Приближенные формулы 8 класс реферат

Обновлено: 02.07.2024

математические формулы, получаемые из формул вида f (x) = f*(x) + ε(х), где ε(х) рассматривается как погрешность и после оценки отбрасывается. Таким образом, П. ф. имеет вид f (x) ≈ f*(x).

Например, П. ф. (1 + х) 2 ≈ 1 + 2x получается из точной формулы для (1 + х) 2 при малых |x|; этой формулой можно пользоваться при вычислении с точностью до сотых, тысячных, десятитысячных, если |x| соответственно не больше 0,0707. 0,0223. 0,00707. Эта П. ф. даёт результат тем более точный, чем х ближе к 0. Но так бывает не всегда. Например, точность П. ф. tg

Выше (стр. 555) приведено несколько наиболее употребительных П. ф., причём показано, какого числа не должно превосходить |x|, чтобы формула давала k точных десятичных знаков.

Часто П. ф. получают с помощью разложения функций в ряды, например в ряд Тейлора. Чтобы уверенно применять П. ф., необходимо иметь оценку разности между точным и приближённым выражениями функции. Зная, например, что разность между sinx и двучленом не превосходит по абсолютному значению , легко убедиться, что П. ф.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое "Приближённые формулы" в других словарях:

приближённые формулы — математические, получаются из формул вида f(х) = f*(х) + ε(х), где ε(х) остаточный член, или погрешность, малая величина, которая после оценки отбрасывается. Например, приближённая формула (1 + х)2≈1 + 2х получается из точной формулы… … Энциклопедический словарь

Приближённое интегрирование — определённых интегралов, раздел вычислительной математики, занимающийся разработкой и применением методов приближённого вычисления определённых Интегралов. Пусть y = f (x) непрерывная функция на отрезке [a, b] и интеграл … Большая советская энциклопедия

Квадратурные формулы — формулы, служащие для приближённого вычисления определённых интегралов по значениям подинтегральной функции в конечном числе точек. Наиболее распространённые К. ф. имеют вид: где x1, x2. xn узлы К. ф., А1, А2, …Аn её… … Большая советская энциклопедия

Квадратурные формулы — Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

Эллипс — Не следует путать с Эллипсис. Эллипс, его фокусы и главные оси … Википедия

Дисперсия света — зависимость показателя преломления n вещества от частоты ν (длины волны λ) света или зависимость фазовой скорости (См. Фазовая скорость) световых волн от частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении… … Большая советская энциклопедия

Устойчивость гидродинамическая — способность поля течения восстанавливать своё состояние после воздействия возмущений. Для длительного существования какого либо течения необходимо, чтобы случайно возникающие в нём возмущения затухали. Если же возмущения, даже вначале малые,… … Энциклопедия техники

При больших n непосредственное вычисление вероятностей Pn(m) по формуле Бернулли сопряжено с трудностями вычислительного порядка, поэтому в таких случаях используют различные варианты приближенных вычислений, основанные на предельных теоремах Пуассона и Муавра‑Лапласа.

Б. Приближенные формулы Муавра – Лапласа.Если в схеме независимых испытаний Бернулли число испытаний n велико, а вероятности успеха и неудачи не малы (например, 0,1

где j(х)= . Функция j(х) – четная и для положительных значений х составлена таблица ее значений.

Задача 6.Вероятность поражения мишени стрелком при одном выстреле р=0,75. Найти вероятность того, что при 10 выстрелах стрелок поразит мишень 8 раз.

Решение. Здесь n=10, m=8, p=0,75, q=0,25. Найдем х= , и по таблице определяем j (x)=0,3739, тогда искомая вероятность равна

Для вычисления вероятности Pn(m1,m2)= P(m1£m£m2) события, состоящего в том, что число успехов в n испытаниях Бернулли окажется заключенным в пределах от m1 до m2, используется следующая приближенная формула (интегральная теорема Муавра-Лапласа):

где x1= , x2= , а Ф(х)= - функция Лапласа.

Функция Ф(x) равна 0 при x=0; Ф(-х)º-Ф(x) для всех x, то есть симметрична относительно x=0. Для функции Ф(х) составлены специальные таблицы при положительных значениях аргумента.

Задача 7.Вероятность появления события А в каждом из 21 независимых испытания равна 0,7. Найти вероятность того, что событие А появится в большинстве испытаний.

Решение. х1= . Аналогично подсчитывается х2 = 3. Тогда Р(11£m£21)=Ф(х2)–Ф(х1)=0,49865+0,4608=0,9594.

Используя интегральную формулу Муавра-Лапласа можно вычислить вероятность того, что частота появления успеха в n независимых испытаниях Бернулли (т.е. число m/n) отклонится от вероятности успеха не более чем на положительную величину e : .

Задача 8.Вероятность появления события в каждом из 400 независимых испытаний равна 0,8. Найти такое положительное число e, чтобы с вероятностью 0,99 абсолютная величина отклонения относительной частоты появления события от его вероятности не превышала e.

Решение. В этом примере p=0,8, n=400. По условию задачи . Следовательно, , По таблице для функции Лапласа определяем и значит, e=0,0516.

В практической деятельности люди постоянно имеют дело со значениями разных величин: длины, площади, объема, массы, температуры и так далее.

Числа, встречающиеся на практике, бывают двух видов. Одни дают истинное значение величины, другие – только приблизительное. Первые называют точными , вторые – приближенными .

Точное значение величины удается найти лишь в некоторых случаях.

Можно точно указать число вагонов железнодорожного поезда.

Точно подсчитать, сколько учеников есть одновременно в классе.

В книге 512 страниц, число 512 – точное.

В шестиугольнике 9 диагоналей, число 9 – точное.

В классе есть 29 учеников, число 29 – точное.

Однако по большей части приходится иметь дело лишь с приближенными значениями величин.

Чаще всего удобно пользоваться приближёнными числами вместо точных, тем более, что во многих случаях точное число вообще найти невозможно. Числа, которые мы называем приближёнными, иначе говоря, верными только приблизительно, но не совершенно точно, постоянно встречаются нам в жизни на практике. Приближённые числа могут получаться, прежде всего, при счёте предметов, если этих предметов слишком много и их почему – либо трудно или даже нельзя подсчитать точно. Конечно, в результате счёта предметов могут получаться и точные числа, если предметов не слишком много, если их число не слишком быстро меняется и если их без затруднений можно подсчитывать.

Лишь приблизительно оценивают :

количество зрителей телепередачи,

количество перелетных птиц,

количество деревьев в лесу.

Если же говорят, что расстояние от Москвы до Киева равно 960 км, то здесь число 960 – приближённое, так как с одной стороны, наши измерительные инструменты не абсолютно точны, а с другой стороны, сами города имеют некоторую протяжённость.

Продавец взвесил на автоматических весах 50 г масла. Число 50 – приближённое, так как весы нечувствительны к увеличению или уменьшению веса на 0,5 г.

Приближенные значения получаются в результате измерений.

Можно ли измерять длину рейки точно ? Нет. Даже если услышите, что длина какой-то рейки равняется, например, 9,42783 м , не верьте этому. Ведь длину такой рейки с точностью до сотой миллиметра нельзя измерять. Результат каждого измерения – приближенное значение величины.

Невозможно, точно измерять длину стержня. Ведь измерение мы проводим с помощью какого-то прибора (линейки, штангенциркуля, микрометра, оптиметра (оптико-механический измерительный прибор) и тому подобное), а точность измерения прибором всегда ограничена. Кроме того, изготовляя прибор в заводских условиях, гарантируют лишь ту или другую степень точности его изготовления. Наконец, выполняя измерение, мы можем допускать ошибки, связанные с нашим опытом работы и личными качествами.

Невозможно точно измерять площадь земельного участка, температуру воздуха, скорость полета самолета и так далее.

Приближенные значения получают при округлении истинных значений величин.

Приближённые и точные числа записываются при помощи десятичных дробей. Берётся только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах .

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа.

Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной.

Для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3 , 6 , 7 , а сомнительными 1 и 4 . В записи приближённого числа оставляют только верные цифры. Дробь будет выглядеть таким образом – 3,67 .

Число 2,19563 в расчете, который не нуждается высокой точности, можно округлить, заменив его числом 2,196 или даже числом 2,20 , которые являются приближенными значениями числа 2,19563 с излишком.

Итак, в разных случаях и в разных обстоятельствах счёт предметов может приводить и к точному и к приближённому числу.

Границы значения величины.

Всякое измерение (длины, веса и так далее) выполняется только приблизительно. Иногда, даже в тех случаях, когда можно установить истинное значение величины, бывает достаточно знать лишь её приближённое значение. Между истинной величиной предмета и числом, полученным при измерении (или подсчёте), бывает некоторая, хотя бы и небольшая разность.

Рассмотрим процесс определения массы детали с помощью рычажных весов и набора гирь, наименьшая из которых имеет массу 1 г.




Обозначим массу детали в граммах через m , тогда результат взвешивания можно записать в виде двойного неравенства :

Заменив потом гирю 10 г гирей 5 г , и убедимся, что масса детали больше 25 г,


Положив на чашу весов с гирьками еще 2 г , заметим, что масса детали меньше чем 27 г.



Взвешиваниями мы нашли приближенные значения массы детали в граммах :

26 г – приближённое значение с недостачей,

27 г – приближённое значение с излишком.

Другими словами, мы установили границы значения массы в граммах. Число 26 – нижняя граница, число 27 – верхняя граница.

Заметим, что когда бы наименьшая гиря была бы равна 2 г, то границами значения массы детали в граммах были бы числа 25 г и 27 г, то есть масса была бы определена менее точно.

Зная пределы значения некоторой величины, можно оценить значение другой величины, которая зависит от первой.

Пусть известны приближенные значения (в см) с недостачей и с излишком длины а стороны равностороннего треугольника :

5,4 ≤ а ≤ 5,5.

Надо найти пределы периметра Р .

Периметр равностороннего треугольника вычисляется по формуле :

Р = 3а .

Из условия, что а ≥ 5,4 выплывает, что 3а ≥ 16,2 .

Из условия, что а ≤ 5,5 выплывает, что 3а ≤ 16,5 .

Числа 16,2 и 16,5 – приближенные значения периметра (в см) с недостачей и излишком:

16,2 ≤ Р ≤ 16,5.

Записать решение можно и так :

5,4 ≤ а ≤ 5,5,

5,4 ∙ 3 ≤ 3а ≤ 5,5 ∙ 3,

16,2 ≤ Р ≤ 16,5.

Пусть известны границы какого-то числа х :

Надо оценить значение выражения 1 /х .

Из условия задачи определяем, что х – число положительное .

Поскольку х ˃ 3 , то

Поскольку х , то

Выходит, что

Заменим границы значения выражения 1 /х десятичными дробями. Число 1 / 6 можно заменить лишь меньшим числом (любым приближением с недостачей), а число 1 / 3 – лишь больше (приближением с излишком). Поскольку

то границами значения выражения 1 /х могут быть десятичные дроби 0,1 и 0,4 .

Заменив нижнюю границу числом 0,1, а верхнюю – числом 0,4 , мы расширили промежуток, которому принадлежат значения выражения 1 /х.


по известным правилам округления, то получили бы, что

Но тогда неизвестное нам точное значение выражения 1 /х могло бы очутиться вне полученных границах.

Способ записи приближённых чисел.

Приближённые значения обычно записывают так, чтобы по записи можно было судить о точности приближения.

На рулоне обоев написано, что его длина равна

Эта запись означает, что длина рулона равна 18 м с точностью до 0,3 м, то есть точное значение длины может отличаться от приближённого значения, равного 18 м, не более чем на 0, 3 м. Другими словами длина рулона должна находиться между

18 – 0,3 = 17,7 м и

18 + 0,3 = 18,3 м .

Если измеряя длину х некоторой рейки, выявили, что она больше чем 6,427 м и меньше чем 6,429 м, то записывают :

х = 6,428 ± 0,001 м.

Говорят, что значение длины рейки найдено с точностью до

0,001 м (одного миллиметра).

При приближённых вычислениях отличают запись 2,4 от 2,40 , запись 0,02 от 0,0200 и так далее.

Запись 2,4 означает, что верны только цифры целых и десятых, истинное же значение числа может быть, например, 2,43 или 2,38 (при отбрасывании цифры 8 происходит округление в сторону увеличения предшествующей цифры ).

Запись 2,40 означает, что верны и сотые доли, истинное число может быть 2,403 или 2,398 , но не 2,421 и не 2,382 .

То же отличие производится и для целых чисел. Запись 382 означает, что все цифры верны, если же за последнюю цифру ручаться нельзя, то число округляется, но записывается не в виде 380 , а в виде 38 10 . Запись же 380 означает, что последняя цифра (0) верна.

Если в числе 4720 верны лишь первые две цифры, его нужно записать в виде 47 10 2 , или это число можно также записать в виде 4,7 10 3 и так далее.

Значащими цифрами называются все верные цифры числа, кроме нулей, стоящих впереди числа.

В числе 0,00385 три значащие цифры.

В числе 0,03085 четыре значащие цифры,

В числе 2500 – четыре,

В числе 2,5 10 3 – две.

Число значащих цифр некоторого числа называется его значностью.

Через то, что мы не можем выполнить бесконечного процесса деления, то мы должны прекратить деление на каком-либо десятичном знаке, то есть выполнить приближенное деление. Мы можем, например, прекратить деление на первом десятичном знаке, то есть ограничиться десятыми частями; в случае потребности мы можем остановиться на втором десятичном знаке, ограничиться сотыми частями, и так далее. В таких случаях говорят о приближенном превращении обычных дробей в десятичные. В этих случаях говорят, что мы округляем бесконечную десятичную дробь. Округление делается с той точностью, которая нужна для решения данной задачи.

Вычисления с приближенными данными.

Вычисления с приближенными данными постоянно используется в практических задачах, при этом результат вычислений обычно округляют. Результат действий с приближёнными числами есть тоже приближённое число. Выполняя некоторые действия над точными числами, можно так же получить приближённые числа.

При сложении и вычитании приближённых чисел в результате следует сохранять столько десятичных знаков, сколько их в приближённом данном с наименьшим числом десятичных знаков, то есть оставляют в результате столько знаков после запятой, сколько их содержится в менее точном данном числе.

х 17,2 и у ≈ 8,407 .

Найдём приближённое значение суммы х и у .

х + у ≈ 25,607 .

Из данных приближённых значений 17,2 и 8,407 менее точным является первое. Округлив результат по первому данному, то есть до десятых, получим:

х + у ≈ 25,6 .

х 6,784 и

у ≈ 4,91 .

Найдём приближённое значение разности х и у .

ху ≈ 1,874 .

Из данных приближённых значений 6,784 и 4,91 менее точным является второе. Округлив результат по второму данному, то есть. до сотых, получим :

ху ≈ 1,87 .

Найдите разность приближенных значений

х = 1,52 ± 0,01 и

у = 0,27 ± 0,02 .

Данным приближенным значением отвечают двойные неравенства

1,51 ≤ х ≤ 1,53 и

0,25 ≤ у ≤ 0,29.

Умножим все части последнего двойного неравенства на –1 , получим

– 0,29 ≤ – у ≤ – 0,25.

Прибавив это двойное неравенство к первому, получим

1 ,22 ≤ ху ≤ 1 ,28, или

ху = 1,25 ± 0,03.

Несколько иначе поступают при умножении и делении приближённых значений. Здесь округление производится с учётом относительной точности данных. В этом случае находят произведение или частное приближённых значений, и результат округляют по менее точному данному, имея ввиду относительную точность. Для этого исходные данные и полученный результат записывают в стандартном виде

а × 10 n ,

и множитель а результата округляют, оставляя в нём столько знаков после запятой, сколько их имеет соответствующий множитель в менее точном данном.

х 0,86 и

у 27,1 .

Найдём приближённое значение произведения х и у .

Перемножив 0,86 и 27,1, получим :

Запишем данные числа и результат в стандартном виде :

23,306 = 2,3306 × 10 1 .

В множителе 8,6 одна цифра после запятой, а в множителе 2,71 две цифры после запятой. Округлим число 2,2306 по первому данному, то есть до десятых. Получим :

ху ≈ 2,3 × 10 1 = 23.

х 60,2 и

у 80,1 .

Найдём приближённое значение произведения х и у .

Известно, что все выписанные цифры верны, так что истинные величины могут отличаться от приближённых лишь сотыми, тысячными и так далее долями.

В произведении получаем 4822,02 . Здесь могут быть неверными не только цифры сотых и десятых, но и цифры единиц.

Пусть, например, сомножители получены округлением точных чисел 60,23 и 80,14 . Тогда точное произведение будет 4826,8322 , так что цифра единиц в приближённом произведении (2) отличается от точной цифры (6) на 4 единицы.

х 563,2 и

у 32 .

Найдём приближённое значение частного х и у .

Разделив 563,2 на 32 , получим:

х : у ≈ 17,6 .

Запишем данные числа и результат в стандартном виде :

563,2 = 5,632 × 10 2 ;

Из этой записи видно, что число 1,76 следует округлить по второму данному, то есть до десятых. Получим :

х : у ≈ 1,8 × 10 ≈ 18.

При умножении и делении приближённых чисел нужно в результатах сохранять столько значащих цифр, сколько их было в приближённом данном с наименьшим числом значащих цифр.

Таким образом, при сложении, вычитании, умножении и делении приближённых значений результат округляется по менее точному данному. При этом при сложении и вычитании данные числа записываются в десятичных дробях и менее точное данное определяется по абсолютной точности, а при умножении и делении данные числа записываются в стандартном виде и менее точное данное определяется по относительной точности.

Теория приближённых вычислений позволяет:

– зная степень точности данных, оценить степень точности результатов ещё до выполнения действий ;

– брать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата, но не слишком большой, чтобы избавить вычислителя от бесполезных расчётов ;

– рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результата.

ПРИБЛИЖЕННЫЕ ФОРМУЛЫ для вычисления различных функций. Основным методом получения приближенных формул является разложение функций в ряд, чаще всего в ряд Тейлора. Для оценки разности между точным и приближенным значением функций, полученным с помощью ряда, рассматривают дополнительный член ряда Тейлора в какой-либо форме. Ряд Тейлора с дополнительным членом в форме Пеано имеет вид:

1645

(α зависит от х и стремится к 0 вместе с х — х0 ).
Дополнительный член в форме Шлемильха и Роша имеет вид:

1646

при р=n + 1 получаем дополнительный член в форме Лагранжа:

1647

а при р = 1 — в форме Коши:

1648

Из формулы Тейлора при х0 =0 и из (*) получаем формулу Маклорена с остаточным членом:

1649

Если (n+1)-я производная f (n+1) (х) ограничена по абсолютной величине числом М, то погрешность rn приближенной формулы

1650

полученной из точной отбрасыванием дополнительного члена, может быть оценена следующим образом:

Например (при малых х), приближенная формула

1652

имеет погрешность

1653

В частности, чтобы погрешность формулы sinx≈x была меньше 10 -3 (x>0), надо, чтобы

та же точность достигается при x 5 .

Приближенные формулы для вычисления определенных интегралов см. в терминах: Парабол формула, Трапеций формула, Прямоугольников формула.

Если квадратные уравнения решали уже древние греки, то способы решения алгебраических уравнений третьей и четвёртой степени были открыты лишь в XVI веке. Эти классические способы дают точные значения корней и выражают их через коэффициенты уравнения при помощи радикалов различных степеней. Однако эти способы приводят к громоздким вычислениям и поэтому имеют малую практическую ценность.

В отношении алгебраических уравнений пятой и высших степеней доказано, что в общем случае их решения не выражаются через коэффициенты при помощи радикалов. Не выражаются в радикалах, например, корни уже такого простого по виду уравнения, как:

Сказанное, однако, не означает отсутствия в науке методов решения уравнения высших степеней. Имеется много способов приближенного решения уравнений - алгебраических и неалгебраических (или, как их называют, трансцендентных), позволяющих вычислять их корни с любой, заранее заданной степенью точности, что для практических целей вполне достаточно.

На простейших из таких способов мы и остановимся, причём речь будет идти о вычислении действительных корней.

Пусть нужно решить уравнение:

Если обратиться к рисунку, то каждый корень уравнения (1) представляет собой абсциссу точки пересечения графика функции y=f(х)

C осью Ох (рисунок №1)

С помощью графика функции или каким-нибудь иным способом обычно удаётся установить приблизительные значения корней. Это позволяет для каждого корня получить грубые приближения по недостатку и по избытку. Такого рода грубых приближений во многих случаях оказывается достаточно, чтобы, отправляясь от них, получить все значения корня с требуемой точностью. Об этом и пойдёт речь.

Итак, пусть корень Е уравнения (1) "зажат" между двумя его приближениями а и b по недостатку и по избытку а

Способ хорд (или способ линейной интерполяции).

Проведём хорду АВ (рисунок№3) и за первое приближённое значение корня примем абсциссу x1 точки С пересечения хорды с осью Ох.

Уравнение хорды имеет вид:

Поэтому в точке С:

Рассмотрение всех четырёх случаев, изображённых на рисунке №2, показывает, что точка x1 лежит между a и b с той стороны от Е, где f(х) имеет знак, противоположный знаку f``(х).

Остановим внимание на первом случае: f`(х)>0, f``(х)>0 (рисунок №3), - в остальных случаях рассуждение вполне аналогично. В этом первом случае x1 лежит между a и Е. С отрезком [x1, b] поступаем так же, как мы поступаем с отрезком [a, b] (рисунок №4). При этом для нового приближённого значения корня получаем:

x1 = x2-(b- x1)*f(x1)/f(b)-f(x1)

( в формуле (2) заменяем x1 на x2, а на x1 ); значение x2 оказывается между x1 и Е. Рассматриваем отрезок [x2, b] и находим новое приближённое x3, заключённое между x2 и Е и. т. д. В результате получим последовательность а 0

Найдём первое приближённое значение корня по формуле (2):

так как f(1,588)=-0,817 0

Следовательно, искомый корень с точностью до 0,01 равен 1,64.

1.2 Способ касательных (или способ Ньютона).

В том из концов дуги АВ (рисунок №5), в котором знаки f(х) и f``(х) совпадают, проводим касательную и за первое приближённое значение корня принимаем абсциссу х1` точки Д пересечения этой касательной с осью Ох. Обратимся вновь к первому случаю, соответствующему первому рисунку №2 (f`(x)>0, f``(x)>0), - в остальных случаях рассуждают опять-таки аналогично. Уравнение интересующей нас касательной имеет вид:

и поэтому в точке Д:

Из рисунка видно, что x1` лежит между Е и b. С отрезком [a, x1`] поступаем так же, как с отрезком [a, b] ( рисунок №5), и в результате для нового приближённого значения корня получим:

х2` = x1`- f( x1`)/ f`( x1`).

Значение х2` оказывается между Е и x1`. Рассматриваем отрезок [a, х2`] и находим новое приближение х3` и т. д. В результате получим последовательность:

все более точных приближённых значений корня, причём:

xn+1`= xn`- f(xn`)/ f`( xn`) (8)

Эта формула справедлива для всех четырёх случаев, изображённых на рисунке 32. Для оценки погрешностей полученных приближений можно опять воспользоваться формулой (5), как и в первом случае, легко устанавливается сходимость последовальности x1`, х2`, х3`,…,xn`,… к значению Е

Пример №2. Методом касательных найдём положительный корень уравнения

с точностью до 0,01.

В этом уравнении f(х)=х^4-2x-4, f`(х)=4х^3-2,а f``(х)=12x^2.Так как f(х) и f``(х) при х0 = 1,7 имеют один и тот же знак, а именно:

f(1,7)=0,952>0 и f``(1,7)>0, то применяем формулу:

x1`= х0- f(х0)/ f`( х0), где f`(1,7)=4*1,7^3-2=17,652. Тогда

Применяем второй раз способ касательных:

х2= x1- f(x1)/ f` (x1), где f(x1)= f(1,646)=0,048, f` (1,646) =15,838;

f(1,643)=0,004, f` (1,643)=15,740;

Следовательно, искомый корень с точностью до 0,01 равен 1,64.

1.3 Комбинированный способ

(комбинированное применение способов хорд и касательных).

Этот способ состоит в одновременном использовании способов хорд и касательных. Остановим своё внимание опять на случае, отвечающем первому рисунку №2. Значения x1 и x1`, вычисляем по прежним формулам, т. е. принимаем:

x1`=b-f(b)/f`(b), причём: x1 0 изображён на рисунке №7. Из этого рисунка видно, что уравнение имеет положительный единственный корень, лежащий на отрезке 1 0,f``(x)>0 т. е. знак производных сохраняется. Применяем комбинированный способ:

Формулы (10) дают:

При этом x1`- x1=0,012, т. е. точность недостаточна. Совершаем второй шаг:

При этом х2`- х2=0,00018, т. е. точность достаточна. Таким образом:

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами - загрузи их здесь!

Читайте также: