Поверхности равного давления реферат

Обновлено: 30.06.2024

Как уже отмечалось выше, поверхность, во всех точках которой давление одинаково, называется поверхностью уровня или поверхностью равного давления. При неравномерном или непрямолинейном движении на частицы жидкости кроме силы тяжести действуют еще и силы инерции, причем если они постоянны по времени, то жидкость принимает новое положение равновесия. Такое равновесие жидкости называется относительным покоем.

Рассмотрим два примера такого относительного покоя.

В первом примере определим поверхности уровня в жидкости, находящейся в цистерне, в то время как цистерна движется по горизонтальному пути с постоянным ускорением a (рис.2.6).

Рис. 2.6. Движение цистерны с ускорением

К каждой частице жидкости массы m должны быть в этом случае приложены ее вес G = mg и сила инерции Pu, равная по величине ma. Равнодействующая этих сил направлена к вертикали под углом α, тангенс которого равен

Так как свободная поверхность, как поверхность равного давления, должна быть нормальна к указанной равнодействующей, то она в данном случае представит собой уже не горизонтальную плоскость, а наклонную, составляющую угол α с горизонтом. Учитывая, что величина этого угла зависит только от ускорений, приходим к выводу, что положение свободной поверхности не будет зависеть от рода находящейся в цистерне жидкости. Любая другая поверхность уровня в жидкости также будет плоскостью, наклоненной к горизонту под углом α. Если бы движение цистерны было не равноускоренным, а равнозамедленным, направление ускорения изменилось бы на обратное, и наклон свободной поверхности обратился бы в другую сторону (см. рис.2.6, пунктир).

В качестве второго примера рассмотрим часто встречающийся в практике случай относительного покоя жидкости во вращающихся сосудах (например, в сепараторах и центрифугах, применяемых для разделения жидкостей). В этом случае (рис.2.7) на любую частицу жидкости при ее относительном равновесии действуют массовые силы: сила тяжести G = mg и центробежная сила Pu = mω 2 r, где r - расстояние частицы от оси вращения, а ω - угловая скорость вращения сосуда.

Рис. 2.7. Вращение сосуда с жидкостью

Поверхность жидкости также должна быть нормальна в каждой точке к равнодействующей этих сил R и представит собой параболоид вращения. Из чертежа находим

С другой стороны:

где z - координата рассматриваемой точки. Таким образом, получаем:

или после интегрирования

В точке пересечения кривой АОВ с осью вращения r = 0, z = h = C, поэтому окончательно будем иметь

т.е. кривая АОВ является параболой, а свободная поверхность жидкости параболоидом. Такую же форму имеют и другие поверхности уровня.

Для определения закона изменения давления во вращающейся жидкости в функции радиуса и высоты выделим вертикальный цилиндрический объем жидкости с основанием в виде элементарной горизонтальной площадки dS (точка М) на произвольном радиусе r и высоте z и запишем условие его равновесия в вертикальном направлении. С учетом уравнения (2.11) будем иметь

После сокращений получим

Это значит, что давление возрастает пропорционально радиусу r и уменьшается пропорционально высоте z.

Поверхностями равного давления называются поверхности с одинаковыми во всех точках давлениями. Тогда любая горизонтальная плоскость, проведенная в покоящейся жидкости, находящейся под действием силы тяжести, является поверхностью равного давления.

Свободной поверхностью называют плоскость раздела между жидкостью и газообразной средой. Равнодействующая всех сил, приложенных к каждой частице, лежащей на свободной поверхности покоящейся жидкости, нормальна к этой поверхности.

Рассмотрим формы свободной поверхности жидкости для следующих случаев:

1 – жидкость находится в покое под действием силы тяжести (рис. 2.4).


В этом случае на каждую частицу жидкости действует только одна сила – сила тяжести mg, которая направлена вертикально вниз, а свободная поверхность есть горизонтальная плоскость.

2 – жидкость находится в относительном покое по отношению к сосуду, движущемуся по горизонтальному пути с постоянным ускорением W (рис. 2.5).


В этом случае на каждую частицу жидкости действует сила тяжести mg и сила инерции mW, которая направлена в сторону, обратную ускорению. Равнодействующая этих сил составит с вертикалью угол , тогда , а т.к. свободная поверхность должна быть нормальна к равнодействующей, то она будет представлять собой наклонную плоскость, составляющую с горизонтом тот же угол .

3 – относительное равновесие жидкости во вращающихся сосудах (рис. 2.6), ими могут быть центрифуги, сепараторы.


В этом случае на любую частицу жидкости при ее относительном равновесии будут действовать сила тяжести mg и нормальная сила инерции , где – расстояние частицы от оси вращения; – угловая скорость равномерного вращения сосуда. Свободная поверхность жидкости будет в каждой точке нормальна к равнодействующей R этих сил и будет представлять собой параболоид вращения вокруг оси z.

Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня или поверхностью равного давления. При неравномерном или непрямолинейном движении на частицы жидкости кроме силы тяжести действуют еще и силы инерции, причем если они постоянны по времени, то жидкость принимает новое положение равновесия. Такое равновесие жидкости называется относительным покоем.

Рассмотрим два примера такого относительного покоя.

Жидкость в неинерциальных системах отсчета

В первом примере определим поверхности уровня в жидкости, находящейся в цистерне, в то время как цистерна движется по горизонтальному пути с постоянным ускорением a (рис.2.15).


Рис. 2.15. Движение цистерны с ускорением

К каждой частице жидкости массы m должны быть в этом случае приложены ее вес G=mg и сила инерции Pu = ma.

Равнодействующая этих сил R = ((mg) 2 +(ma) 2 ) 1/2 направлена к вертикали под углом α, тангенс которого равен tga = a/g.

Так как свободная поверхность, как поверхность равного давления, должна быть нормальна к указанной равнодействующей, то она в данном случае представит собой уже не горизонтальную плоскость, а наклонную, составляющую угол α с горизонтом. Учитывая, что величина этого угла зависит только от ускорений, приходим к выводу, что положение свободной поверхности не будет зависеть от рода находящейся в цистерне жидкости.

Любая другая поверхность уровня в жидкости также будет плоскостью, наклоненной к горизонту под углом α. Если бы движение цистерны было не равноускоренным, а равнозамедленным, направление ускорения изменилось бы на обратное, и наклон свободной поверхности обратился бы в другую сторону (см. рис.2.6, пунктир).

Относительный покой жидкости во вращающемся сосуде

В качестве второго примера рассмотрим часто встречающийся в практике случай относительного покоя жидкости во вращающихся сосудах (рис.2.16), например, в сепараторах и центрифугах, применяемых для разделения жидкостей.

В этом случае на любую частицу жидкости при ее относительном равновесии действуют массовые силы:

сила тяжести G=mg

центробежная сила Pц=mω 2 r,

где r - расстояние частицы от оси вращения, а ω - угловая скорость вращения сосуда.


Рис. 2.16. Вращение сосуда с жидкостью

Поверхность жидкости также должна быть нормальна в каждой точке к равнодействующей этих сил R и представит собой параболоид вращения. Т.е. кривая АОВ является параболой, а свободная поверхность жидкости параболоидом, который описывается уравнением

Закон изменения давления во вращающейся жидкости в функции радиуса и высоты записывается в виде

Это значит, что давление возрастает пропорционально радиусу r и уменьшается пропорционально высоте z.

Равновесие газа

Уравнения равновесия, выведенные для жидкости, имеют общий характер и могут быть использованы при расчете сжимаемой жидкости или газа.

Для газа, находящегося в равновесии, любая горизонтальная плоскость, проведенная внутри занимаемого газом объема, будет поверхностью равного давления (рис. 2.11).

В однородной газовой среде (ρ = const), распределение давления не отличается от распределения давления в покоящейся капельной жидкости.

Действительно при Х=0, У=0 и Z=-g.

dp = -ρgdz; (2.17)

Определив постоянную интегрирования из граничных условий, например (см. рис. 2.11) на поверхности земли z=z0 и р=р0,получим уравнение

где z - расстояние от плоскости сравнения 0'-0' до рассматриваемой точки (высота точки М); z0 - расстояние от плоскости сравнения 0'-0' до поверхности с заданным давлением р=р0.

Рис. 2.11. Равновесие газа в поле силы тяжести

Уравнения (2.17) и (2.18) показывают, что в поле силы тяжести изменение давления газа будет, так же как и в капельной жидкости, определяться только изменением расстояния от плоскости сравнения до рассматриваемой точки. Полученное уравнение показывает, что с увеличением высоты до рассматриваемой точки давление уменьшается, так как в выбранной системе координат z>z0.

Характер же этого изменения будет корректироваться в зависимости от закона изменения внутреннего состояния газа.

Примеры решений задач по астрономии: Фокусное расстояние объектива телескопа составляет 900 мм, а фокусное .

Основные признаки растений: В современном мире насчитывают более 550 тыс. видов растений. Они составляют около.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



  • Гидростатическое давление и его свойства
  • Уравнения гидростатики
  • Некоторые понятия в гидростатике
  • Давление жидкости на плоские и криволинейные поверхности
  • Плавание тел

ГИДРОСТАТИКА

Гидростатическое давление и его свойства

Гидростатика — раздел гидравлики, в котором изучаются законы жидкости в состоянии равновесия и распределение давления покоящейся жидкости на различные поверхности.

Рассмотрим основное понятие гидростатики — гидростатическое давление. На рис. 2.1 представлен некоторый произвольный объем покоящейся жидкости. Разделим этот объем плоскостью ВС на две части — I и II . В плоскости ВС выделим площадь ω с центром в точке А. Давление со стороны части I объема будет передаваться на поверхность ВС с силой Р.

Гидростатическим давлением Р называется сила давления жидкости на единицу площади ω, и его можно представить формулой




(2.1)

Гидростатическое давление имеет размерность в системе СИ Паскаль (Па). Оно обладает тремя свойствами.

Первое свойство . Гидростатическое давление направлено по внутренней нормали к поверхности, на которую оно действует.

Второе свойство . Гидростатическое давление в точке действует одинаково по всем направлениям и может быть выражено соотношением


Px=Py=Pz=Pn

(2.2)

Третье свойство . Гидростатическое давление в точке зависит от ее координат в пространстве и может быть записано следующим образом:

P=f (x, y, z)

(2.3)


Уравнения гидростатики

При изучении законов покоящейся жидкости рассмотрим три уравнения: а) основные дифференциальные уравнения равновесия; б) уравнения гидростатического давления; в) уравнение гидростатического давления жидкости, находящейся под воздействием сил тяжести.

а. Основные дифференциальные уравнения равновесия Л. Эйлера выведены в Российской Академии наук в 1755 г. Уравнения выражают связь между массовыми (объемными) силами, давлением и координатами любой точки жидкости в состоянии равновесия.

Не приводя вывода уравнений, поясним ход рассуждений.

В покоящейся жидкости выделяется какой-либо объем. В данном примере на рис. 2.2 рассматривается параллелепипед с гранями ab
с
d
и a
'
b
'
c
'
d
'.
На выделенный объем действуют силы поверхностного суммарного гидростатического давления и массовые (объемные) силы. Жидкость находится в равновесии, следовательно поверхностные и массовые силы должны уравновешиваться, т. е. сумма этих сил должна быть равна нулю.

ПОВЕРХНОСТНЫЕ СИЛЫ. Силы суммарного гидростатиче ского давления по оси х с учетом приращения дРх будут равны




(2.4)

Напомним, что силы, направленные по оси, положительны, а про­ тив оси — отрицательны. Аналогично можно получить величины по оси у и z
.

МАССОВЫЕ (ОБЪЕМНЫЕ) СИЛЫ. Объемной силой назы­ вается сила, приложенная к массе жидкости в объеме параллелепи­педа. Такой силой может быть сила тяжести p
=
mg
.
При постоян ной плотности масса жидкости выделенного объема равна m
= r
dxdydz
.
В гидравлике проекции ускорения объемных сил, отнесенных к единице массы, обозначаются X
,
Y
,
Z
.
Таким образом, по оси x можно записать


dPx
=
Xrdxdydz


(2.5)

Сумма поверхностных и массовых сил по оси x будет равна

Pxdydz

Pxdydz
-
dxdydz
+
Xrdxdydz
= 0

Производя сокращения и отнеся все члены уравнения к единице массы, т. е. разделив на величину массы rdxdydz , и учитывая второе свойство гидростатического давления, получим уравнения Л. Эйлера по всем осям







(2.6)











(2.7)





Физический смысл полученных уравнений заключается в следующем: изменение гидростатического давления в направлении какой-либо оси, отнесенное к плотности, равняется проекции объемной силы, отнесенной к единице массы, на ту же ось.

б. Уравнение гидростатического давления можно получить из уравнений Л. Эйлера. Если умножить каждый его член на r dx , r dy и rdz и сложить их, то получим




(2.8)

Правая часть полученного уравнения представляет собой полный дифференциал давления

dP
=
r
(
Xdx
+
Ydy
+
Zdz
)


(2.9)

Из последнего уравнения гидростатического давления видно, что давление зависит от плотности жидкости и бывает больше для плотных жидкостей.

В случае, если имеется поверхность равного давления, Р= const и dP =0, поскольку r не равно 0, то уравнение в случае равного давления имеет вид


Xdx
+
Ydy
+
Zdz
=0


(2.10)

в. Уравнение гидростатического давления жидкости, находящейся под действием силы тяжести. Основное уравнение гидростатического давления в дифференциальной форме следующее:

dP
=
r
(
Xdx
+
Ydy
+
Zdz
)


Интегрируя данное уравнение, можно его использовать для различных случаев покоя жидкости. Рассмотрим частный случай, когда жидкость находится в покое под действием силы тяжести. На рис. 2.3 на поверхности жидкости наметим точку в, в которой давление Р0. Начало координат совместим с точкой в, а ось z направим вниз. Выделим точку а, в которой жидкость находится под действием силы тяжести, равной весу р= mg . Примем массу m =1, тогда p
=
g
, т. е. единичная массовая сила будет равна ускорению. Проекции этой силы на ось x и y будут равны 0: X =0; Y =0. Проекция силы тяжести на ось z =
g
, т. к. направление оси совпадает с направлением силы тяжести вниз, к центру Земли.

Согласно уравнению гидростатического давления dP будет равно


dP=rgdz

(2.11)

Интегрируем это уравнение в пределах от Р0 до Р и от z 0 до z



получим

P – P0=rg(z-z0)

(2.12)

Из рис. 2.3 видно, что глубина погружения точки а относительно свободной поверхности h
=
z

z
0
. Поэтому можем записать

P

P
0
=r
gh


(2.13)


P
=
P
0
-
rgh


(2.14)

Последняя формула является уравнением гидростатического давления жидкости, находящейся под действием силы тяжести.

Если свободная поверхность жидкости соприкасается с атмосферой, то Р0а и полное гидростатическое давление будет иметь вид


Р=Ра +r
gh


(2.15)

Из уравнения гидростатического давления следует закон Паскаля: давление, воспринимаемое жидкостью, передается во все точки жидкости с одинаковой силой.

Избыточным, или манометрическим, давлением называется превышение давления над атмосферным


Ризб=
rgh


(2.16)


Некоторые понятия в гидростатике

Читайте также: