Приборы для измерения шума реферат

Обновлено: 08.07.2024

ВОЗ обращает внимание на недооценку общественностью влияния шума на здоровье, обращая внимание на неуклонное повышение фонового уровня шума, в частности в Европе. По сравнению с 80-ми годами в 90-е шумовой фон вырос на 26%. В большой степени это увеличение связывают с ростом числа автомобильного транспорта. Доказано, что превышение допустимых уровней шумового воздействия приводит к повышенной возбудимости нервной системы, ухудшению памяти, нарушениям кровообращения и другим негативным воздействиям.

Все методы измерения шума делятся на стандартные и нестандартные.

Стандартные измерения шума регламентируются соответствующими стандартами и обеспечиваются стандартизованными средствами измерения. Величины, подлежащие измерению, так же стандартизованы.

Нестандартные методы применяются при научных исследованиях и при решении специальных задач.

Измерительные стенды, установки, приборы и звукоизмерительные камеры подлежат метрологической аттестации в соответствующих службах с выдачей аттестационных документов, в которых указываются основные метрологические параметры, предельные значения измеряемых величин и погрешности измерения.

Стандартными величинами, подлежащими измерению, для постоянных шумов являются:

  • уровень звукового давления Lp, дБ, в октавных или третьоктавных полосах частот в контрольных точках;
  • корректированный по шкале А уровень звука LA, дБА, в контрольных точках.

Для непостоянных шумов измеряются эквивалентные уровни Lpэк или LAэк.

Приборы для измерения шума - шумомеры - состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ.

По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 - для лабораторных и натурных измерений; 2 - для технических измерений; 3 - для ориентировочных измерений шума. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31,5 Гц до 8 кГц.

Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры. Приборы для измерения шума строятся на основе частотных анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в определенной полосе частот.

В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные. Частотная характеристика фильтра К( f ) =Uвых /Uвх представляет собой зависимость коэффициента передачи сигнала со входа фильтра Uвх на его выход Uвых от частоты сигнала f.

Для измерения производственного шума преимущественно используется шумомер ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях.

Этапы аттестации робочих мест Принимая решение о назначении аттестации персонала, работодатель должен помнить о двух существенных обстоятельствах: Аттестация должна быть согласована с местным профсоюзом, или, если такого нет, напрямую с трудовым коллективом (для этого коллектив избирает представителей); По закону, при проведении аттестации должна выполняться определенная периодичность (раз в пять лет, или в три года). Конкретная длительность периода устанавливается отраслевым министерством или ведомством. Проведение аттестации требует тщательной подготовки. Для этого отдел кадров, либо выполняющий те же обязанности менеджер, составляет план аттестации, который должен получить одобрение главы предприятия. В этом плане содержатся: Список лиц, которые подвергнутся аттестации; Даты и время конкретных аттестационных мероприятий (график); Перечень документов, нужных сотруднику для аттестации; План мероприятий по разъяснений правил и цели проводимой аттестации; Список и должности лиц, которые войдут в комиссию по аттестации. 1) Количество и полный перечень сотрудников, которых нужно аттестовать, должны быть даны по каждому подразделению. При этом необходимо учесть, что в аттестационные списки нельзя включать сотрудников, если они занимали свою должность менее, чем год (молодые специалисты – менее двух лет). Аттестовать таких специалистов следует после того, как этот период времени (год или два) закончится. Кроме того, в аттестационный список не должны попасть женщины с детьми в возрасте менее года и беременные женщины. Их можно подвергнуть аттестации самое раннее через год после окончания отсрочки. 2) Срок проведения аттестации утверждается руководителем предприятия по согласованию с выборным органом профсоюзной организации (профсоюзным представителем). Срок зависит от численности работников, количества аттестационных комиссий и др. Как правило, срок проведения аттестации составляет три-шесть месяцев. А на предприятиях с численностью работников, аттестуемых до 50 человек эту процедуру проводят менее чем за три месяца. График проведения аттестации составляет служба персонала совместно с руководителями структурных подразделений и доводит до сведения работников не менее чем за один месяц до начала аттестации. Графиком проведения аттестации рекомендуется следующая последовательность: Члены комиссии. Руководители структурных подразделений. Другие работники. Члены аттестационных комиссий проходят аттестацию на общих основаниях вместе с сотрудниками тех подразделений, в которых они работают. 3) Аттестационные документы, состоящие на работника, нужно подать в аттестационную комиссию не менее чем за две недели до дня проведения аттестации. 4) Следующий этап подготовки к аттестации — проведение разъяснительной работы с сотрудниками относительно цели, сроков и порядка проведения аттестации. Как отмечалось, о сроках и график проведения аттестации работников сообщают заранее. Кроме того, из числа членов аттестационных комиссий назначаются ответственные лица, должны не позднее чем за неделю до дня заседания комиссии окончательно уточнить списки работников, аттестуемых выяснить, какие работники будут отсутствовать по уважительным причинам (например, командировки) в дни, предназначенные для их аттестации, и предусмотреть для них другое время. Заметим, что в случае неявки работника на заседание аттестационной комиссии без уважительных причин комиссия может провести аттестацию без его присутствия. 5) Состав аттестационной комиссии утверждает своим приказом руководитель предприятия

Реверберационная камера.Для проведения различных акустичес­ких исследований и измерений служит реверберационная камера (РК), в которой звуковые колебания эффективно отражаются от всех ограждающих поверхностей. Звуковое давление по всему объ­ему камеры достигается примерно одинаковым при равновероят­ном приходе звукового сигнала со всех направлений. Внутреннюю поверхность камеры облицовывают хорошо отражающим звук ма­териалом, коэффициент поглощения которого выбирают мини­мальным. Для достижения диффузности звукового поля выбирают специальную форму внутренних поверхностей, создают на них неро­вности, развешивают на стенах РК отражающие элементы, прини­мают меры для изоляции РК от внешних шумов и вибраций.

Основными измерениями, проводимыми в РК, являются: изме­рение звукопоглощающих свойств материалов; градуировка и ис­следование свойств микрофонов, шумомеров и другой акустической аппаратуры; исследование и измерение различных источников шу­ма, звуковых полей устройств, приборов, машин и т. д.; измерение мощности излучения громкоговорителей; исследование субъектив­ных характеристик слуха; исследование и измерение звукоизолиру­ющих свойств различных материалов при наличии двух камер с общим сообщающимся окном и т. д.

Для измерения времени реверберации после выключения источ­ника шума (звука) записывают динамику уменьшения уровня звуко­вого давления. С этой целью применяют самописцы с логариф­мической шкалой. Время стандартной реверберации определяется по формуле (3.14).

Звукомерная камера.Данная камера предназначена для проведе­ния акустических измерений с имитацией неограниченного простра­нства. В отличие от реверберационной звукомерная камера (ЗК) имеет внутреннюю поверхность, покрытую совершенным звукопо­глощающим материалом с коэффициентом поглощения, близким к единице. При измерениях на высоких частотах вместо качествен­ного заглушения (отсутствие отражений от стенок) применяют им-' пульсный метод измерений. При этом основные измерения произ-. водятся в момент прохождения прямого сигнала (до прихода от­раженного сигнала). Такой метод позволяет избежать погрешно­стей, возникающих при отражении сигнала из-за несовершенства поглощающих стенок ЗК. Для достижения качества ЗК должна иметь кроме того хорошую звукоизоляцию и виброизоляцию.

Вместо звукомерных камер в гидроакустике часто применяют камеры в виде бассейнов, в которых трудно достигнуть значения коэффициента поглощения на всех поверхностях, равного единице. В гидрокамерах, в связи с этим, тоже с успехом применяется импульсный метод измерений.

Микрофон.Микрофоном называется приемник звука (шума), в котором происходит преобразование звукового колебания воз­душной среды в электрический сигнал. Микрофон характеризуется чувствительностью, частотной зависимостью, динамическим диапа­зоном, направленностью. Помимо электроакустического преобра­зователя в комплект микрофона входят предварительные усили­тели, согласующие трансформаторы.

Верхняя граница динамического диапазона определяется уров­нем звукового давления, при котором коэффициент гармонических искажений сигнала на выходе микрофона становится равным 0,5 — 1%.

Нижняя граница динамического диапазона определяется эквива­лентным уровнем звукового давления, при котором напряжение сигнала на выходе микрофона становится примерно равным напря­жению шума, обусловленного молекулярными шумами собственно преобразователя, предварительного усилителя, тепловыми шумами резистивных элементов и т. д.

Каждый микрофон имеет мембрану (диафрагму), которая колеб­лется под действием падающего звукового поля, в результате чего происходит акустико-механическое преобразование.

По направленности микрофоны делятся на три вида: приемники давления, приемники градиентного давления и комбинированные приемники.

В приемниках давления микрофон не обладает направленно­стью, так как падающее на подвижную механическую систему звуковое излучение действует с одной стороны. Учитывая, что размеры микрофона меньше длины волны звукового колебания и результирующая сила в рассматриваемом случае не зависит от направления прихода звука, устройство не обладает направленно­стью.

Подвижная система у градиентных приемников подвергается воздействию звукового поля с двух сторон. Результирующая сила F зависит от разности звуковых давлений р на обеих акустических входах и угла падения звуковой волны относительно акустической оси преобразователя:


(3.20)

где d — расстояние между входами приемника; в — угол падения звуковой волны относительно акустической оси электроакустичес­кого преобразователя.

Направленность градиентных приемников является функцией cosd. Максимальное значение выходного сигнала преобразователя будет в случае осевого падения (0=0,180°). Выходной сигнал преоб­разователя будет равен нулю при 0=90°.

При объединении приемников первых двух видов или определен­ной конструкции акусто-механической системы образуется комби­нированный приемник, с помощью которого можно получать диа­граммы направленности разных видов.

С точки зрения энергетических характеристик микрофоны делят­ся на две группы. К первой группе относятся микрофоны, имеющие источник питания, обеспечивающий энергию выходного сигнала. Ко второй группе относятся микрофоны, энергия выходного сиг­нала которых определяется процессом преобразования энергии па­дающей звуковой волны.

Примером микрофонов первой группы является угольный мик­рофон, у которого электрическое сопротивление угольного порошка зависит от давления мембраны, колеблющейся под действием пада­ющей звуковой волны. Достоинством угольных микрофонов явля­ется большая мощность выходного сигнала, остальные параметры невысокие: полоса частот от 100 Гц до нескольких десятков кГц; чувствительность 200 — 400 мВ/Па при токе питания 10 — 100 мА; динамический диапазон не более 30 дБ; коэффициент гармонических искажений до 20%.

Более высокими параметрами обладают микрофоны второй группы, которые в свою очередь делятся на электродинамические, электростатические и пьезоэлектрические.

Широкое применение в акустике нашли катушечные электроди­намические микрофоны, принципиальная конструкция которых представлена на рис. 3.13. Под действием падающей звуковой вол­ны происходит колебание мембраны 2, на которой закреплена сигнальная звуковая катушка 3 в кольцевом зазоре 1 постоянного магнита 5. При этом в катушке 3 возникает э.д.с. под действием изменения магнитного поля, пронизывающего эту катушку при колебании мембраны. Таким образом, энергия падающей звуковой волны преобразуется в электрический сигнал.





Микрофоны этого типа используются как приемники давления и комбинированные. Рабочий диапазон частот составляет от 20 Гц до 20 кГц при чувствительности 1 — 3 мВ/Па. Электродинамичес­кие катушечные микрофоны широко применяются в акустике из-за своей надежности, простоты конструкции и электроакустических параметров.

Ряс. 3.13. Принципиальная кон­струкция электродинамическо­го микрофона:

1 — кольцевой зазор; 2 — мемб­рана; 3 — звуковая сигнальная ка­тушка; 4 — гофрированный ворот­ник мембраны; 5 — постоянный магнит

Рис. 3.14. Принципиаль­ная схема конденсаторно­го микрофона электростатического типа

Высокими параметрами обладают конденсаторные микрофоны, принципиальная схема которых представлена на рис. 3.14.

Тонкая мембрана 1 является подвижной системой и одновремен­но обкладкой плоского конденсатора, вторая обкладка 2 которого выполнена в виде неподвижного массивного электрода с отверсти­ями. Эти отверстия обеспечивают необходимые диссипативные свойства воздушного зазора конденсатора. Под действием пада­ющей звуковой волны мембрана колеблется, изменяя при этом емкость С конденсатора. Разрядно — зарядный ток I, текущий по сопротивлению R, создает напряжение U, временная зависимость которого повторяет форму звукового сигнала. При наличии на обкладках конденсатора электретного материала необходимость в источнике питания Uo отпадает, так как электрет в зазоре создает требуемое электрическое поле. Конденсаторные микрофоны могут быть комбинированными, градиентными и приемниками давления.

Частотный диапазон конденсаторных микрофонов составляет от единиц Гц до 150 кГц и выше. Их чувствительность составляет примерно 10 мВ/Па при динамическом диапазоне 130 — 140 дБ.


Рис. 3.15. Блок-схемашумомера:

1 - микрофон; 2 - усилитель; 3 — корректирующие

фильтры; 4 — детектор; 5 — стрелочный индикатор

Шумомер. Для объективных измерений уровня громкости шума (звука) используется шумомер, блок-схема которого представлена на рис. 3.15. Частотная характеристика шумомера и некоторые его другие параметры подобраны в соответствии со спектральной чув­ствительностью человеческого уха. Учиты­вая особенности слухо­вого аппарата к вос­приятию звука разных частот и разной гром­кости (см. рис. 2.3), шумомеры снабжаются тремя комплектами фильтров, с помощью которых можно обеспечить требуемую форму частотной характери­стики на трех уровнях громкости.

При нормировании громкости шума в производственных поме­щениях, на транспорте, в жилых домах шкала выходного прибора градуируется в дБ относительно стандартного звукового давления 2·10 -5 Па по одной из трех шкал.

Методы измерения шумов. В зависимости от задач исследования или контрольных испытаний и измерений могут быть выбраны те или иные методы измерений. На территории жилой и общественной застроек измерения шума проводят в соответствии с ГОСТ 13337 — 78* (СТ СЭВ 2600 — 80).

Очень часто для измерения непостоянного во времени шума применяют магнитофоны.

При измерениях постоянного во времени инфразвука использу­ется микрофон с предусилителем, шумомер и низкочастотный спек­тральный анализатор.

В случае измерения непостоянного во времени инфразвука используются те же приборы, но вместо анализатора спектра выбира­ют магнитофон с последующей расшифровкой, используя при этом интегрирующий шумомер или дозиметр шума.

Для проведения самых различных акустических исследований необходимо иметь весь комплекс оборудования, частично рассмот­ренного выше: реверберационную и звукомерную камеру, шумоме-ры, микрофоны, анализаторы спектра, магнитофонную технику, радиотехническую аппаратуру, акустические фильтры и т. д.

Шумомер – это электронный прибор, предназначенный для измерения уровня громкости в децибелах. Данное оборудование широко используется в быту и отличается высокой степенью точности. Оно имеет сравнительно невысокую стоимость и не требует сложных настроек. Чтобы воспользоваться прибором достаточно просто его включить без необходимости сложных манипуляций и изучения инструкции в несколько страниц.

Где используется шумомер

Шумомеры в первую очередь используются для контроля эффективности шумоизоляции, которая установлена в помещении. Их используют строители для определения уровня звукоизоляции объектов. На их основе можно проверить насколько соответствует применяемый строительный материал тем параметрам, которые заявлены производителем.

Существуют стандарты шума, которые допустимы в жилых помещениях в дневное и ночное время. В случае нарушения данных норм предусматривается административная ответственность в виде наложения штрафа или конфискации звукового оборудования и инструментов, издающих шум. Чтобы привлечь виновника к ответственности нужно документально зафиксировать уровень звука, который тот издает. Специально для этой цели используется шумомер, что позволяет получить точные данные в децибелах. Данное устройство имеется в распоряжении сотрудников правоохранительных органов, которые выезжают на жалобы нарушения норм проживания шумными соседями. С помощью данного оборудования можно определить, подпадают ли они под административную ответственность за нарушение правил тишины.

Также шумомеры используются для контроля условий труда на производствах, поскольку уровень шума различного оборудования ограничивается нормами трудового законодательства. Превышение допустимого звука несет опасность для здоровья человека в виде частичной потери слуха. В связи с этим контроль данного показателя является очень важным, и обойтись без применения шумомера невозможно.

Принцип действия прибора и его устройство

Шумеры имеют сравнительно несложную конструкцию, если приравнивать их к высокотехнологическим электрическим устройствам. В сердце конструкции находится обычный ненаправленный микрофон, мембрана которого колеблется от звуковых волн. Снятый с нее сигнал пропускается через несколько фильтров и поступает на индикаторный прибор, который устроен как вольтметр. Уровень создаваемого шума соответствует уровню напряжения электрического тока в устройстве. В связи с этим показатель электрического сигнала полностью соответствует тому, насколько громкий выдаваемый звук. Механическая шкала или электронный циферблат выводят показатели громкости в децибелах.

Если рассматривать устройство шумомера более детально, то можно выделить его следующие составные части: ненаправленный микрофон, усилитель, фильтры, детектор, интегратор, индикатор.

Наличие фильтров позволяет отсечь от измерений показания звуковых волн, которые не воспринимаются человеческим слухом. Это дает возможность проводить объективную оценку, ориентируясь по тем показателем, которые действительно влияют на окружающих. Звуки, которые ухо не воспринимает, отсеиваются фильтрами.

Стандарты шума

Чтобы использовать шумомер и делать правильные выводы об полученных с его помощью данных, нужно ориентироваться какой шум является опасным. Если человек на протяжении длительного периода сталкивается с шумом на уровне 70-90 дБ, у него развивается заболевание центральной нервной системы. Он становится раздражительным, страдает бессонницей и нарушениями рефлексов. Такая шумность наблюдается на многих производствах, поэтому работники таких предприятий пользуются защитными наушниками

Повышение уровня звука до 100 дБ приводит к частичной потере слуха. Это отклонение может иметь как кратковременный, так и постоянный характер. Если повысить шум до 200 дБ, наблюдаются серьезные повреждения центрального уха вплоть до кровоизлияний в мозг. Такой уровень в отдельных случаях является смертельным, в лучшем случае он приводит к контузии с потерей слуха на всю жизнь.

Оптимальным уровнем шума в помещениях является показатель до 40-50 дБ в дневное время. Это безопасный уровень звука, который не несет опасности для слухового аппарата. В ночное время эта норма ниже, и составляет 30-40 дБ. Стоит учитывать, что в различных странах, и отдельных городах, верхняя планка разрешенной громкости может отличаться.

Как правильно использовать прибор

Чтобы получить точные данные важно правильно использовать шумомер. Прибор не требует особого отношения или продолжительного обучения перед применением. Достаточно просто приблизить его к источнику шума и включить питание. После этого его микрофон начнет отправлять данные на считывающий элемент. В зависимости от модели шумомера измерения могут проводиться на протяжении нескольких секунд или больше. После этого прибор останавливает фиксацию показателей и выводит уровень самой сильной звуковой волны, которая была считана на протяжении измерения.

При работе с шумомером необходимо убедиться в том, что микрофон не закрыт. Чтобы проверить, что прибор работает, его можно испытать, проведя измерения в тихом помещении. В бытовых условиях практически невозможно создать условия, в которых нет звуковых волн. В связи с этим невозможно добиться, чтобы шумомер показывал уровень громкости на минимальной границе своей чувствительности. Если в помещении действительно тихо, то выдаваемый устройством уровень шума будет приближен к минимальной отметке. Испорченный шумомер будет фиксировать слишком высокие показатели, по этому можно определить непригодность его фильтров или прочих элементов.

Мобильные приложения для измерения шума

Для современных смартфонов написаны приложения, которые после установки позволяют измерить уровень шума, используя технические возможности телефона. Они выпускаются под операционные системы Android и iOS. Стоит отметить, что подобные приложения в некоторых смыслах могут заменить бытовые шумомеры, но при этом следует понимать, что точность получаемых данных остается под сомнением. Все зависит от качества смартфона. Если рассматривать насколько точно работают подобные приложения на оборудовании фирмы Apple, то безусловно можно судить о достаточной точности. Что касается более дешевого ассортимента смартфонов, то их точность восприятия уровня звука под сомнением.

Приложениями можно пользоваться при необходимости измерить приблизительные данные об уровне громкости в пределах разговорной нормы, то есть до 60 дБ. Аппаратные возможности смартфонов и планшетов ограничены, поскольку они не предназначены для громких звуков. Задача их микрофона только в восприятии голоса человека, который обычно и звучит в интервале до 40 дБ. Волны сверх этого показателя приложениями воспринимаются с погрешностью или игнорируются, поэтому смартфоны не могут служить как прибор для снятия показателей громкости.

Классы шумомеров

Шумеры разделяются на классы в зависимости от точности выдаваемых исследований. Класс 0 охватывает самые точные лабораторные приборы, которые служат в качестве эталона для контроля прочего оборудования. Такие устройства самые дорогие и дают очень маленькую погрешность благодаря тому, что в них используются дорогостоящие материалы, сложные фильтра и прочие элементы, влияющие на точность.

Следующими по точности являются приборы 1 класса, которые применяются для санитарно-гигиенических исследований. С их помощью оцениваются условия труда. Данное оборудование работает почти с лабораторной точностью, поэтому может использоваться в качестве эталона для контроля эффективности и точности измерения приборов более низкого класса.

Устройства 2 класса применяются для снятия показателей при прохождении техосмотра транспортных средств, оценки громкости работающего оборудования, когда не идет речь об санитарных условиях труда. Приборы 3 класса является бытовыми. Именно они чаще всего встречаются в продаже и позволяют получить приблизительные показатели уровня громкости, которые могут отличаться от данных, снятых с эталонного оборудования на 1-4 дБ.

Стоит отметить, что класс оборудования влияет и на диапазон снятия измерений. Шумомер с классом 0 и 1 способен фиксировать звуковые сигналы в диапазоне частот от 20 Гц до 18 кГц. 2 класс работает в диапазоне от 20 Гц до 8 кГц. 3 класс берет звуковые волны, начиная от 30 Гц и до 8 кГц. Также устройства отличаются по децибелам, которые они могут зафиксировать. Бытовые приборы работают с диапазоном громкости от 30 до 130 дБ.

Отличия между приборами

Подбирая шумомер, стоит обратить внимание на его класс, уровень погрешности, а также диапазон чувствительности в децибелах. Что касается источника питания, то это дело вкуса. В одних случаях удобно пользоваться сетевыми приборами, которые подключаются к розетке, а в других лучше купить устройства на батарейках или аккумуляторе. Также приборы отличаются размером экрана. Дорогие модели могут помимо цифр выводить график силы звуковых волн.

Современные устройства оснащаются прикрепленным микрофоном, и выводят данные об измерениях на цифровой экран. Они гораздо более удобные в применении, чем старые приборы оснащенные стрелкой. Более раннее оборудование имело недостаток, а именно удобство в фиксации самого высокого получаемого звукового сигнала. В результате отсутствия автоматической остановки, получаемый показатель зависит исключительно от профессионализма оператора, который занимается снятием показателей. Если моргнуть и вовремя не заметить насколько отклонилась стрелка, то можно пропустить максимальный шум и записать меньший показатель. Подобное оборудование сейчас встречается в продаже только из рук, поскольку производители отказались от такой конструкции. Подбирая прибор, стоит избегать стрелочных моделей без автоматической фиксации верхнего показателя измерения.

Аппаратура для измерения шума

Люди нередко недооценивают то влияние, которое на них способен оказать шум и разнообразные звуки. Медики давно выяснили, что акустический фактор существенно способен влиять на здоровье человека, приводя даже к серьезным заболевания и недугам.

Важно понимать, что с учетом технического прогресса, а также развития общества в целом, количество шума, с которым ежедневно человек сталкивается, ежедневно растет. Именно поэтому очень важно корректным образом измерять его, и защищать себя от чрезмерного воздействия разнообразны звуков, которые постоянно повсеместно возникают в мире.

С помощью какой аппаратуры измеряют шумовые характеристики?

С помощью какой аппаратуры измеряют шумовые характеристики

Для того чтобы объективным образом измерять уровень шума, используются специальные устройства, которые имеют соответствующее название — шумомеры. Важно понимать, что данные устройств измеряют не уровень громкости. Специалисты обращают внимание на то, что далеко не каждое устройство, измеряющее звук, является шумомером.

Непосредственно сам шумомер представляет собой устройство, которые состоит из микрофона, к которому определенным образом присоединен вольтметр. Его градация определена в виде децибел. Принцип работы такого устройства довольно прост.

Он связан прежде всего с тем, что электросигнал на выходе из микрофона прямо пропорциональный исходному звуку, который он зафиксировал. Вследствие этого прирост уровня шумового давления вызывает последующие изменения электрических данных на вольтметре. В итоге показатели шума отображаются с помощью индикаторного устройства, градация которого осуществления в децибелах.

Отдельно стоит сказать, что сигнал может быть пропущен через несколько электрофильтров. Это происходит в зоне после выхода его с микрофона, но до входа в непосредственно сам вольтметр. Данная корректировка происходит вследствие учета характеристик восприятия шума различных частот ухом человека. Именно это и становится основой для того чтобы подобрать общую схему устройства.

Чувствительно человеческого уха зависит от нескольких акустических факторов. Среди них важна не только частота звука, но и его интенсивность. Именно поэтому в шумомерах производители устанавливают несколько комплексов фильтров, которые отвечают разным типам звуковых волн.

Они способны имитироваться АЧХ при определенной заданной мощности звука. Данные фильтры обозначены соответствующими латинскими буквами — A, B, C и D. Все они соответствуют тем нормам, которые прописаны в ГОСТе 17187-81.

Их обозначают цифрами от 0 до 3 соответственно. Каждый из типов приборов имеет свои особенности и характеристики, на которые обязательно важно обратить внимание.

  1. 0 класс шумомера — такие устройства используется в качестве образцовых средств измерения шума.
  2. 1 класс шумомера—применяются данные приборы преимущественно для исследований лабораторного и натурного плана.
  3. 2 класс шумомера — специалисты используют подобные устройства для технических измерений.
  4. 3 класс шумомера — сфера применения такие приборов представляет собой ориентировочные исследования шумовых волн.

шумомер

Первые два класса шумомеров преимущественно используются для фиксации звуков от 20 Гц до 18 кГц. Класс 2 рассчитан на диапазон от 20 Гц до 8 кГц. В это же время шумомер класса 3 способен уловить звук от 31,5 Гц до 8 кГц.

Отдельно существуют также стандарты к параметрам временного усреднения приборов. В данных устройствах используется экспоненциальный способ F (fast), S (slow) и I (Impulse).

При это характеристика F имеет временную константу 1/8 секунды, а S – 1 секунду. Наряду с этим интегрирующие устройства для измерения шума отличаются еще и линейным усреднением. Вследствие этого они способны определять большее количество разнообразных акустических эффектов.

На сегодняшний момент существует несколько разнообразных стандартов, которые регламентируют работу шумомеров. В России еще до недавнего времени пользовались ГОСТом 17187-81, но в 2008 году он был полностью гармонизирован с европейским аналогом под названием МЭК 61672-1. В итоге был создан новый ГОСТ Р 53188.1-2008.

В последний период времени в Европе были созданы собственные нормы на шумомеры, но все они основаны на МЭК. Определенным образом в этом плане отличаются только лишь Соединенные Штаты, которые используют нормы ANSI.

При каких погодных условиях следует проводить измерения

Не менее важным фактором определения шума являются климатические условия, в которых проходит его проверка.

Ветер, осадки или какие-либо другие явления способны исказить результат, сделав его более значительным, нежели он является на самом деле. В свою очередь подобные данные могут повлиять на обустройство способов защиты от звуков.

Во время проведения исследования не должно быть никаких атмосферных осадков. Это касается дождя, снега или же града. Также не рекомендуют проводить замеры в тех случаях, когда скорость ветра превышает 5 метров на 1 секунду. Когда происходят такие порывы перемещения воздушным масс, необходимо использовать специальный защитный экран.

При каких погодных условиях следует проводить измерения

Также стоит сказать и о температуре вблизи земли. Для корректного проведения тестирования необходимо, чтобы отсутствовал сильный отрицательный температурный градиент вблизи основания. Такое случается зачастую неярким солнечным днем.

На открытых площадках измерение шума при помощи прибора необходимо проводить, удерживая микрофон на высоте около 1,2-1,5 метра над уровнем поверхности. От любых ограждающих конструкций устройство в это время должно находиться на расстоянии около 2 метров. Это касается прежде всего зданий.

Стоит отметить, что в некоторых случаях расстояние микрофона от земли может меняться в зависимости от непосредственно самого задания, которое нужно выполнить оператору. Для общего картографирования, к примеру, принимается высота от 3,5 до 4,5 метров среди многоэтажных зданий.

Продолжительность измерений шума необходимо определять в зависимости от характера источника звуковых волн. Если они имеют постоянный характер, то длительность одного замера должна быть не менее 3 минут. В каждой из точек территории стоит провести замер трижды. Это позволит получить наиболее корректный результат.

Микрофон для проведения измерений должен находиться не менее чем на 0,5 метра в удаленности от оператора, который руководит процессом.

Прибор должен быть направлен конкретно в сторону источника шума, а не в других направлениях. Если же определить, что конкретно издает звук невозможно, ось устройства должна находиться в перпендикулярной плоскости к основанию, на котором стоит человек.

Для полной оценки уровней шума на местности зачастую специалисту необходимо несколько месяцев. Такого времени иногда может и не быть. Поэтому допускается использование усредненных по изменившимся в широком диапазоне метеорологических условиях.

Их стоит объединить с учетом статистических данных по данному конкретному месту, где осуществляется проверка. При этом важно также учесть все различные компоненты шума, которые могут возникать на этой местности.

Чтобы специалист смог предоставить среднегодовое значение шума на конкретной площади, ему нужно принять во внимание все варианты звукового излучения и условий распространения звуковых волн в течение 12 месяцев.

Все особенности проведения измерения в различных местах прописаны в Государственных стандартах, действующих на сегодняшний момент на территории Российской Федерации.

Именно данными документами стоит пользоваться для того чтобы выяснить, каким образом проводить исследование в тех или иных условиях.

Акустические экраны устанавливаются не только для защиты от шума. но и от светапоглощения солнечной энергии.

Вывод

Шумомеры представляют собой узкоспециализированные устройства, направленные на измерение уровня неблагоприятных для человеческого здоровья звуков. Для точности проведения анализа акустического фона очень важно правильным образом использовать прибор.

Этот процесс должен происходить в соответствии с принятыми нормами и стандартами. Если все правила будут четко выполняться, в результате можно получить объективную картину того, какое конкретно шумовое загрязнение в конкретной зоне.

Читайте также: