство для визуализации поверхности тела человека и обнаружения объектов, скрытых под одеждой (сканер персонального досмотра), при помощи электромагнитных волн миллиметрового диапазона (30—90 ГГц, КВЧ) и используемое чаще всего для обеспечения безопасности в аэропортах и на других объектах (обнаружение оружия, взрывчатых веществ), а также предотвращения коммерческих потерь и контрабанды. Один из основных вариантов бесконтактного превентивного.

Безэ́ховая ка́мера (БЭК) — помещение, в котором не возникает эхо. Безэховые камеры бывают следующих видов.

Толщиномер (неправ. толщинометр) — это измерительный прибор, позволяющий с высокой точностью измерить толщину материала или слоя покрытия материала (такого как краска, лак, грунт, шпаклёвка, ржавчина, толщину основной стенки металла, пластмасс, стекла, а также других неметаллических соединений, покрывающих металл). Современные приборы позволяют измерить толщину покрытия без нарушения его целостности.

Пермалло́й — прецизионный сплав с магнитно-мягкими свойствами, состоящий из железа и никеля (45—82 % Ni). Может быть дополнительно легирован несколькими другими компонентами. Сплав обладает высокой магнитной проницаемостью (максимальная относительная магнитная проницаемость μ ~ 100 000), малой коэрцитивной силой, почти нулевой магнитострикцией и значительным магниторезистивным эффектом. Благодаря низкой магнитострикции сплав применяется в прецизионных магнито-механических устройствах и других устройствах.


Современный уровень развития радиотехнических устройств и их повсеместное использование остро ставят на повестку дня вопросы электромагнитной защиты и безопасности. До недавнего времени данный пласт проблем оставался в тени, поскольку технологический уровень не позволял их детально рассматривать. Но сегодня существует целое направление по разработке радиопоглощающих материалов (РПМ), которые имеют самые разные назначения.

Сферы применения РПМ

Применение радиопоглощающего материала

Потребность в использовании данного рода материалов возникает в военно-оборонном комплексе, в гражданской промышленности, в решении типовых задач при разработке радиоэлектронных устройств и т. д. Но защитные системы и средства безопасности все же являются наиболее актуальными с точки зрения запроса на РПМ. Причем это не обязательно военно-технический комплекс. Современные радиопоглощающие материалы успешно осваиваются в нише компьютерных систем, обрабатывающих информацию с подключением средств защиты от несанкционированного доступа. Объекты биологического происхождения таким образом защищаются от электромагнитного воздействия, а снижение радиолокационной уязвимости и вовсе является необходимостью для широкого спектра единиц гражданского и военного назначения. Другое дело, что характер использования и свойства конкретных РПМ в каждом случае могут заметно отличаться.

Что представляет собой РПМ?

Радиопоглощающий материал и его конструкция

Данный класс материалов можно определить через способность состава и структуры изделия обеспечивать поглощение электромагнитной энергии в том или ином частотном диапазоне. Новые поколения РПМ в большей степени поддаются модификации в части их способности преобразовывать поглощаемые волны в определенные виды энергии. В данном процессе помимо поглощения наблюдаются и такие явления, как интерференция, рассеяние и дифракция. Что касается производства радиопоглощающих материалов, то в их основу закладываются частицы ферромагнетика. Они используются в качестве широкодиапазонных поглощающих материалов, формируя на поверхности целевого изделия изоляционный слой по отношению к электромагнитным волнам. При этом обязательным условием для структурной основы изолятора должно быть присутствие немагнитного диэлектрика. На этой базе разрабатываются различные модификации РПМ. Например, дополнительно в структуру ферромагнетиков могут включаться элементы сажи или графита, которые выступают в качестве поглотителей. В производстве узкодиапазонных РПМ также акцент делается на применении каучука или пластмасс.

Разница между радиопоглощающими материалами и покрытиями

Радиопоглощающее покрытие

Технико-эксплуатационные характеристики РПМ

Радиопоглощающий материал

Материалы довольно разнообразны по своему устройству и структуре, и все же существуют усредненные рабочие показатели для наиболее устоявшихся групп РПМ. К базовым характеристикам, отражающим эти значения, можно отнести:

  • Длину рабочих волн – от 0,3 до 25 см.
  • Спектр рабочих частот – от 300 до 37 500 МГц.
  • Магнитную проницаемость – от 1,26 до 10-6 Гн/м.
  • Диапазон рабочих температур – от -40 до 60 °С.
  • Массу – порядка 200-300 г на 1 м кв.

Разновидности РПМ

Радиопоглощающий материал из полиуретана

Хотя четкого разграничения и в сегменте РПМ на данный момент не существует, условно можно выделить следующие категории данного материала:

  • Резонансные. Также называются частотно-настроенными – способны обеспечивать полную или частичную нейтрализацию поглощаемой волны. Эффективность напрямую определяется толщиной защитного изделия.
  • Нерезонансные магнитные. Имеют в своей структуре феррит, частицы которого распределяются в эпоксидной прослойке. Магнитный радиопоглощающий материал способен рассеивать излученную энергию по большой поверхности, что позволяет достигать нейтрализации в широком частотном диапазоне.
  • Нерезонансные объемные. Как правило, представляют собой толстые слои изоляторов, поглощающих основную часть подводимого излучения до его отражения от задней металлической пластины.

Особенности РПМ на ферромагнитных порошках

Разновидность покрытия с радиопоглощающей способностью, которое содержит в себе дисперсные микросферы с частицами феррита или карбонильного железа. В процессе поглощения высокочастотного излучения в порошке происходят молекулярные колебания, провоцирующие выделение тепла. Та самая производная энергия, которая рассеивается или передается смежной аккумулирующей конструкции. Схожий принцип действия отмечается в листах неопренового каучука. Этот материал работает на принципе магнитных потерь, но содержит в своей структуре более основательный наполнитель из феррита и графита.

Пенные РПМ

Радиопоглощающий материал на основе полиуретана

Особая группа РПМ, которые используются для долговременной маскировки важных объектов. В основе материалов этого типа заложен пенополиуретан. Его применение оправдывается тем, что конечное изделие получает небольшие размеры и скромную массу при достаточно широком диапазоне поглощающей активности до дециметрового спектра. Хотя исходное сырье в данном случае обходится дороже, радиопоглощающие материалы и маскирующие пенные покрытия на полиуретановой основе отличаются существенными эксплуатационными преимуществами:

  • Высокие прочностные характеристики по сравнению с аналогичными водно-полимерными материалами.
  • Поддержание маскирующих качеств неограниченное время.
  • Менее жесткие требования к хранению компонентов.
  • Пенные маскирующие покрытия в принципе отличаются высокой адгезией, что расширяет возможности их применения к самым разным поверхностям.

Отечественные разработки РПМ

Заключение

Испытание радиопоглощающего материала

Несмотря на расширение общего сегмента РПМ, пока еще рано говорить об устоявшихся и стандартизированных нормах разработки данного класса материалов. Во многом это связано с секретностью, в условиях которой приходится работать исследователям в этой области, но также остаются и проблемы, связанные с технологической сложностью разработки. Получение новых перспективных радиопоглощающих материалов сегодня невозможно без применения инновационного исходного сырья. Технологи также активно работают над более точными и эффективными методами оценок поглощающей способности, что расширяет возможности для выявления новых РПМ. И на этом фоне логично утрачивают актуальность уже ставшие традиционными радиопоглощающие средства на основе тех же ферритов.

Читайте также: